Root Finding

COS 323

Why Root Finding?

- Solve for x in any equation:

$$
\begin{aligned}
& f(x)=b \text { where } x=? \\
& \rightarrow \text { find root of } g(x)=f(x)-b=0
\end{aligned}
$$

- Might not be able to solve for x directly

$$
\text { e.g., } f(x)=e^{-0.2 x} \sin (3 x-0.5)
$$

- Evaluating $f(x)$ might itself require solving a differential equation, running a simulation, etc.

Why Root Finding?

- Engineering applications: Predict dependent variable (e.g., temperature, force, voltage) given independent variables (e.g., time, position)
- Focus on finding real roots

1-D Root Finding

- Given some function, find location where $f(x)=0$
- Need:
- Starting position x_{0}, hopefully close to solution
- Ideally, points that bracket the root

1-D Root Finding

- Given some function, find location where $f(x)=0$
- Need:
- Starting position x_{0}, hopefully close to solution
- Ideally, points that bracket the root
- Well-behaved function

What Goes Wrong?

Tangent point: very difficult to find

Singularity:
brackets don't surround root

Pathological case: infinite number of roots - e.g. $\sin (1 / x)$

Bisection Method

- Given points x_{+}and x_{-}that bracket a root, find

$$
x_{\text {half }}=1 / 2\left(x_{+}+x_{-}\right)
$$

and evaluate $f\left(x_{\text {half }}\right)$

- If positive, $x_{+} \leftarrow x_{\text {half }}$ else $x_{-} \leftarrow x_{\text {half }}$
- Stop when x_{+}and x_{-}close enough
- If function is continuous, this will succeed in finding some root

Bisection

- Very robust method
- Convergence rate:
- Error bounded by size of [$x_{+} \ldots x_{-}$] interval
- Interval shrinks in half at each iteration
- Therefore, error cut in half at each iteration:

$$
\left|\varepsilon_{n+1}\right| \leq 1 / 2\left|\varepsilon_{n}\right|
$$

- This is called "linear convergence"
- One extra bit of accuracy in x at each iteration

Faster Root-Finding

- Fancier methods get super-linear convergence
- Typical approach: model function locally by something whose root you can find exactly
- Model didn't match function exactly, so iterate
- In many cases, these are less safe than bisection

Faster Root-Finding

- Fancier methods get super-linear convergence
- Typical approach: model function locally by something whose root you can find exactly
- Model didn't match function exactly, so iterate
- In many cases, these are less safe than bisection

Secant Method

- Simple extension to bisection: interpolate or extrapolate through two most recent points

Secant Method

- Faster than bisection:

$$
\left|\varepsilon_{n+1}\right|=\text { const. }\left|\varepsilon_{n}\right|^{1.6}
$$

- Faster than linear: number of correct bits multiplied by 1.6
- Drawback: the above only true if sufficiently close to a root of a sufficiently smooth function
- Does not guarantee that root remains bracketed

False Position Method

- Similar to secant, but guarantee bracketing

- Stable, but linear in bad cases

Other Interpolation Strategies

- Ridders's method: fit exponential to $f\left(x_{+}\right), f\left(x_{-}\right)$, and $f\left(x_{\text {half }}\right)$
- Van Wijngaarden-Dekker-Brent method: inverse quadratic fit to 3 most recent points if within bracket, else bisection
- Both of these safe if function is nasty, but fast (super-linear) if function is nice

Newton-Raphson

- Best-known algorithm for getting quadratic convergence when derivative is easy to evaluate
- Another variant on the extrapolation theme

Newton-Raphson

- Begin with Taylor series

$$
f\left(x_{n}+\delta\right)=f\left(x_{n}\right)+\delta f^{\prime}\left(x_{n}\right)+\delta^{2} \frac{f^{\prime \prime}\left(x_{n}\right)}{2}+\ldots \stackrel{\text { want }}{=} 0
$$

- Divide by derivative (can’t be zero!)

$$
\begin{aligned}
& \frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}+\delta+\delta^{2} \frac{f^{\prime \prime}\left(x_{n}\right)}{2 f^{\prime}\left(x_{n}\right)}=0 \\
& -\delta_{\text {Newton }}+\delta+\delta^{2} \frac{f^{\prime \prime}\left(x_{n}\right)}{2 f^{\prime}\left(x_{n}\right)}=0 \\
& \delta_{\text {Newton }}-\delta=\frac{f^{\prime \prime}\left(x_{n}\right)}{2 f^{\prime}\left(x_{n}\right)} \delta^{2} \Rightarrow \varepsilon_{n+1} \sim \varepsilon_{n}^{2}
\end{aligned}
$$

Newton-Raphson

- Method fragile: can easily get confused
- Good starting point critical
- Newton popular for "polishing off" a root found approximately using a more robust method

Newton-Raphson Convergence

- Can talk about "basin of convergence": range of x_{0} for which method finds a root
- Can be extremely complex: here's an example in 2-D with 4 roots

Popular Example of Newton: Square Root

- Let $f(x)=x^{2}-a$: zero of this is square root of a
- $f^{\prime}(x)=2 x$, so Newton iteration is

$$
x_{n+1}=x_{n}-\frac{x_{n}{ }^{2}-a}{2 x_{n}}=\frac{1}{2}\left(x_{n}+\frac{a}{x_{n}}\right)
$$

- "Divide and average" method

Reciprocal via Newton

- Division is slowest of basic operations
- On some computers, hardware divide not available (!): simulate in software

$$
\begin{gathered}
\frac{a}{b}=a^{*} \frac{1}{b} \\
f(x)=\frac{1}{x}-b=0 \\
f^{\prime}(x)=-\frac{1}{x^{2}} \\
x_{n+1}=x_{n}-\frac{\frac{1}{x}-b}{-\frac{1}{x^{2}}}=x_{n}\left(2-b x_{n}\right)
\end{gathered}
$$

- Need only subtract and multiply

Rootfinding in $>1 \mathrm{D}$

- Behavior can be complex: e.g. in 2D

Rootfinding in $>1 \mathrm{D}$

- Can't bracket and bisect

- Result: few general methods

Newton in Higher Dimensions

- Start with

$$
\begin{aligned}
& f(x, y) \stackrel{\text { want }}{=} 0 \\
& g(x, y) \stackrel{\text { want }}{=} 0
\end{aligned}
$$

- Write as vector-valued function

$$
\mathbf{f}\left(\mathbf{x}_{n}\right)=\binom{f(x, y)}{g(x, y)}
$$

Newton in Higher Dimensions

- Expand in terms of Taylor series

$$
\mathbf{f}\left(\mathbf{x}_{n}+\boldsymbol{\delta}\right)=\mathbf{f}\left(\mathbf{x}_{n}\right)+\mathbf{f}^{\prime}\left(\mathbf{x}_{n}\right) \boldsymbol{\delta}+\ldots \stackrel{\text { want }}{=} 0
$$

- \mathbf{f}^{\prime} is a Jacobian

$$
\mathbf{f}^{\prime}\left(\mathbf{x}_{n}\right)=\mathbf{J}=\left(\frac{\partial f}{\partial x} \quad \frac{\partial f}{\partial y}\right)
$$

Newton in Higher Dimensions

- Solve for $\boldsymbol{\delta}$

$$
\boldsymbol{\delta}=-\mathbf{J}^{-1}\left(\mathbf{x}_{n}\right) \mathbf{f}\left(\mathbf{x}_{n}\right)
$$

- Requires matrix inversion (we'll see this later)
- Often fragile, must be careful
- Keep track of whether error decreases
- If not, try a smaller step in direction $\boldsymbol{\delta}$

