Recognition, SVD, and PCA

Recognition

- Suppose you want to find a face in an image
- One possibility: look for something that looks sort of like a face (oval, dark band near top, dark band near bottom)
- Another possibility: look for pieces of faces (eyes, mouth, etc.) in a specific arrangement

Templates

- Model of a "generic" or "average" face
 Learn templates from example data
- For each location in image, look for template at that location
 - Optionally also search over scale, orientation

Templates

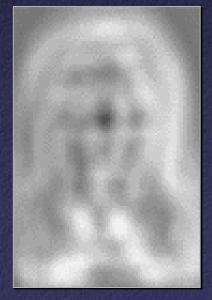
- In the simplest case, based on intensity
 - Template is average of all faces in training set
 - Comparison based on e.g. SSD
- More complex templates
 - Outputs of feature detectors
 - Color histograms
 - Both position and frequency information (wavelets)

Average Princetonian Face

 From 2005 BSE thesis project by Clay Bavor and Jesse Levinson

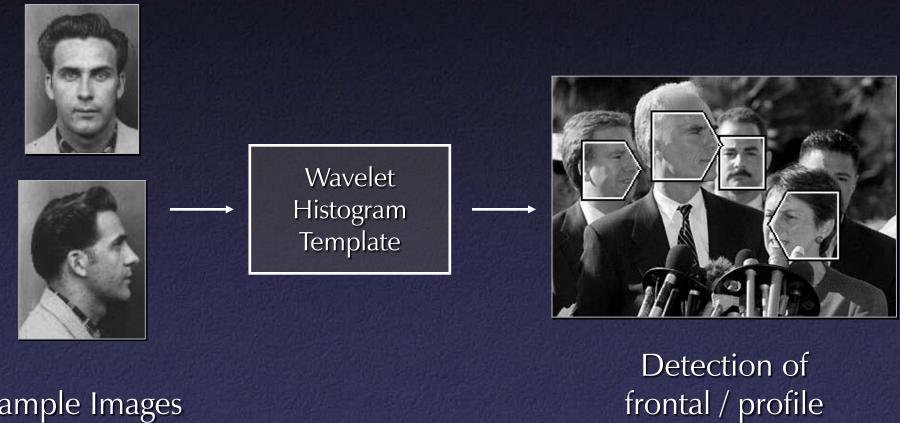
Detecting Princetonians

Matching response (darker = better match)



[Bavor & Levinson]

More Detection Results



Sample Images

[Schneiderman and Kanade]

faces

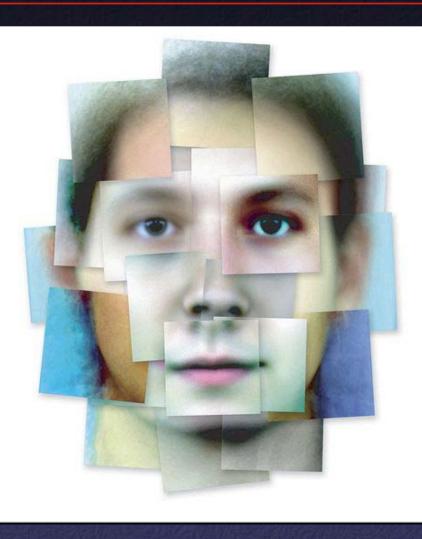
More Face Detection Results

Recognition Using Relations Between Templates

- Often easier to recognize a small feature

 e.g., lips easier to recognize than faces
 For articulated objects (e.g. people), template for whole class usually complicated
- So, identify small pieces...

Pieces of Princetonians



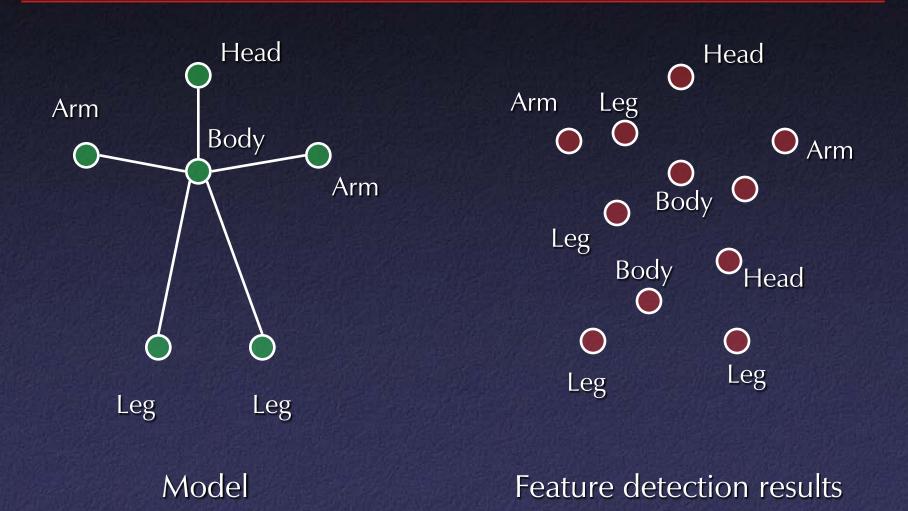
[Bavor & Levinson]

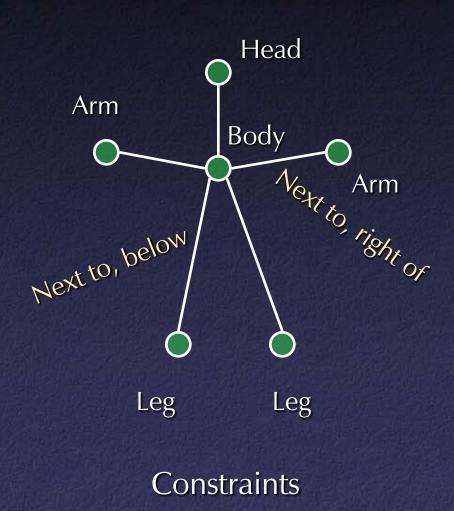
Recognition Using Relations Between Templates

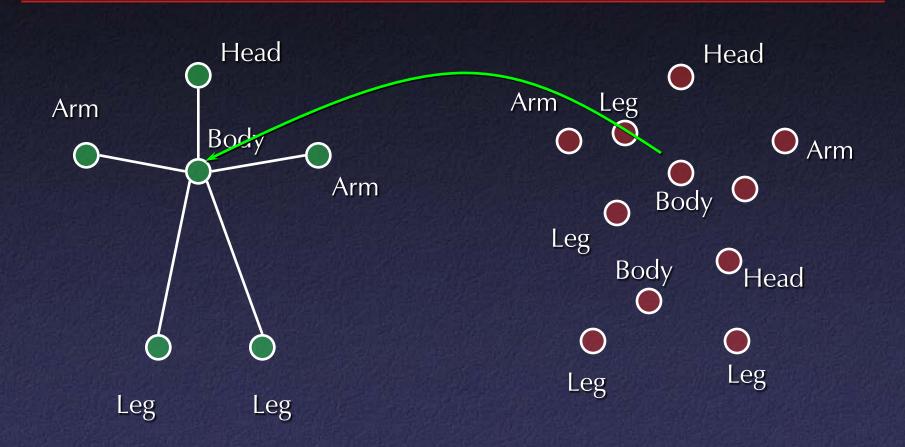
- Often easier to recognize a small feature

 e.g., lips easier to recognize than faces
 For articulated objects (e.g. people), template for whole class usually complicated

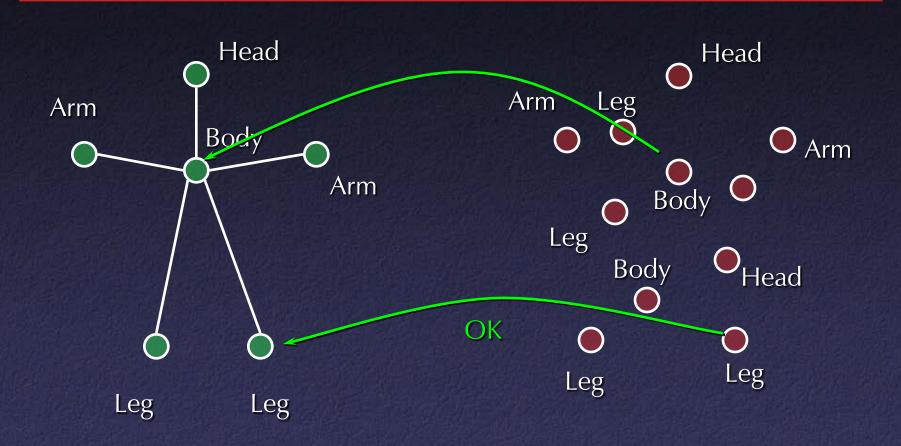
 So, identify small pieces and look for spatial
- So, identify small pieces and look for spatial arrangements
 - Many false positives from identifying pieces



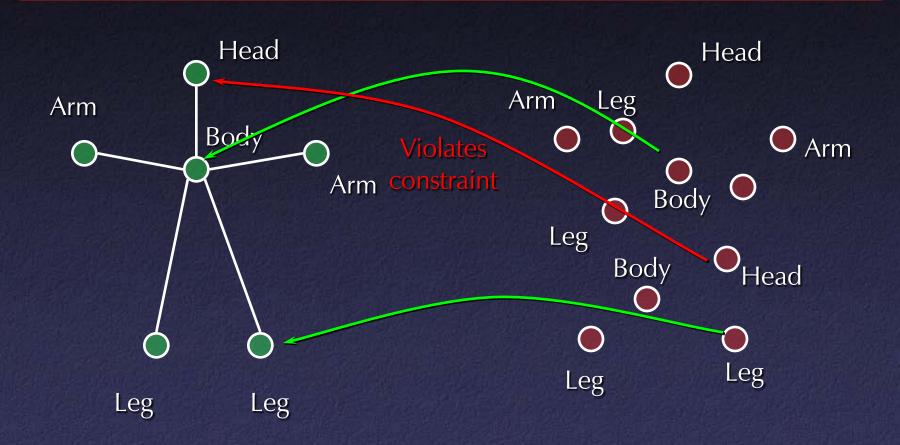




Combinatorial search



Combinatorial search



Combinatorial search

Large search space – Heuristics for pruning Missing features Look for maximal consistent assignment Noise, spurious features Incomplete constraints - Verification step at end

Recognition

• Suppose you want to recognize a particular face

• How does *this* face differ from average face

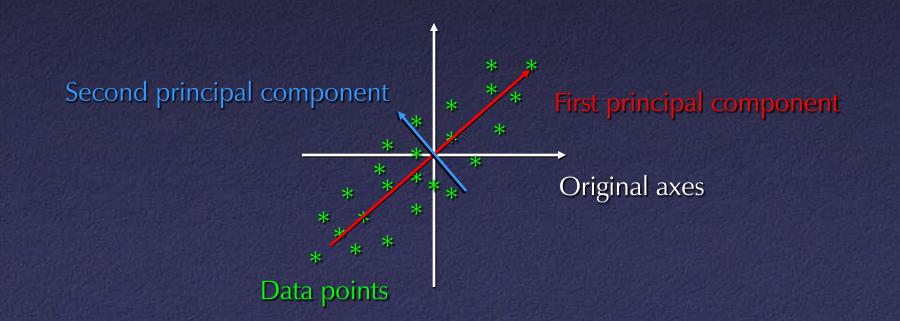
How to Recognize Specific People?

Consider variation from average face

- Not all variations equally important
 - Variation in a single pixel relatively unimportant
- If image is high-dimensional vector, want to find directions in this space with high variation

Principal Components Analaysis

 Principal Components Analysis (PCA): approximating a high-dimensional data set with a lower-dimensional subspace

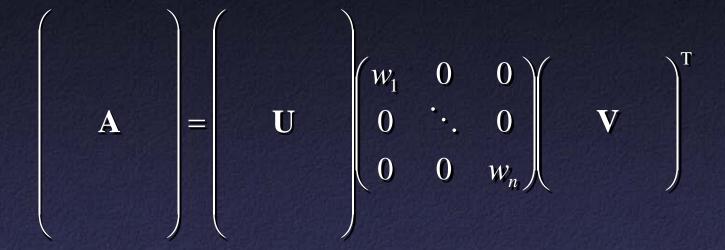


Digression:

Singular Value Decomposition (SVD)

• Handy mathematical technique that has application to many problems Given any m×n matrix A, algorithm to find matrices U, V, and W such that $\mathbf{A} = \mathbf{U}\mathbf{W}\mathbf{V}^{\mathsf{T}}$ U is *m*×*n* and orthonormal **V** is $n \times n$ and orthonormal W is $n \times n$ and diagonal

SVD



Treat as black box: code widely available
 (svd(A,0) in Matlab)

SVD

- The *w_i* are called the singular values of **A**
- If **A** is singular, some of the *w*_i will be 0
- In general $rank(\mathbf{A}) = number of nonzero w_i$
- SVD is mostly unique (up to permutation of singular values, or if some w_i are equal)

SVD and Inverses

- Why is SVD so useful?
- Application #1: inverses
- $A^{-1} = (V^T)^{-1} W^{-1} U^{-1} = V W^{-1} U^T$ (Why? Why is W^{-1} easy?)
- This fails when some w_i are 0
 It's supposed to fail singular matrix
- Pseudoinverse: if $w_i = 0$, set $1/w_i$ to 0 (!)
 - "Closest" matrix to inverse
 - Defined for all (even non-square) matrices

SVD and Least Squares

- Solving Ax=b by least squares
- x=pseudoinverse(A) times b
- Compute pseudoinverse using SVD
 - Lets you see if data is singular
 - Even if not singular, ratio of max to min singular values (condition number) tells you how stable the solution will be
 - Set $1/w_i$ to 0 if w_i is small (even if not exactly 0)

SVD and Eigenvectors

- Let $A = UWV^T$, and let x_i be i^{th} column of V
- Consider $\mathbf{A}^{\mathsf{T}}\mathbf{A} x_i$:

 $\mathbf{A}^{\mathrm{T}}\mathbf{A}x_{i} = \mathbf{V}\mathbf{W}^{\mathrm{T}}\mathbf{U}^{\mathrm{T}}\mathbf{U}\mathbf{W}\mathbf{V}^{\mathrm{T}}x_{i} = \mathbf{V}\mathbf{W}^{2}\mathbf{V}^{\mathrm{T}}x_{i} = \mathbf{V}\mathbf{W}^{2}\begin{pmatrix}\mathbf{0}\\\vdots\\\mathbf{1}\\\vdots\\\mathbf{0}\end{pmatrix} = \mathbf{V}\begin{pmatrix}\mathbf{0}\\\vdots\\\mathbf{1}\\\vdots\\\mathbf{0}\end{pmatrix} = \mathbf{V}\begin{pmatrix}\mathbf{0}\\\vdots\\\mathbf{0}\\\vdots\\\mathbf{0}\end{pmatrix} = w_{i}^{2}x_{i}$

So elements of W are square roots of eigenvalues and columns of V are eigenvectors of A^TA

SVD and Matrix Similarity

One common definition for the norm of a matrix is the Frobenius norm:

||A||_F = ∑_i ∑_j a_{ij}²
Frobenius norm can be computed from SVD ||A||_F = ∑_i w_i²
So changes to a matrix can be evaluated by looking at changes to singular values

SVD and Matrix Similarity

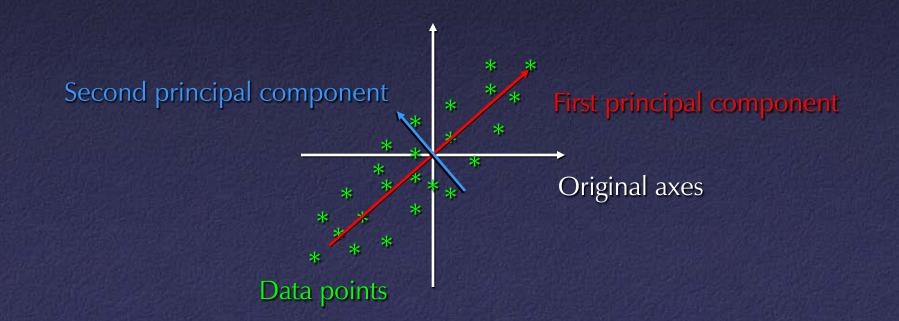
- Suppose you want to find best rank-k approximation to A
- Answer: set all but the largest k singular values to zero
- Can form compact representation by eliminating columns of U and V corresponding to zeroed w_i

SVD and Orthogonalization

- The matrix U is the "closest" orthonormal matrix to A
- Yet another useful application of the matrixapproximation properties of SVD
- Much more stable numerically than Graham-Schmidt orthogonalization
- Find rotation given general affine matrix

SVD and PCA

 Principal Components Analysis (PCA): approximating a high-dimensional data set with a lower-dimensional subspace



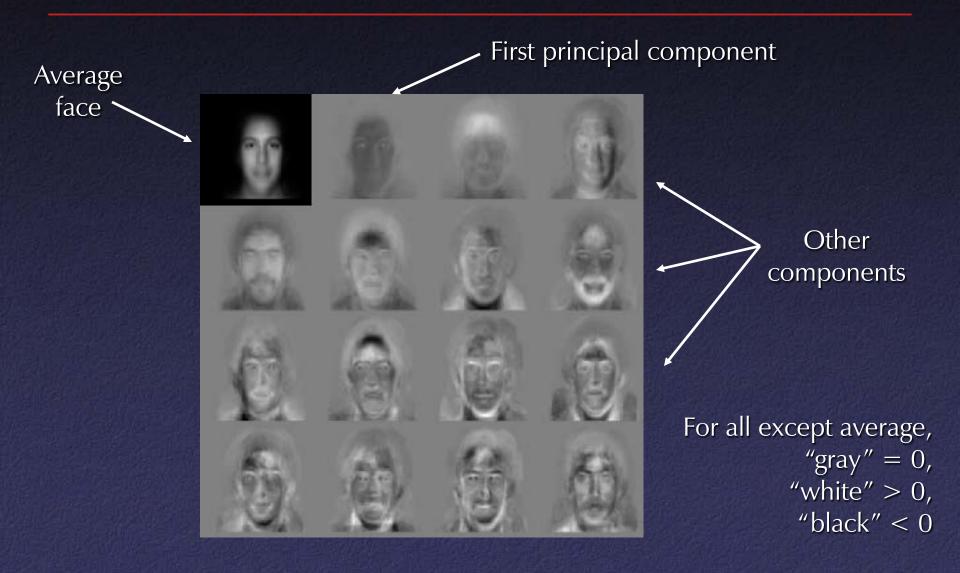
SVD and PCA

Data matrix with points as rows, take SVD

Subtract out mean ("whitening")

Columns of V_k are principal components
Value of w_i gives importance of each component

PCA on Faces: "Eigenfaces"



Using PCA for Recognition

 Store each person as coefficients of projection onto first few principal components

image =
$$\sum_{i=0}^{l_{\text{max}}} a_i$$
Eigenface _i

 Compute projections of target image, compare to database ("nearest neighbor classifier")