
Data Modeling and 
Least Squares Fitting 

COS 323 



Data Modeling or Regression 

• Given: data points, functional form, 
find constants in function 

• Example: given (xi, yi), find line through them; 
i.e., find a and b in y = ax+b 

(x1,y1) 

(x2,y2) 

(x3,y3) 

(x4,y4) 

(x5,y5) 
(x6,y6) 

(x7,y7) 

y=ax+b 
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Data Modeling 

• You might do this because you actually care 
about those numbers… 
– Example: measure position of falling object, 

fit parabola 

z = –1/2 gt2 

data points (ti, zi) known 
constant g unknown 
⇒  Estimate g from fit 



Data Modeling 

• … or because some aspect of behavior is unknown and 
you want to ignore it 

 

– Measuring relative 
resonant frequency of 
two ions, want to 
ignore magnetic 
field drift 



Data Modeling 

• … or to compare model types to figure out 
what kind of dependence exists 

 
– Is happiness linear 

w.r.t. income? 



Data Modeling 

• … or to make predictions 

Corey Booker’s 
current lead 



Which model is best? 



Best-fit lines under different metrics 

Sum of residuals Sum of absolute values of residuals 

Maximum error of 
any point 



Least Squares 

• Nearly universal (but problematic!) formulation: 
minimize squares of differences 

between data and function 
 

– Example: to fit a line to points (xi, yi), minimize 
 
 
with respect to a and b 
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Linear Least Squares 

• Important special case 
– (Also called “Ordinary least squares”) 

• General pattern: 

 

 

 

• Dependence on unknowns (a, b, c…) is linear, 
but f, g, etc. might not be! 
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Linear Least Squares Examples 

• General form: 

 

• Linear regression: f(xi) = xi, g(xi) = 1 
yi = a * xi + b 

• Multiple linear regression: 
yi = a * x1i + b * x2i + c 

• Polynomial regression: 
yi = a * xi

2 +  b * xi + c 
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Linear Least Squares Pros and Cons 

+ Relatively simple to compute 

+ Easy to analyze stability / adequacy of data 

+ Given sufficient data, exactly one solution 

 

− Sensitive to outliers 

− Temptation to model nonlinear dependency 
as linear 



How do we compute the model 
parameters? 



Solving Linear Least Squares Problem  
(one simple approach) 

• Take partial derivatives: 

( )22 )()(∑ −−−=
i

iii xgbxfay χ

( )

∑∑∑
∑

=++

=−−−−=
∂
∂

i
ii

i
ii

i
ii

i
iiii

yxgxgxgbxfxga

xgbxfayxg
b

)()()()()(

0)()()(2





( ) 0)()()(2 =−−−−=
∂
∂ ∑

i
iiii xgbxfayxf

a


∑∑∑ =++
i

ii
i

ii
i

ii yxfxgxfbxfxfa )()()()()( 



Solving Linear Least Squares Problem 

• For convenience, rewrite as matrix: 

 

 

 

• Factor: 
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Alternative Perspective: Overconstrained 
(Approximate) Linear System 

• There’s a different derivation of this: 
overconstrained linear system 

 

 

 

 

 

• A has n rows and m<n columns: 
more equations than unknowns 
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A Notation: 
• Rows of A are basis 

functions computed on 
observations (f(xi), g(xi), …) 

• x is column of 
model parameters (a, b, c…) 

• b is column of “yi” 



Geometric Interpretation  
for Over-determined System 

• Find the x that comes “closest” to satisfying 
Ax=b 
– i.e., minimize b–Ax 



Geometric Interpretation 

• Interpretation: find x that comes “closest” to 
satisfying Ax=b 
– i.e., minimize b–Ax 

– i.e., minimize || b–Ax || 
– Equivalently, find x such that r is orthogonal to 

span(A) 

 

0 =  A Tr = A T (b − Ax)
A TAx = A Tb



Forming the equation 

• What are A and b? 
– Row i of A is basis functions computed on xi 

– Row i of b is yi 
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Minimizing Sum of Squares  
= Finding Closest Ax in span(A)  

• Compare two expressions we’ve derived: equal! 
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Starting from goal of 
minimizing sum of squares 

Starting from goal of 
finding Ax in span(A) 

closest to b outside span(A) 



Great, but how do we solve it? 



Ways of Solving Linear Least Squares 

• Option 1: 
 for each xi,yi 

  compute f(xi), g(xi), etc.  
  store in row i of A 
  store yi in b 
 compute (ATA)-1 ATb 

• (ATA)-1 AT is known as “pseudoinverse” of A 
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Ways of Solving Linear Least Squares 

• Option 2: 
 for each xi,yi 

  compute f(xi), g(xi), etc. 
  store in row i of A 
  store yi in b 
 compute ATA, ATb 
 solve ATAx=ATb 

• Known as “normal equations” for least squares 
– Inefficient, since A typically larger than ATA and ATb 



Ways of Solving Linear Least Squares 

• Option 3: 
 for each xi,yi 

  compute f(xi), g(xi), etc. 
  accumulate outer product in U (= ATA) 
  accumulate product with yi in v (= ATb) 
 solve Ux=v 
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The Problem with Normal Equations 

• Involves solving ATAx=ATb 

• This can be inaccurate 
– Independent of solution method 

– Remember: 
 

– cond(ATA) = [cond(A)]2 

• Next week: computing pseudoinverse stably 
– More expensive, but more accurate 

– Also allows diagnosing insufficient data 

 

|| ∆x ||
|| x ||

≤ cond(A)
|| ∆A ||
|| A ||



Special Cases 

  



Special Case: Constant 

• Let’s try to model a function of the form 
         y = a 



Special Case: Constant 

• Let’s try to model a function of the form 
         y = a 

• Comparing to general form 

 

    we have f(xi)=1 and we are solving 
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Special Case: Line 

• Fit to y=a+bx 

• f(xi)=1, g(xi)=x. So, solve: 
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Variant: Weighted Least Squares 



Weighted Least Squares 

• Common case: the (xi,yi) have different 
uncertainties associated with them 

• Want to give more weight to measurements 
of which you are more certain 

• Weighted least squares minimization 

 

• If “uncertainty” (stdev) is σ, best to take 
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Weighted Least Squares 

• Define weight matrix W as 

 

 

 

 

• Then solve weighted least squares via 
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Understanding Error and Uncertainty 



Error Estimates from Linear Least Squares 

• For many applications, finding model is useless 
without estimate of its accuracy 

• Residual is b – Ax 

• Can compute χ2 = (b – Ax)⋅(b – Ax) 

• How do we tell whether answer is good? 
– Lots of measurements 

– χ2
 is small 

– χ2 increases quickly with perturbations to x 
(→ standard variance of estimate is small) 



Error Estimates from Linear Least Squares 

• Let’s look at increase in χ2: 

 

 

 

 

 

• So, the bigger ATA is, the faster error increases 
as we move away from current x 
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Error Estimates from Linear Least Squares 

• C=(ATA)–1 is called covariance of the data 

• The “standard variance” in our estimate of x is 

 

• This is a matrix: 
– Diagonal entries give variance of estimates of 

components of x: e.g., var(a0) 
– Off-diagonal entries explain mutual dependence: 

e.g., cov(a0, a1) 

• n–m is (# of samples) minus (# of degrees of 
freedom in the fit): consult a statistician… 
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Special Case: Error in Constant Model 

 

a = y 
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Coefficient of Determination 

R2 : Proportion of observed variability that is explained by 
the model (vs. just the mean) 
 e.g., R2 = 0.7 means 70% variability explained 
For linear regression, R2 is Pearson’s correlation. 
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Keep in mind… 

• In general, uncertainty in estimated parameters 
goes down slowly: like 1/sqrt(# samples) 

• Formulas for special cases (like fitting a line) are 
messy: simpler to think of ATAx=ATb form 

• Normal equations method often not numerically 
stable: orthogonal decomposition methods used 
instead 

• Linear least squares is not always the most 
appropriate modeling technique… 



Next time 

• Non-linear models 
– Including logistic regression 

• Dealing with outliers and bad data 

• Practical considerations 
– Is least squares an appropriate method for my data? 


	Data Modeling and�Least Squares Fitting
	Data Modeling or Regression
	Data Modeling
	Data Modeling
	Data Modeling
	Data Modeling
	Which model is best?
	Best-fit lines under different metrics
	Least Squares
	Linear Least Squares
	Linear Least Squares Examples
	Linear Least Squares Pros and Cons
	How do we compute the model parameters?
	Solving Linear Least Squares Problem �(one simple approach)
	Solving Linear Least Squares Problem
	Alternative Perspective: Overconstrained (Approximate) Linear System
	Geometric Interpretation �for Over-determined System
	Geometric Interpretation
	Forming the equation
	Minimizing Sum of Squares �= Finding Closest Ax in span(A) 
	Great, but how do we solve it?
	Ways of Solving Linear Least Squares
	Ways of Solving Linear Least Squares
	Ways of Solving Linear Least Squares
	The Problem with Normal Equations
	Special Cases
	Special Case: Constant
	Special Case: Constant
	Special Case: Line
	Variant: Weighted Least Squares
	Weighted Least Squares
	Weighted Least Squares
	Understanding Error and Uncertainty
	Error Estimates from Linear Least Squares
	Error Estimates from Linear Least Squares
	Error Estimates from Linear Least Squares
	Special Case: Error in Constant Model
	Coefficient of Determination
	Keep in mind…
	Next time

