Linear Systems

COS 323

Solving Linear Systems of Equations

- Define linear system
- Singularities in linear systems
- Gaussian Elimination: A general purpose method
- Naïve Gauss
- Gauss with pivoting
- Asymptotic analysis
- Triangular systems and LU decomposition
- Special matrices and algorithms:
- Symmetric positive definite: Cholesky decomposition
- Tridiagonal matrices
- Singularity detection and condition numbers

Graphical interpretation

Linear Systems

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\cdots=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\cdots=b_{2} \\
a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}+\cdots=b_{3} \\
\vdots \\
{\left[\begin{array}{cccc}
a_{11} & a_{12} & a_{13} & \cdots \\
a_{21} & a_{22} & a_{23} & \cdots \\
a_{31} & a_{32} & a_{33} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3} \\
\vdots
\end{array}\right]}
\end{gathered}
$$

Linear Systems

- Solve for \mathbf{x} given $A x=b$, where A is an $n \times n$ matrix and b is an $n \times 1$ column vector
- Can also talk about non-square systems where A is $m \times n, \mathrm{~b}$ is $m \times 1$, and x is $n \times 1$
- Overdetermined if $m>n$:
"more equations than unknowns"
Can look for best solution using least squares
- Underdetermined if $n>m$:
"more unknowns than equations"

Singular Systems

- A is singular if some row is a linear combination of other rows
- Singular systems can be underdetermined:

$$
\begin{aligned}
& 2 x_{1}+3 x_{2}=5 \\
& 4 x_{1}+6 x_{2}=10
\end{aligned}
$$

or inconsistent:

$$
\begin{aligned}
& 2 x_{1}+3 x_{2}=5 \\
& 4 x_{1}+6 x_{2}=11
\end{aligned}
$$

Graphical Interpretation

Singular with infinite solutions

Singular with no solution

Near-Singular or Ill-Conditioned

Why not just invert A?

- $\mathrm{x}=\mathrm{A}^{-1} \mathrm{~b}$
- BUT: Inefficient
- Prone to roundoff error
- In fact, compute inverse using linear solver

Solve by hand...

$$
\begin{aligned}
& 3 x_{1}+2 x_{2}=18 \\
& -x_{1}+2 x_{2}=2 \\
& 0 x_{1}+8 x_{2}=24 \rightarrow x_{2}=3 \\
& -x_{1}+2 * 3=2 \rightarrow x_{1}=4
\end{aligned}
$$

Gaussian Elimination

- Fundamental operations:

1. Replace one equation with linear combination of other equations
2. Interchange two equations
3. Re-label two variables

- Combine to reduce to trivial system (identity)
- Alternative: triangular system + back-substitution
- Simplest variant only uses \#1 operations, but get better stability by adding \#2 (partial pivoting) or \#2 \& \#3 (full pivoting)

"Naïve" Gaussian Elimination

- Solve:

$$
\begin{aligned}
& 2 x_{1}+3 x_{2}=7 \\
& 4 x_{1}+5 x_{2}=13
\end{aligned}
$$

- Only care about numbers - form "tableau" or "augmented matrix":

$$
\left[\begin{array}{cc|c}
2 & 3 & 7 \\
4 & 5 & 13
\end{array}\right]
$$

"Naïve" Gaussian Elimination

- Given:

$$
\left[\begin{array}{cc|c}
2 & 3 & 7 \\
4 & 5 & 13
\end{array}\right]
$$

- 1) Elimination: reduce this to system of form

$$
\left\lfloor\begin{array}{ll|l}
? & ? & ? \\
0 & ? & ?
\end{array}\right\rfloor
$$

- 2) Back-substitution: Solve for x_{2}, then "plug in" to solve for x_{1}

"Naïve" Gaussian Elimination:

Forward elimination stage

$$
\left\lfloor\begin{array}{ll|l}
a_{11} & a_{12} & b_{1} \\
a_{21} & a_{22} & b_{2}
\end{array}\right\rfloor=\left[\begin{array}{cc|c}
2 & 3 & 7 \\
4 & 5 & 13
\end{array}\right]
$$

- 1. Define $f=a_{21} / a_{11}$ (here, $f=2$)
- 2. Replace $2^{\text {nd }}$ row r_{2} with $r_{2}-\left(f * r_{1}\right)$ Here, replace r_{2} with $r_{2}-2 * r_{1}$

$$
\left\lfloor\begin{array}{cc|c}
a_{11} & a_{12} & b_{1} \\
0 & a_{22}^{\prime} & b_{2}^{\prime}
\end{array}\right\rfloor=\left\lfloor\begin{array}{cc|c}
2 & 3 & 7 \\
0 & -1 & -1
\end{array}\right\rfloor
$$

Forward elimination pseudocode

for $\mathrm{k}=1$ to $\mathrm{n}-1$ \{ // Loop over all rows

$$
\begin{aligned}
& \text { for } \mathrm{i}=(\mathrm{k}+1) \text { to } \mathrm{n}\left\{/ / \text { Loop over all rows beneath } \mathrm{k}^{\text {th }}\right. \\
& \qquad \begin{array}{l}
\text { factor }_{\mathrm{ik}} \leftarrow \mathrm{a}_{\mathrm{ik}} / \mathrm{a}_{\mathrm{kk}} \\
\text { for } \mathrm{j}=\mathrm{k} \text { to } \mathrm{n}\{/ / \text { Loop over elements in the row } \\
\quad \mathrm{a}_{\mathrm{ij}} \leftarrow \mathrm{a}_{\mathrm{ij}}-\text { factor }_{\mathrm{ik}}^{*} \mathrm{a}_{\mathrm{kj}} / / \text { Update element } \\
\} \\
\}
\end{array}
\end{aligned}
$$

$$
\text { \} }
$$

Outcome of forward elimination

$a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\mathrm{K}+a_{1 n} x_{n}=b_{1}$

$$
\begin{aligned}
a_{22}^{\prime} x_{2}+a_{23}^{\prime} x_{3}+\mathrm{K}+a_{2 n}^{\prime} x_{n} & =b_{2}^{\prime} \\
a_{33}^{\prime \prime} x_{3}+\mathrm{K}+a_{3 n}^{\prime \prime} x_{n} & =b_{3}^{\prime \prime}
\end{aligned}
$$

$$
a_{n n}^{(n-1)} x_{n}=b_{n}^{(n-1)}
$$

Back-substitution Pseudocode

$$
\begin{aligned}
& \begin{array}{l}
x_{n}=b_{n} / a_{n n} \\
\text { for } i=(n-1) \text { to } 1 \text { descending }\{ \\
\quad \text { sum } \leftarrow b_{i} \\
\text { for } j=(i+1) \text { to } n\{ \\
\quad \text { sum } \leftarrow \operatorname{sum}-a_{i j} * x_{j} \\
\} \\
\quad x_{i} \leftarrow \operatorname{sum} / a_{i j} \\
\}
\end{array}
\end{aligned}
$$

Questions?

What could go wrong?

for $\mathrm{k}=1$ to $\mathrm{n}-1$ \{ // Loop over all rows

$$
\begin{aligned}
& \text { for } \mathrm{i}=(\mathrm{k}+1) \text { to } \mathrm{n}\left\{/ / \text { Loop over all rows beneath } \mathrm{k}^{\text {th }}\right. \\
& \qquad \begin{array}{l}
\text { factor }_{\mathrm{ik}} \leftarrow \mathrm{a}_{\mathrm{ik}} / \mathrm{a}_{\mathrm{kk}} \\
\text { for } \mathrm{j}=\mathrm{k} \text { to } \mathrm{n}\{/ / \text { Loop over elements in the row } \\
\quad \mathrm{a}_{\mathrm{ij}} \leftarrow \mathrm{a}_{\mathrm{ij}}-\text { factor }_{\mathrm{ik}}^{*} \mathrm{a}_{\mathrm{kj}} / / \text { Update element } \\
\} \\
\}
\end{array}
\end{aligned}
$$

$$
\text { \} }
$$

What could go wrong?

$$
\begin{aligned}
& x_{n}=b_{n} / a_{n n} \\
& \text { for } i=(n-1) \text { to } 1 \text { descending \{ } \\
& \quad \text { sum } \leftarrow b_{i} \\
& \text { for } j=(i+1) \text { to } n\{ \\
& \quad \text { sum } \leftarrow \operatorname{sum}-a_{i j}^{*} x_{j} \\
& \} \\
& \quad x_{i} \leftarrow \operatorname{sum} / a_{i j} \\
& \}
\end{aligned}
$$

Small pivot element example

$0.0003 x_{1}+3.0000 x_{2}=2.0001$
$1.0000 x_{1}+1.0000 x_{2}=1.0000$

After pivot, equation 2 becomes

$$
-9999 x_{2}=-6666
$$

Solve for $x_{2}=2 / 3$
Solve for $x_{1}=(2.0001-3(2 / 3)) / .0003$

$$
\rightarrow \mathrm{x}_{1}=-3.33 \text { or } 0.0000 \text { or } 0.330000
$$

(depending on \# digits used to represent 2/3)

Partial Pivoting

Swap rows to pivot on largest element possible (i.e., put large numbers in the diagonal):
$0.0003 \mathrm{x}_{1}+3.0000 \mathrm{x}_{2}=2.0001$
$1.0000 \mathrm{x}_{1}+1.0000 \mathrm{x}_{2}=1.0000$
becomes
$1.0000 x_{1}+1.0000 x_{2}=1.0000$
$0.0003 x_{1}+3.0000 x_{2}=2.0001$

Partial pivot applied

$$
\begin{aligned}
& 1.0000 x_{1}+1.0000 x_{2}=1.0000 \\
& 0.0003 x_{1}+3.0000 x_{2}=2.0001
\end{aligned}
$$

Factor $=.0003 / 1.0000$, so Equation 2 becomes

$$
2.9997 x_{2}=-1.9998
$$

Solve for $x_{2}=2 / 3$
Solve for $\mathrm{x}_{1}=(1.0000-1 *(2 / 3)) / 1.0$

$$
\rightarrow \mathrm{x}_{1}=0.333 \text { or } 0.3333 \text { or } 0.333333
$$

(depending on \# digits used to represent 2/3)

Full Pivoting

- Swap largest element onto diagonal by swapping rows and columns
- More stable, but only slightly
- Critical: when swapping columns, must remember to swap results!

Questions on Gaussian Elimination?

Complexity of Gaussian Elimination

- Forward elimination:

$$
2 / 3 * n^{3}+O\left(n^{2}\right)
$$

(triple for-loops yield n^{3})

- Back substitution:

$$
\mathrm{n}^{2}+\mathrm{O}(\mathrm{n})
$$

Big-O Notation

- Informally, $\mathrm{O}\left(\mathrm{n}^{3}\right)$ means that the dominant term for large n is cubic
- More precisely, there exist a c and n_{0} such that

$$
\text { running time } \leq \mathrm{c} \mathrm{n}^{3}
$$

if

$$
\mathrm{n}>\mathrm{n}_{0}
$$

- This type of asymptotic analysis is often used to characterize different algorithms

LU Decomposition

\longrightarrow

Triangular Systems are nice!

- Lower-triangular:
$\left[\begin{array}{ccccc|c}a_{11} & 0 & 0 & 0 & \cdots & b_{1} \\ a_{21} & a_{22} & 0 & 0 & \ldots & b_{2} \\ a_{31} & a_{32} & a_{33} & 0 & \ldots & b_{3} \\ a_{41} & a_{42} & a_{43} & a_{44} & \ldots & b_{4} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots\end{array}\right]$

Triangular Systems

- Solve by forward substitution
$\left[\begin{array}{ccccc|c}a_{11} & 0 & 0 & 0 & \ldots & b_{1} \\ a_{21} & a_{22} & 0 & 0 & \ldots & b_{2} \\ a_{31} & a_{32} & a_{33} & 0 & \ldots & b_{3} \\ a_{41} & a_{42} & a_{43} & a_{44} & \ldots & b_{4} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots\end{array}\right]$

$$
x_{1}=\frac{b_{1}}{a_{11}}
$$

Triangular Systems

- Solve by forward substitution
$\left[\begin{array}{ccccc|c}a_{11} & 0 & 0 & 0 & \ldots & b_{1} \\ a_{21} & a_{22} & 0 & 0 & \ldots & b_{2} \\ a_{31} & a_{32} & a_{33} & 0 & \ldots & b_{3} \\ a_{41} & a_{42} & a_{43} & a_{44} & \ldots & b_{4} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots\end{array}\right]$

$$
x_{2}=\frac{b_{2}-a_{21} x_{1}}{a_{22}}
$$

Triangular Systems

- Solve by forward substitution
$\left[\begin{array}{ccccc|c}a_{11} & 0 & 0 & 0 & \ldots & b_{1} \\ a_{21} & a_{22} & 0 & 0 & \ldots & b_{2} \\ a_{31} & a_{32} & a_{33} & 0 & \cdots & b_{3} \\ a_{41} & a_{42} & a_{43} & a_{44} & \ldots & b_{4} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots\end{array}\right]$

$$
x_{3}=\frac{b_{3}-a_{31} x_{1}-a_{32} x_{2}}{a_{33}}
$$

Triangular Systems

- If A is upper triangular, solve by backsubstitution

$$
\left[\begin{array}{ccccc|c}
a_{11} & a_{12} & a_{13} & a_{14} & a_{15} & b_{1} \\
0 & a_{22} & a_{23} & a_{24} & a_{25} & b_{2} \\
0 & 0 & a_{33} & a_{34} & a_{35} & b_{3} \\
0 & 0 & 0 & a_{44} & a_{45} & b_{4} \\
0 & 0 & 0 & 0 & a_{55} & b_{5}
\end{array}\right]
$$

Triangular Systems

- If A is upper triangular, solve by backsubstitution

$$
\left[\begin{array}{ccccc|c}
a_{11} & a_{12} & a_{13} & a_{14} & a_{15} & b_{1} \\
0 & a_{22} & a_{23} & a_{24} & a_{25} & b_{2} \\
0 & 0 & a_{33} & a_{34} & a_{35} & b_{3} \\
0 & 0 & 0 & a_{44} & a_{45} & b_{4} \\
0 & 0 & 0 & 0 & a_{55} & b_{5}
\end{array}\right]
$$

$$
x_{4}=\frac{b_{4}-a_{45} x_{5}}{a_{44}}
$$

Triangular Systems

- Both of these special cases can be solved in $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time
- This motivates a factorization approach to solving arbitrary systems:
- Find a way of writing A as LU , where L and U are both triangular
$-A x=b \quad L U x=b \quad \Rightarrow \quad L d=b \quad \Rightarrow \quad U x=d$
- Time for factoring matrix dominates computation

Solving $\mathrm{Ax}=\mathrm{b}$
 with LU Decomposition of A

$\mathrm{A}=\mathrm{LU}$

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \Rightarrow\left[\begin{array}{ccc}
l_{11} & 0 & 0 \\
l_{21} & l_{22} & 0 \\
l_{31} & l_{32} & l_{33}
\end{array}\right]\left[\begin{array}{ccc}
u_{11} & u_{12} & u_{13} \\
0 & u_{22} & u_{23} \\
0 & 0 & u_{33}
\end{array}\right]
$$

- More unknowns than equations!
- Let all $\mathrm{I}_{\mathrm{ii}}=1$ (Doolittle's method)
or let all $u_{\mathrm{ii}}=1 \quad$ (Crout's method)

Doolittle Factorization for LU
 Decomposition

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \Rightarrow\left[\begin{array}{ccc}
1 & 0 & 0 \\
l_{21} & 1 & 0 \\
l_{31} & l_{32} & 1
\end{array}\right]\left[\begin{array}{ccc}
u_{11} & u_{12} & u_{13} \\
0 & u_{22} & u_{23} \\
0 & 0 & u_{33}
\end{array}\right]
$$

- U is result of forward elimination step of Gauss
- L elements are the factors computed in forward elimination!
- e.g. $l_{21}=f_{21}=a_{21} / a_{11}$ and $l_{32}=f_{32}=a^{\prime}{ }_{32} / a^{\prime}{ }_{22}$

Doolittle Factorization

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \Rightarrow\left[\begin{array}{ccc}
1 & 0 & 0 \\
l_{21} & 1 & 0 \\
l_{31} & l_{32} & 1
\end{array}\right]\left[\begin{array}{ccc}
u_{11} & u_{12} & u_{13} \\
0 & u_{22} & u_{23} \\
0 & 0 & u_{33}
\end{array}\right]
$$

- For $\mathrm{i}=1$..n
- For j = 1..i

$$
u_{j i}=a_{j i}-\sum_{k=1}^{j-1} l_{j k} u_{k i}
$$

$-\operatorname{For} \mathrm{j}=\mathrm{i}+1 . . \mathrm{n}$

$$
l_{j i}=\frac{a_{j i}-\sum_{k=1}^{i-1} l_{j k} u_{k i}}{u_{i i}}
$$

Doolittle Factorization

- Interesting note: \# of outputs = \# of inputs, algorithm only refers to elements of A , not b
- Can do this in-place!
- Algorithm replaces A with matrix
of I and u values, 1 s are implied $\quad\left[\begin{array}{lll}l_{21} & u_{22} & u_{23} \\ l_{31} & l_{32} & u_{33}\end{array}\right]$
- Resulting matrix must be interpreted in a special way: not a regular matrix
- Can rewrite forward/backsubstitution routines to use this "packed" l-u matrix

LU Decomposition

- Running time is $2 / 3 \mathrm{n}^{3}$
- Independent of RHS, each of which requires $O\left(n^{2}\right)$ back/forward substitution
- This is the preferred general method for solving linear equations
- Pivoting very important
- Partial pivoting is sufficient, and widely implemented
- LU with pivoting can succeed even if matrix is singular (!) (but back/forward substitution fails...)

Matrix Inversion using LU

- LU depend only on A, not on b
- Re-use L \& U for multiple values of b
- i.e., repeat back-substitution
- How to compute A^{-1} ?
$\mathrm{AA}^{-1}=\mathbf{I}(\mathbf{n} \times \mathbf{n}$ identity matrix), e.g.
\rightarrow Use LU decomposition with
$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

$$
b_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad b_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \quad b_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Questions on LU Decomposition?

Working with Special Matrices

Tridiagonal Systems

- Common special case:

$$
\left[\begin{array}{ccccc|c}
a_{11} & a_{12} & 0 & 0 & \cdots & b_{1} \\
a_{21} & a_{22} & a_{23} & 0 & \cdots & b_{2} \\
0 & a_{32} & a_{33} & a_{34} & \cdots & b_{3} \\
0 & 0 & a_{43} & a_{44} & \cdots & b_{4} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots
\end{array}\right]
$$

- Only main diagonal +1 above and 1 below

Solving Tridiagonal Systems

- When solving using Gaussian elimination:
- Constant \# of multiplies/adds in each row
- Each row only affects 2 others

$$
\left[\begin{array}{ccccc|c}
a_{11} & a_{12} & 0 & 0 & \cdots & b_{1} \\
a_{21} & a_{22} & a_{23} & 0 & \cdots & b_{2} \\
0 & a_{32} & a_{33} & a_{34} & \cdots & b_{3} \\
0 & 0 & a_{43} & a_{44} & \cdots & b_{4} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots
\end{array}\right]
$$

Running Time

- $2 n$ loops, 4 multiply/adds per loop (assuming correct bookkeeping)
- This running time has a fundamentally different dependence on n : linear instead of cubic
- Can say that tridiagonal algorithm is $\mathrm{O}(\mathrm{n})$ while Gauss is $\mathrm{O}\left(\mathrm{n}^{3}\right)$
- In general, a banded system of bandwith w requires $O(w n)$ storage and $O\left(w^{2} n\right)$ computations.

Symmetric matrices:

Cholesky Decomposition

- For symmetric matrices, choose $U=L^{\top}$

$$
\left(\mathrm{A}=\mathrm{LL}^{\top}\right)
$$

- Perform decomposition

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{12} & a_{22} & a_{23} \\
a_{13} & a_{23} & a_{33}
\end{array}\right] \Rightarrow\left[\begin{array}{lll}
l_{11} & 0 & 0 \\
l_{21} & l_{22} & 0 \\
l_{31} & l_{32} & l_{33}
\end{array}\right]\left[\begin{array}{ccc}
l_{11} & l_{21} & l_{31} \\
0 & l_{22} & l_{32} \\
0 & 0 & l_{33}
\end{array}\right]
$$

- $\mathrm{Ax}=\mathrm{b} \quad \Rightarrow \quad \mathrm{LL}{ }^{\top} x=\mathrm{b} \quad \Rightarrow \quad \mathrm{Ld}=\mathrm{b} \quad \Rightarrow \quad \mathrm{L}^{\top} \mathrm{x}=\mathrm{d}$

Cholesky Decomposition

$$
\begin{aligned}
& {\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{12} & a_{22} & a_{23} \\
a_{13} & a_{23} & a_{33}
\end{array}\right] \Rightarrow\left[\begin{array}{ccc}
l_{11} & 0 & 0 \\
l_{21} & l_{22} & 0 \\
l_{31} & l_{32} & l_{33}
\end{array}\right]\left[\begin{array}{lcc}
l_{11} & l_{21} & l_{31} \\
0 & l_{22} & l_{32} \\
0 & 0 & l_{33}
\end{array}\right] } \\
& l_{11}=a_{11} \Rightarrow l_{11}=\sqrt{a_{11}} \\
& l_{11} l_{21}=a_{12}
\end{aligned} \Rightarrow l_{21}=\frac{a_{12}}{l_{11}} .
$$

Cholesky Decomposition

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{12} & a_{22} & a_{23} \\
a_{13} & a_{23} & a_{33}
\end{array}\right] \Rightarrow\left[\begin{array}{lcc}
l_{11} & 0 & 0 \\
l_{21} & l_{22} & 0 \\
l_{31} & l_{32} & l_{33}
\end{array}\right]\left[\begin{array}{ccc}
l_{11} & l_{21} & l_{31} \\
0 & l_{22} & l_{32} \\
0 & 0 & l_{33}
\end{array}\right]
$$

$$
\begin{aligned}
& l_{i i}=\sqrt{a_{i i}-\sum_{k=1}^{i-1} l_{i k}^{2}} \\
& l_{j i}=\frac{a_{i j}-\sum_{k=1}^{i=1} l_{i k} l_{j k}}{l_{i i}}
\end{aligned}
$$

Cholesky Decomposition

- This fails if it requires taking square root of a negative number
- Need another condition on A: positive definite
i.e., For any $v, v^{\top} A v>0$
(Equivalently, all positive eigenvalues)

Cholesky Decomposition

- Running time turns out to be $1 / 6 n^{3}$ multiplications $+1 / 6 n^{3}$ additions
- Still cubic, but lower constant
- Half as much computation \& storage as LU
- Result: this is preferred method for solving symmetric positive definite systems

Running time revisited

Running Time - Is $\mathrm{O}\left(\mathrm{n}^{3}\right)$ the Limit?

- How fast is matrix multiplication?

$$
\begin{aligned}
\left(\begin{array}{ll}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{array}\right) & =\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right) \\
c_{11} & =a_{11} b_{11}+a_{12} b_{21} \\
c_{12} & =a_{11} b_{12}+a_{12} b_{22} \\
c_{21} & =a_{21} b_{11}+a_{22} b_{21} \\
c_{22} & =a_{21} b_{12}+a_{22} b_{22}
\end{aligned}
$$

- 8 multiples, 4 adds, right?
(In general n^{3} multiplies and $\mathrm{n}^{2}(\mathrm{n}-1)$ adds...)

Running Time - Is $\mathrm{O}\left(\mathrm{n}^{3}\right)$ the Limit?

- Strassen's method [1969]
$\left(\begin{array}{ll}c_{11} & c_{12} \\ c_{21} & c_{22}\end{array}\right)=\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)\left(\begin{array}{ll}b_{11} & b_{12} \\ b_{21} & b_{22}\end{array}\right)$

Volker Strassen

$$
\begin{aligned}
M_{1} & =\left(a_{11}+a_{22}\right)\left(b_{11}+b_{22}\right) \\
M_{2} & =\left(a_{21}+a_{22}\right) b_{11} \\
M_{3} & =a_{11}\left(b_{11}-b_{22}\right) \\
M_{4} & =a_{22}\left(b_{21}-b_{11}\right) \\
M_{5} & =\left(a_{11}+a_{12}\right) b_{22} \\
M_{6} & =\left(a_{21}-a_{11}\right)\left(b_{11}+b_{12}\right) \\
M_{7} & =\left(a_{12}-a_{22}\right)\left(b_{21}+b_{22}\right) \\
c_{11} & =M_{1}+M_{4}-M_{5}+M_{7} \\
c_{12} & =M_{3}+M_{5} \\
c_{21} & =M_{2}+M_{4} \\
c_{22} & =M_{1}-M_{2}+M_{3}+M_{6}
\end{aligned}
$$

Running Time - Is $\mathrm{O}\left(\mathrm{n}^{3}\right)$ the Limit?

- Strassen's method [1969]
$\left(\begin{array}{ll}c_{11} & c_{12} \\ c_{21} & c_{22}\end{array}\right)=\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)\left(\begin{array}{ll}b_{11} & b_{12} \\ b_{21} & b_{22}\end{array}\right)$
- Uses only 7 multiplies
(and a whole bunch of adds)
- Can be applied recursively!

$$
\begin{aligned}
M_{1} & =\left(a_{11}+a_{22}\right)\left(b_{11}+b_{22}\right) \\
M_{2} & =\left(a_{21}+a_{22}\right) b_{11} \\
M_{3} & =a_{11}\left(b_{11}-b_{22}\right) \\
M_{4} & =a_{22}\left(b_{21}-b_{11}\right) \\
M_{5} & =\left(a_{11}+a_{12}\right) b_{22} \\
M_{6} & =\left(a_{21}-a_{11}\right)\left(b_{11}+b_{12}\right) \\
M_{7} & =\left(a_{12}-a_{22}\right)\left(b_{21}+b_{22}\right) \\
c_{11} & =M_{1}+M_{4}-M_{5}+M_{7} \\
c_{12} & =M_{3}+M_{5} \\
c_{21} & =M_{2}+M_{4} \\
c_{22} & =M_{1}-M_{2}+M_{3}+M_{6}
\end{aligned}
$$

Running Time - Is $\mathrm{O}\left(\mathrm{n}^{3}\right)$ the Limit?

- Recursive application for 4 half-size submatrices needs 7 half-size matrix multiplies
- Asymptotic running time is $O\left(n^{\log _{2} 7}\right) \approx O\left(n^{2.8}\right)$
- Only worth it for large n, because of big constant factors (all those additions...)
- Still, practically useful for $\mathrm{n}>$ hundreds or thousands
- Current state of the art: Coppersmith-Winograd algorithm achieves $O\left(n^{2.376 . . .}\right)$
- Not used in practice

Running Time - Is $\mathrm{O}\left(\mathrm{n}^{3}\right)$ the Limit?

- Similar sub-cubic algorithms for inverse, determinant, LU, etc.
- Most "cubic" linear-algebra problems aren't!
- Major open question: what is the limit?
- Hypothesis: $\mathrm{O}\left(\mathrm{n}^{2}\right)$ or $\mathrm{O}\left(\mathrm{n}^{2} \log \mathrm{n}\right)$

Singularity and Condition Number

A near-singular system

Detecting singularity and near-singularity

- Graph it! (in 2 or 3 dimensions)
- Does A A ${ }^{-1}=\mathbf{I}$ (identity) ?
- Does $\left(\mathrm{A}^{-1}\right)^{-1}=\mathrm{A}$?
- Does $\mathrm{Ax}=\mathrm{b}$?
- Does $\left(\mathrm{A}^{-1}\right)_{\mathrm{c} 1}=\left(\mathrm{A}^{-1}\right)_{\mathrm{c} 2}$ for compilers c1, c2?
- Are any of LU diagonals (with pivoting) near-zero?

A near-singular system

Condition number

- Cond(A) is function of A
- $\operatorname{Cond}(A) \geq 1$, bigger is bad
- Measures how change in input is propogated to change in output

$$
\frac{\|\Delta x\|}{\|x\|} \leq \operatorname{cond}(A) \frac{\|\Delta A\|}{\|A\|}
$$

- E.g., if $\operatorname{cond}(A)=451$ then can lose $\log (451)=$ 2.65 digits of accuracy in x, compared to precision of A

Computing condition number

- $\operatorname{cond}(A)=||A||| | A^{-1}| |$
- where $||M||$ is a matrix norm

$$
\begin{aligned}
& \|M\|_{1}=\max _{1 \leq j \leq n} \sum_{i=1}^{n}\left|a_{i j}\right|, \quad\|M\|_{\infty}=\max _{1 \leq i \leq n} \sum_{j=1}^{n}\left|a_{i j}\right| \\
& \left.\|M\|_{2}=\left(\lambda_{\max }\right)^{1 / 2} \quad \text { (using largest eigenvalue of } \mathrm{A}^{\mathrm{T}} \mathrm{~A}\right)
\end{aligned}
$$

- $||M||_{\text {inf }}$ is often easiest to compute
- Different norms give different values, but similar order of magnitude

Useful Matlab functions

- \: matrix division
- e.g. $x=A \backslash b$
- cond: matrix condition number
- norm: matrix or vector norm
- chol : Cholesky factorization
- lu : LU decomposition
- inv: inverse (don't use
unless you really need the inverse!)
- rank: \# of linearly
independent rows or
columns
- det: determinant
- trace: sum of diagonal elements
- null: null space

Other resources

- Heath interactive demos:
- http://www.cse.illinois.edu/iem/linear_equations/gaus sian_elimination/
- http://www.cse.illinois.edu/iem/linear_equations/con ditioning/
- http://www.math.ucsd.edu/~math20f/Spring/La b2/Lab2.shtml
- Good reading on how linear systems can be used in web recommendation (Page Rank) and economics (Leontief Models)

