# Data Modeling and <br> Least Squares Fitting 

COS 323

## Data Modeling or Regression

- Given: data points, functional form, find constants in function
- Example: given $\left(x_{i}, y_{i}\right)$, find line through them; i.e., find $a$ and $b$ in $y=a x+b$
$\left(x_{1}, y_{1}\right)$



## Data Modeling

- You might do this because you actually care about those numbers...
- Example: measure position of falling object, fit parabola

$z=-1 / 2$ gt $^{2}$
data points $\left(t_{i}, z_{i}\right)$ known constant g unknown
$\Rightarrow$ Estimate g from fit


## Data Modeling

- ... or because some aspect of behavior is unknown and you want to ignore it
- Measuring relative resonant frequency of two ions, want to ignore magnetic field drift



## Data Modeling

- ... or to compare model types to figure out what kind of dependence exists
- Is happiness linear w.r.t. income?



## Data Modeling

- ... or to make predictions



## Which model is best?



## Best-fit lines under different metrics



Sum of residuals


Maximum error of any point

## Least Squares

- Nearly universal (but problematic!) formulation: minimize squares of differences between data and function
- Example: to fit a line to points $\left(x_{i}, y_{i}\right)$, minimize

$$
\chi^{2}=\sum_{i}\left(y_{i}-\left(a x_{i}+b\right)\right)^{2}
$$

with respect to $a$ and $b$

## Linear Least Squares

- Important special case
- (Also called "Ordinary least squares")
- General pattern:

$$
\begin{aligned}
& y_{i}=a f\left(\vec{x}_{i}\right)+b g\left(\vec{x}_{i}\right)+c h\left(\vec{x}_{i}\right)+\cdots \\
& \text { Given }\left(\vec{x}_{i}, y_{i}\right), \text { solve for } a, b, c, \ldots
\end{aligned}
$$

- Dependence on unknowns ( $a, b, c \ldots$ ) is linear, but $\mathrm{f}, \mathrm{g}$, etc. might not be!


## Linear Least Squares Examples

- General form: $y_{i}=a f\left(\vec{x}_{i}\right)+b g\left(\vec{x}_{i}\right)+c h\left(\vec{x}_{i}\right)+\cdots$ Given $\left(\vec{x}_{i}, y_{i}\right)$, solve for $a, b, c, \ldots$
- Linear regression: $f\left(x_{i}\right)=x_{i}, g\left(x_{i}\right)=1$ $y_{i}=a * x_{i}+b$
- Multiple linear regression:
$y_{i}=a * x_{1 i}+b * x_{2 i}+c$
- Polynomial regression:
$y_{i}=a^{*} x_{i}^{2}+b^{*} x_{i}+c$


## Linear Least Squares Pros and Cons

+ Relatively simple to compute
+ Easy to analyze stability / adequacy of data
+ Given sufficient data, exactly one solution
- Sensitive to outliers
- Temptation to model nonlinear dependency as linear


## How do we compute the model parameters?



## Solving Linear Least Squares Problem (one simple approach)

- Take partial derivatives:

$$
\begin{gathered}
\chi^{2}=\sum_{i}\left(y_{i}-a f\left(x_{i}\right)-b g\left(x_{i}\right)-\cdots\right)^{2} \\
\frac{\partial}{\partial a}=\sum_{i}-2 f\left(x_{i}\right)\left(y_{i}-a f\left(x_{i}\right)-b g\left(x_{i}\right)-\cdots\right)=0 \\
a \sum_{i} f\left(x_{i}\right) f\left(x_{i}\right)+b \sum_{i} f\left(x_{i}\right) g\left(x_{i}\right)+\cdots=\sum_{i} f\left(x_{i}\right) y_{i} \\
\frac{\partial}{\partial b}=\sum_{i}-2 g\left(x_{i}\right)\left(y_{i}-a f\left(x_{i}\right)-b g\left(x_{i}\right)-\cdots\right)=0 \\
a \sum_{i} g\left(x_{i}\right) f\left(x_{i}\right)+b \sum_{i} g\left(x_{i}\right) g\left(x_{i}\right)+\cdots=\sum_{i} g\left(x_{i}\right) y_{i}
\end{gathered}
$$

## Solving Linear Least Squares Problem

- For convenience, rewrite as matrix:

$$
\left[\begin{array}{cll}
\sum_{i} f\left(x_{i}\right) f\left(x_{i}\right) & \sum_{i} f\left(x_{i}\right) g\left(x_{i}\right) & \cdots \\
\sum_{i} g\left(x_{i}\right) f\left(x_{i}\right) & \sum_{i} g\left(x_{i}\right) g\left(x_{i}\right) & \vdots \\
\vdots
\end{array}\right]\left[\begin{array}{c}
a \\
b \\
\vdots
\end{array}\right]=\left[\begin{array}{c}
\sum_{i} f\left(x_{i}\right) y_{i} \\
\sum_{i} g\left(x_{i}\right) y_{i} \\
\vdots
\end{array}\right]
$$

- Factor:

$$
\sum_{i}\left[\begin{array}{c}
f\left(x_{i}\right) \\
g\left(x_{i}\right) \\
\vdots
\end{array}\right]\left[\begin{array}{c}
f\left(x_{i}\right) \\
g\left(x_{i}\right) \\
\vdots
\end{array}\right]^{\mathrm{T}}\left[\begin{array}{c}
a \\
b \\
\vdots
\end{array}\right]=\sum_{i} y_{i}\left[\begin{array}{c}
f\left(x_{i}\right) \\
g\left(x_{i}\right) \\
\vdots
\end{array}\right]
$$

## Alternative Perspective: Overconstrained

## (Approximate) Linear System

- There's a different derivation of this: overconstrained linear system

$$
\begin{aligned}
& \mathbf{A} x=b \\
& \text { A } \quad(x)=\left(\begin{array}{l} 
\\
b
\end{array}\right) \\
& \text { Notation: } \\
& \text { - Rows of A are basis } \\
& \text { functions computed on } \\
& \text { observations ( } \mathrm{f}\left(\mathrm{x}_{\mathrm{i}} \text { ), } \mathrm{g}\left(\mathrm{x}_{\mathrm{i}}\right), \ldots\right. \text { ) } \\
& \text { - } x \text { is column of } \\
& \text { model parameters (a, b, c...) } \\
& \text { - } b \text { is column of " } y_{i} \text { " }
\end{aligned}
$$

- A has n rows and $\mathrm{m}<\mathrm{n}$ columns: more equations than unknowns


## Geometric Interpretation

 for Over-determined System- Find the x that comes "closest" to satisfying $A x=b$
- i.e., minimize b-Ax


## Geometric Interpretation

- Interpretation: find x that comes "closest" to satisfying $A x=b$
- i.e., minimize $b-A x$
- i.e., minimize || b-Ax ||

- Equivalently, find $x$ such that $r$ is orthogonal to span(A)

$$
\begin{aligned}
0= & \mathbf{A}^{\mathrm{T}} \mathbf{r}=\mathbf{A}^{\mathrm{T}}(\mathbf{b}-\mathbf{A} \mathbf{x}) \\
& \mathbf{A}^{\mathrm{T}} \mathbf{A x}=\mathbf{A}^{\mathrm{T}} \mathbf{b}
\end{aligned}
$$

## Forming the equation

- What are A and b ?
- Row $i$ of $A$ is basis functions computed on $x_{i}$
- Row iof bis $y_{i}$

$$
\begin{gathered}
\mathbf{A}=\left[\begin{array}{ccc}
f\left(x_{1}\right) & g\left(x_{1}\right) & \cdots \\
f\left(x_{2}\right) & g\left(x_{2}\right) & \cdots \\
\vdots &
\end{array}\right], \quad b=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots
\end{array}\right] \\
\mathbf{A}^{\mathrm{T}} \mathbf{A}=\left[\begin{array}{ccc}
\sum_{i} f\left(x_{i}\right) f\left(x_{i}\right) & \sum_{i} f\left(x_{i}\right) g\left(x_{i}\right) & \cdots \\
\sum_{i} g\left(x_{i}\right) f\left(x_{i}\right) & \sum_{i} g\left(x_{i}\right) g\left(x_{i}\right) & \cdots \\
\vdots
\end{array}\right], \quad \mathbf{A}^{\mathrm{T}} b=\left[\begin{array}{c}
\sum_{i} y_{i} f\left(x_{i}\right) \\
\sum_{i} y_{i} g\left(x_{i}\right) \\
\vdots
\end{array}\right]
\end{gathered}
$$

## Minimizing Sum of Squares

## = Finding Closest Ax in span(A)

- Compare two expressions we've derived: equal!


Starting from goal of
finding $A x$ in span(A)
closest to b outside span(A)

Starting from goal of minimizing sum of squares

$$
\sum_{i}\left[\begin{array}{c}
f\left(x_{i}\right) \\
g\left(x_{i}\right) \\
\vdots
\end{array}\right]\left[\begin{array}{c}
f\left(x_{i}\right) \\
g\left(x_{i}\right) \\
\vdots
\end{array}\right]^{\mathrm{T}}\left[\begin{array}{c}
a \\
b \\
\vdots
\end{array}\right]=\sum_{i} y_{i}\left[\begin{array}{c}
f\left(x_{i}\right) \\
g\left(x_{i}\right) \\
\vdots
\end{array}\right]
$$

## Great, but how do we solve it?

## Ways of Solving Linear Least Squares

$$
\sum_{i}\left[\begin{array}{c}
f\left(x_{i}\right) \\
g\left(x_{i}\right) \\
\vdots
\end{array}\right]\left[\begin{array}{c}
f\left(x_{i}\right) \\
g\left(x_{i}\right) \\
\vdots
\end{array}\right]^{\mathrm{T}}\left[\begin{array}{c}
a \\
b \\
\vdots
\end{array}\right]=\sum_{i} y_{i}\left[\begin{array}{c}
f\left(x_{i}\right) \\
g\left(x_{i}\right) \\
\vdots
\end{array}\right]
$$

- Option 1:
for each $x_{i}, y_{i}$
compute $\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right), \mathrm{g}\left(\mathrm{x}_{\mathrm{i}}\right)$, etc.
store in row $i$ of $A$
store $y_{i}$ in $b$
compute ( $\left.\mathrm{A}^{\mathrm{T}} \mathrm{A}\right)^{-1} \mathrm{~A}^{\mathrm{T}} \mathrm{b}$
- $\left(A^{\top} A\right)^{-1} A^{\top}$ is known as "pseudoinverse" of $A$


## Ways of Solving Linear Least Squares

- Option 2:
for each $x_{i}, y_{i}$
compute $\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right), \mathrm{g}\left(\mathrm{x}_{\mathrm{i}}\right)$, etc.
store in row $i$ of $A$
store $y_{i}$ in $b$
compute $A^{\top} A, A^{\top} b$
solve $A^{\top} A x=A^{\top} b$
- Known as "normal equations" for least squares
- Inefficient, since A typically larger than $A^{\top} A$ and $A^{\top} b$


## Ways of Solving Linear Least Squares

- Option 3:
for each $x_{i}, y_{i}$
compute $f\left(x_{i}\right), g\left(x_{i}\right)$, etc.
accumulate outer product in $U\left(=A^{\top} A\right)$
accumulate product with $y_{i}$ in $v\left(=A^{\top} b\right)$ solve Ux=v

$$
\left[\begin{array}{ccc}
\sum_{i} f\left(x_{i}\right) f\left(x_{i}\right) & \sum_{i} f\left(x_{i}\right) g\left(x_{i}\right) & \cdots \\
\sum_{i} g\left(x_{i}\right) f\left(x_{i}\right) & \sum_{i} g\left(x_{i}\right) g\left(x_{i}\right) & \cdots \\
\vdots & {\left[\begin{array}{c}
a \\
b \\
\vdots
\end{array}\right]}
\end{array}\right]=\left[\begin{array}{c}
\sum_{i} y_{i} f\left(x_{i}\right) \\
\sum_{i} y_{i} g\left(x_{i}\right) \\
\vdots \\
\mathrm{V}
\end{array}\right]
$$

## The Problem with Normal Equations

- Involves solving $\mathbf{A}^{\mathrm{T}} \mathbf{A x}=\mathbf{A}^{\mathrm{T}} \mathbf{b}$
- This can be inaccurate
- Independent of solution method
- Remember:

$$
\frac{\|\Delta x\|}{\|x\|} \leq \operatorname{cond}(A) \frac{\|\Delta A\|}{\|A\|}
$$

$-\operatorname{cond}\left(\mathrm{A}^{\top} \mathrm{A}\right)=[\operatorname{cond}(\mathrm{A})]^{2}$

- Next week: computing pseudoinverse stably
- More expensive, but more accurate
- Also allows diagnosing insufficient data


## Special Cases

## $\longrightarrow$

## Special Case: Constant

- Let's try to model a function of the form



## Special Case: Constant

- Let's try to model a function of the form

$$
y=a
$$

- Comparing to general form

$$
y_{i}=a f\left(\vec{x}_{i}\right)+b g\left(\vec{x}_{i}\right)+\operatorname{ch}\left(\vec{x}_{i}\right)+\cdots
$$

we have $f\left(x_{i}\right)=1$ and we are solving

$$
\begin{aligned}
& \sum_{i}[1 I a]=\sum_{i}\left[y_{i}\right] \\
& \therefore a=\frac{\sum_{i} y_{i}}{n}
\end{aligned}
$$

## Special Case: Line

- Fit to $y=a+b x$
- $f\left(x_{i}\right)=1, g\left(x_{i}\right)=x$. So, solve:

$$
\begin{gathered}
\sum_{i}\left[\begin{array}{c}
1 \\
x_{i}
\end{array}\right]\left[\begin{array}{ll}
1 & x_{i}
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\sum_{i} y_{i}\left[\begin{array}{c}
1 \\
x_{i}
\end{array}\right] \\
\left(\mathbf{A}^{\mathrm{T}} \mathbf{A}\right)^{-1}=\left[\begin{array}{cc}
n & \Sigma x_{i} \\
\Sigma x_{i} & \Sigma x_{i}^{2}
\end{array}\right]^{-1}=\frac{\left[\begin{array}{cc}
\Sigma x_{i}{ }^{2} & -\Sigma x_{i} \\
-\Sigma x_{i} & n
\end{array}\right]}{n \Sigma x_{i}{ }^{2}-\left(\Sigma x_{i}\right)^{2}}, \quad \mathbf{A}^{\mathrm{T}} b=\left[\begin{array}{c}
\Sigma y_{i} \\
\Sigma x_{i} y_{i}
\end{array}\right] \\
a=\frac{\Sigma x_{i}{ }^{2} \Sigma y_{i}-\Sigma x_{i} \Sigma x_{i} y_{i}}{n \Sigma x_{i}^{2}-\left(\Sigma x_{i}\right)^{2}} \quad \quad b=\frac{n \Sigma x_{i} y_{i}-\Sigma x_{i} \Sigma y_{i}}{n \Sigma x_{i}{ }^{2}-\left(\Sigma x_{i}\right)^{2}}
\end{gathered}
$$

# Variant: Weighted Least Squares 

## Weighted Least Squares

- Common case: the $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)$ have different uncertainties associated with them
- Want to give more weight to measurements of which you are more certain
- Weighted least squares minimization

$$
\min \chi^{2}=\sum_{i} w_{i}\left(y_{i}-f\left(x_{i}\right)\right)^{2}
$$

- If "uncertainty" (stdev) is $\sigma$, best to take $w_{i}=1 / \sigma_{i}^{2}$


## Weighted Least Squares

- Define weight matrix W as
$\mathbf{W}=\left(\begin{array}{lllll}w_{1} & & & & 0 \\ & w_{2} & & & \\ & & w_{3} & & \\ & & & w_{4} & \\ 0 & & & & \ddots\end{array}\right)$
- Then solve weighted least squares via

$$
\mathbf{A}^{\mathrm{T}} \mathbf{W} \mathbf{A} x=\mathbf{A}^{\mathrm{T}} \mathbf{W} b
$$

Understanding Error and Uncertainty


## Error Estimates from Linear Least Squares

- For many applications, finding model is useless without estimate of its accuracy
- Residual is b-Ax
- Can compute $\chi^{2}=(b-A x) \cdot(b-A x)$
- How do we tell whether answer is good?
- Lots of measurements
- $\chi^{2}$ is small
- $\chi^{2}$ increases quickly with perturbations to $x$ $(\rightarrow$ standard variance of estimate is small)


## Error Estimates from Linear Least Squares

- Let's look at increase in $\chi^{2}$ :

$$
\begin{gathered}
x \rightarrow x+\delta x \\
(b-\mathbf{A}(x+\delta x))^{\mathrm{T}}(b-\mathbf{A}(x+\delta x)) \\
\left.=((b-\mathbf{A} x)-\mathbf{A} \delta x))^{\mathrm{T}}((b-\mathbf{A} x)-\mathbf{A} \delta x)\right) \\
=(b-\mathbf{A} x)^{\mathrm{T}}(b-\mathbf{A} x)-2 \delta x^{\mathrm{T}} \mathbf{A}^{\mathrm{T}}(b-\mathbf{A} x)+\delta x^{\mathrm{T}} \mathbf{A}^{\mathrm{T}} \mathbf{A} \delta x \\
=\chi^{2}-2 \delta x^{\mathrm{T}}\left(\mathbf{A}^{\mathrm{T}} b-\mathbf{A}^{\mathrm{T}} \mathbf{A} x\right)+\delta x^{\mathrm{T}} \mathbf{A}^{\mathrm{T}} \mathbf{A} \delta x \\
\text { So, } \chi^{2} \rightarrow \chi^{2}+\delta x^{\mathrm{T}} \mathbf{A}^{\mathrm{T}} \mathbf{A} \delta x
\end{gathered}
$$

- So, the bigger $\mathrm{A}^{\top} \mathrm{A}$ is, the faster error increases as we move away from current $x$


## Error Estimates from Linear Least Squares

- $C=\left(A^{\top} A\right)^{-1}$ is called covariance of the data
- The "standard variance" in our estimate of x is

$$
\sigma^{2}=\frac{\chi^{2}}{n-m} \mathbf{C}
$$

- This is a matrix:
- Diagonal entries give variance of estimates of components of $x$ : e.g., $\operatorname{var}\left(\mathrm{a}_{0}\right)$
- Off-diagonal entries explain mutual dependence: e.g., $\operatorname{cov}\left(\mathrm{a}_{0}, \mathrm{a}_{1}\right)$
- $\mathrm{n}-\mathrm{m}$ is (\# of samples) minus (\# of degrees of freedom in the fit): consult a statistician...


## Special Case: Error in Constant Model



## Coefficient of Determination

$$
R^{2} \equiv 1-\frac{\chi^{2}}{\sum_{i}\left(y_{i}-\bar{y}\right)^{2}}
$$

$\mathrm{R}^{2}$ : Proportion of observed variability that is explained by the model (vs. just the mean)

$$
\text { e.g., } R^{2}=0.7 \text { means } 70 \% \text { variability explained }
$$

For linear regression, $\mathrm{R}^{2}$ is Pearson's correlation.


## Keep in mind...

- In general, uncertainty in estimated parameters goes down slowly: like $1 /$ sqrt(\# samples)
- Formulas for special cases (like fitting a line) are messy: simpler to think of $A^{\top} A x=A^{\top} b$ form
- Normal equations method often not numerically stable: orthogonal decomposition methods used instead
- Linear least squares is not always the most appropriate modeling technique...


## Next time

- Non-linear models
- Including logistic regression
- Dealing with outliers and bad data
- Practical considerations
- Is least squares an appropriate method for my data?

