Structure from Motion

Structure from Motion

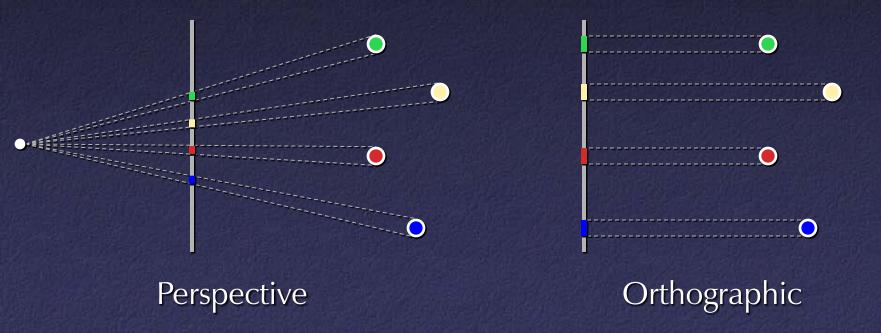
- For now, static scene and moving camera
 - Equivalently, rigidly moving scene and static camera
- Limiting case of stereo with many cameras
- Limiting case of multiview camera calibration with unknown target
- Given *n* points and *N* camera positions, have 2nN equations and 3n+6N unknowns

Approaches

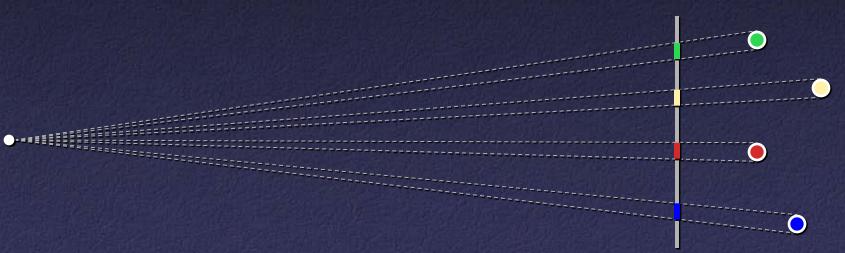
- Obtaining point correspondences
 - Optical flow
 - Stereo methods: correlation, feature matching
- Solving for points and camera motion
 - Nonlinear minimization (bundle adjustment)
 - Various approximations...

Orthographic Approximation

 Simplest SFM case: camera approximated by orthographic projection



 An orthographic assumption is sometimes well approximated by a telephoto lens



Weak Perspective

Consequences of Orthographic Projection

- Translation perpendicular to image plane cannot be recovered
- Scene can be recovered up to scale (if weak perspective)

- Method due to Tomasi & Kanade, 1992
- Assume *n* points in 3D space $\mathbf{p}_1 \dots \mathbf{p}_n$
- Observed at N points in time at image coordinates (x_{ij}, y_{ij}), i = 1..N, j=1..n
 Feature tracking, optical flow, etc.
 All points visible in all frames

Write down matrix of data

 $\mathbf{D} = \begin{bmatrix} x_{11} & \cdots & x_{1n} \\ \vdots & \ddots & \vdots \\ x_{N1} & \cdots & x_{Nn} \\ y_{11} & \cdots & y_{1n} \\ \vdots & \ddots & \vdots \\ y_{N1} & \cdots & y_{Nn} \end{bmatrix}$ Frames \downarrow

Points \rightarrow

- Step 1: find translation
- Translation perpendicular to viewing direction cannot be obtained
- Translation *parallel* to viewing direction equals motion of average position of all points

 After finding translation, subtract it out (i.e., subtract average of each row)

$$\widetilde{\mathbf{D}} = \begin{bmatrix} x_{11} - \overline{x}_1 & \cdots & x_{1n} - \overline{x}_1 \\ \vdots & \ddots & \vdots \\ x_{N1} - \overline{x}_N & \cdots & x_{Nn} - \overline{x}_N \\ y_{11} - \overline{y}_1 & \cdots & y_{1n} - \overline{y}_1 \\ \vdots & \ddots & \vdots \\ y_{N1} - \overline{y}_N & \cdots & y_{Nn} - \overline{y}_N \end{bmatrix}$$

- Step 2: try to find rotation
- Rotation at each frame defines local coordinate axes $\hat{i},\hat{j},$ and \hat{k}
- Then $\widetilde{x}_{ij} = \hat{\mathbf{i}}_i \cdot \widetilde{\mathbf{p}}_j, \ \widetilde{y}_{ij} = \hat{\mathbf{j}}_i \cdot \widetilde{\mathbf{p}}_j$

• So, can write $\tilde{\mathbf{D}} = \mathbf{RS}$ where R is a "rotation" matrix and S is a "shape" matrix

 $\mathbf{S} = \begin{bmatrix} \widetilde{\mathbf{p}}_1 & \cdots & \widetilde{\mathbf{p}}_n \end{bmatrix}$

$$\widetilde{\mathbf{D}} = \begin{bmatrix} x_{11} - \overline{x}_1 & \cdots & x_{1n} - \overline{x}_1 \\ \vdots & \ddots & \vdots \\ x_{N1} - \overline{x}_N & \cdots & x_{Nn} - \overline{x}_N \\ y_{11} - \overline{y}_1 & \cdots & y_{1n} - \overline{y}_1 \\ \vdots & \ddots & \vdots \\ y_{N1} - \overline{y}_N & \cdots & y_{Nn} - \overline{y}_N \end{bmatrix} \qquad \mathbf{R} = \begin{bmatrix} \widehat{\mathbf{i}}_1^{\mathrm{T}} \\ \vdots \\ \widehat{\mathbf{j}}_N^{\mathrm{T}} \\ \vdots \\ \widehat{\mathbf{j}}_N^{\mathrm{T}} \end{bmatrix}$$

• Goal is to factor **D**

- Before we do, observe that $rank(\tilde{\mathbf{D}})$ should be 3 (in ideal case with no noise)
- Proof:
 - Rank of **R** is 3 unless no rotation
 - Rank of **S** is 3 iff have noncoplanar points
 - Product of 2 matrices of rank 3 has rank 3
- With noise, $rank(\widetilde{\mathbf{D}})$ might be > 3

SVD

- Goal is to factor **D** into **R** and **S**Apply SVD: **D** = **UWV**^T
 But **D** should have rank 3 ⇒ all but 3 of the w_i should be 0
- Extract the top 3 w_i, together with the corresponding columns of U and V

Factoring for Orthographic Structure from Motion

- After extracting columns, U₃ has dimensions 2N×3 (just what we wanted for R)
- W₃V₃^T has dimensions 3×n (just what we wanted for S)

• So, let
$$\mathbf{R}^* = \mathbf{U}_3$$
, $\mathbf{S}^* = \mathbf{W}_3 \mathbf{V}_3^{\mathsf{T}}$

Affine Structure from Motion

- The i and j entries of R* are not, in general, unit length and perpendicular
- We have found motion (and therefore shape) up to an affine transformation
- This is the best we could do if we didn't assume orthographic camera

Ensuring Orthogonality

Since D can be factored as R* S*, it can also be factored as (R*Q)(Q⁻¹S*), for any Q
So, search for Q such that R = R* Q has the properties we want

Ensuring Orthogonality

- Want $(\hat{\mathbf{i}}_{i}^{*T}\mathbf{Q}) \cdot (\hat{\mathbf{i}}_{i}^{*T}\mathbf{Q}) = 1$ or $\hat{\mathbf{i}}_{i}^{*T}\mathbf{Q}\mathbf{Q}^{T}\hat{\mathbf{i}}_{i}^{*} = 1$ $\hat{\mathbf{j}}_{i}^{*T}\mathbf{Q}\mathbf{Q}^{T}\hat{\mathbf{j}}_{i}^{*} = 1$ $\hat{\mathbf{i}}_{i}^{*T}\mathbf{Q}\mathbf{Q}^{T}\hat{\mathbf{j}}_{i}^{*} = 0$
- Let $\mathbf{T} = \mathbf{Q}\mathbf{Q}^{\mathsf{T}}$
- Equations for elements of T solve by least squares
- Ambiguity add constraints $\mathbf{Q}^{\mathrm{T}}\hat{\mathbf{i}}_{1}^{*} =$

$$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \mathbf{Q}^{\mathrm{T}} \mathbf{\hat{j}}_{1}^{*} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

Ensuring Orthogonality

- Have found $\mathbf{T} = \mathbf{Q}\mathbf{Q}^{\mathsf{T}}$
- Find **Q** by taking "square root" of **T**
 - Cholesky decomposition if **T** is positive definite
 - General algorithms (e.g. **sqrtm** in Matlab)

Orthogonal Structure from Motion

• Let's recap:

- Write down matrix of observations
- Find translation from avg. position
- Subtract translation
- Factor matrix using SVD
- Write down equations for orthogonalization
- Solve using least squares, square root
- At end, get matrix R = R* Q of camera positions and matrix S = Q⁻¹S* of 3D points

Results

Image sequence

[Tomasi & Kanade]

Results

Tracked features

[Tomasi & Kanade]

Results

Reconstructed shape

Top view

Front view

[Tomasi & Kanade]

Orthographic \rightarrow Perspective

- With orthographic or "weak perspective" can't recover all information
- With full perspective, can recover more information (translation along optical axis)
- Result: can recover geometry and full motion up to global scale factor

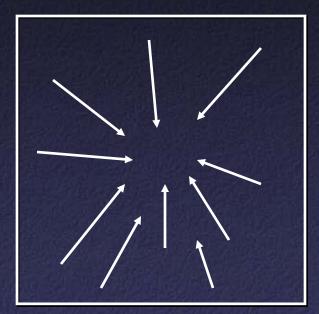
Perspective SFM Methods

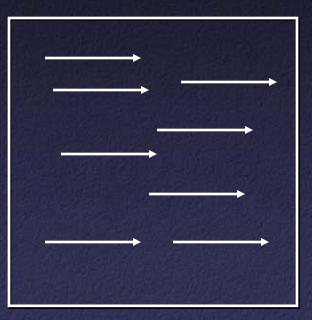
Bundle adjustment (full nonlinear minimization)

- Methods based on factorization
- Methods based on fundamental matrices
- Methods based on vanishing points

Motion Field for Camera Motion

• Translation:

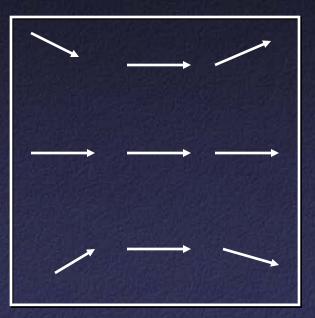




• Motion field lines converge (possibly at ∞)

Motion Field for Camera Motion

• Rotation:



Motion field lines do not converge

Motion Field for Camera Motion

- Combined rotation and translation: motion field lines have component that converges, and component that does not
- Algorithms can look for vanishing point, then determine component of motion around this point
- "Focus of expansion / contraction"
- "Instantaneous epipole"

Finding Instantaneous Epipole

- Observation: motion field due to translation depends on depth of points
- Motion field due to rotation does not
- Idea: compute *difference* between motion of a point, motion of neighbors
- Differences point towards instantaneous epipole

- Want to fit direction to all Δv (differences in optical flow) within some neighborhood
- PCA on matrix of Δv
- Equivalently, take eigenvector of $\mathbf{A} = \Sigma(\Delta v)(\Delta v)^{\mathsf{T}}$ corresponding to largest eigenvalue
- Gives direction of parallax *l_i* in that patch, together with estimate of reliability

- Compute optical flow
- Find vanishing point (least squares solution)
- Find direction of translation from epipole
- Find perpendicular component of motion
- Find velocity, axis of rotation
- Find depths of points (up to global scale)