Recognition, SVD, and PCA

Recognition

- Suppose you want to find a face in an image
- One possibility: look for something that looks sort of like a face (oval, dark band near top, dark band near bottom)
- Another possibility: look for pieces of faces (eyes, mouth, etc.) in a specific arrangement

Templates

- Model of a "generic" or "average" face
- Learn templates from example data
- For each location in image, look for template at that location
- Optionally also search over scale, orientation

Templates

- In the simplest case, based on intensity
- Template is average of all faces in training set
- Comparison based on e.g. SSD
- More complex templates
- Outputs of feature detectors
- Color histograms
- Both position and frequency information (wavelets)

Average Princetonian Face

- From 2005 BSE thesis project by Clay Bavor and Jesse Levinson

Detecting Princetonians

Matching response
(darker = better match)

More Detection Results

Sample Images

Detection of frontal / profile faces

More Face Detection Results

[Schneiderman and Kanade]

Recognition Using Relations Between Templates

- Often easier to recognize a small feature
- e.g., lips easier to recognize than faces
- For articulated objects (e.g. people), template for whole class usually complicated
- So, identify small pieces...

Pieces of Princetonians

[Bavor \& Levinson]

Recognition Using Relations Between Templates

- Often easier to recognize a small feature
- e.g., lips easier to recognize than faces
- For articulated objects (e.g. people), template for whole class usually complicated
- So, identify small pieces and look for spatial arrangements
- Many false positives from identifying pieces

Graph Matching

Graph Matching

Constraints

Graph Matching

Combinatorial search

Graph Matching

Combinatorial search

Graph Matching

Combinatorial search

Graph Matching

- Large search space
- Heuristics for pruning
- Missing features
- Look for maximal consistent assignment
- Noise, spurious features
- Incomplete constraints
- Verification step at end

Recognition

- Suppose you want to recognize a particular face
- How does this face differ from average face

How to Recognize Specific People?

- Consider variation from average face
- Not all variations equally important
- Variation in a single pixel relatively unimportant
- If image is high-dimensional vector, want to find directions in this space with high variation

Principal Components Analaysis

- Principal Components Analysis (PCA): approximating a high-dimensional data set with a lower-dimensional subspace

Digression:

Singular Value Decomposition (SVD)

- Handy mathematical technique that has application to many problems
- Given any $m \times n$ matrix \mathbf{A}, algorithm to find matrices \mathbf{U}, \mathbf{V}, and \mathbf{W} such that
$\mathbf{A}=\mathbf{U} \mathbf{W} \mathbf{V}^{\top}$
\mathbf{U} is $m \times n$ and orthonormal
\mathbf{V} is $n \times n$ and orthonormal
\mathbf{W} is $n \times n$ and diagonal

SVD

$$
\mathbf{A})=\left(\mathbf{U} \quad\left(\begin{array}{ccc}
w_{1} & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & w_{n}
\end{array}\right)(\mathbf{V})^{\mathrm{T}}\right.
$$

Treat as black box: code widely available $(\operatorname{svd}(A, 0)$ in Matlab)

SVD

- The w_{i} are called the singular values of A
- If \mathbf{A} is singular, some of the w_{i} will be 0
- In general $\operatorname{rank}(\mathbf{A})=$ number of nonzero w_{i}
- SVD is mostly unique (up to permutation of singular values, or if some w_{i} are equal)

SVD and Inverses

- Why is SVD so useful?
- Application \#1: inverses
- $\mathbf{A}^{-1}=\left(\mathbf{V}^{\top}\right)^{-1} \mathbf{W}^{-1} \mathbf{U}^{-1}=\mathbf{V} \mathbf{W}^{-1} \mathbf{U}^{\top}$ (Why? Why is \mathbf{W}^{-1} easy?)
- This fails when some w_{i} are 0
- It's supposed to fail - singular matrix
- Pseudoinverse: if $w_{i}=0$, set $1 / w_{i}$ to 0 (!)
- "Closest" matrix to inverse
- Defined for all (even non-square) matrices

SVD and Least Squares

- Solving $\mathbf{A x}=\mathbf{b}$ by least squares
- $\mathbf{x}=$ pseudoinverse(\mathbf{A}) times \mathbf{b}
- Compute pseudoinverse using SVD
- Lets you see if data is singular
- Even if not singular, ratio of max to min singular values (condition number) tells you how stable the solution will be
- Set $1 / w_{i}$ to 0 if w_{i} is small (even if not exactly 0)

SVD and Eigenvectors

- Let $\mathbf{A}=\mathbf{U W} \mathbf{V}^{\top}$, and let x_{i} be $i^{\text {th }}$ column of \mathbf{V}
- Consider $\mathbf{A}^{\top} \mathbf{A} x_{i}$:
$\mathbf{A}^{\mathrm{T}} \mathbf{A} x_{i}=\mathbf{V W}^{\mathrm{T}} \mathbf{U}^{\mathrm{T}} \mathbf{U} \mathbf{W V}^{\mathrm{T}} x_{i}=\mathbf{V} \mathbf{W}^{2} \mathbf{V}^{\mathrm{T}} x_{i}=\mathbf{V} \mathbf{W}^{2}\left(\begin{array}{c}\vdots \\ 1 \\ \vdots \\ 0\end{array}\right)=\mathbf{V}\left(\begin{array}{c}0 \\ \vdots \\ w_{i}^{2} \\ \vdots \\ 0\end{array}\right)=w_{i}^{2} x_{i}$
- So elements of \mathbf{W} are square roots of eigenvalues and columns of \mathbf{V} are eigenvectors of $\mathbf{A}^{\mathrm{T}} \mathbf{A}$

SVD and Matrix Similarity

- One common definition for the norm of a matrix is the Frobenius norm:

$$
\|\mathbf{A}\|_{\mathrm{F}}=\sum_{i} \sum_{j} a_{i j}{ }^{2}
$$

- Frobenius norm can be computed from SVD

$$
\|\mathbf{A}\|_{\mathrm{F}}=\sum_{i} w_{i}^{2}
$$

So changes to a matrix can be evaluated by looking at changes to singular values

SVD and Matrix Similarity

- Suppose you want to find best rank-k approximation to \mathbf{A}
- Answer: set all but the largest k singular values to zero
- Can form compact representation by eliminating columns of \mathbf{U} and \mathbf{V} corresponding to zeroed w_{i}

SVD and Orthogonalization

- The matrix U is the "closest" orthonormal matrix to A
- Yet another useful application of the matrixapproximation properties of SVD
- Much more stable numerically than Graham-Schmidt orthogonalization
- Find rotation given general affine matrix

SVD and PCA

- Principal Components Analysis (PCA): approximating a high-dimensional data set with a lower-dimensional subspace

SVD and PCA

- Data matrix with points as rows, take SVD
- Subtract out mean ("whitening")
- Columns of \mathbf{V}_{k} are principal components
- Value of w_{i} gives importance of each component

PCA on Faces: "Eigenfaces"

Using PCA for Recognition

- Store each person as coefficients of projection onto first few principal components

$$
\text { image }=\sum_{i=0}^{i_{\operatorname{man}}} a_{i} \text { Eigenface }_{\mathrm{i}}
$$

- Compute projections of target image, compare to database ("nearest neighbor classifier")

