Ordinary Differential Equations

COS 323

Ordinary Differential Equations (ODEs)

- One independent variable; (PDEs have more)
- Differential equations are ubiquitous, the lingua franca of the sciences; many different fields are linked by having similar differential equations
- electrical circuits
- Newtonian mechanics
- chemical reactions
- population dynamics
- economics... and so on, ad infinitum

Example: RLC circuit

$$
\begin{aligned}
& V=R I+L \frac{d I}{d t}+\frac{1}{C} \int I d t \\
& \frac{d^{2} q}{d t^{2}}+\frac{R}{L} \frac{d q}{d t}+\frac{1}{L C} q=\frac{V}{L}
\end{aligned}
$$

Example: Population Dynamics

- 1798 Malthusian catastrophe
- 1838 Verhulst, logistic growth
- Predator-prey systems,

Volterra-Lotka

Population Dynamics

- Malthus:

$$
\frac{d N}{d t}=r N
$$

\rightarrow

$$
N=N_{0} e^{r t}
$$

- Verhulst:

Logistic growth

$$
\frac{d N}{d t}=r N\left(1-\frac{N}{K}\right) \quad \rightarrow \quad N=\frac{N_{0} e^{r t}}{1+\frac{N_{0}}{K}\left(e^{r t}-1\right)}
$$

Predator-Prey Population Dynamics

Hudson Bay Company

Predator-Prey Population Dymanics

V .Volterra, commercial fishing in the Adriatic
$\mathrm{x}_{1}=$ biomass of predators (sharks)
$x_{2}=$ biomass of prey (fish)

$$
\frac{\dot{x}_{1}}{x_{1}}=b_{12} x_{2}-a_{1}
$$

$$
\frac{\dot{x}_{2}}{x_{2}}=a_{2}-b_{21} x_{1}
$$

As Functions of Time

State-Space Diagram: The $\mathrm{x}_{1}-\mathrm{x}_{2}$ Plane

More Behaviors

$$
\begin{aligned}
& \text { Self-limiting term } \rightarrow \text { stable focus } \\
& \frac{\dot{x}_{1}}{x_{1}}=b_{12} x_{2}-a_{1} \quad \frac{\dot{x}_{2}}{x_{2}}=a_{2}-b_{21} x_{1}-c_{22} x_{2}
\end{aligned}
$$

Delay \rightarrow limit cycle

Putting Equations in State-Space Form

- Basic form: $\mathrm{d} \mathbf{x} / \mathrm{dt}=\mathrm{g}(\mathbf{x})$, where \mathbf{x} is vector-valued
- Can introduce extra dimensions (variables) to eliminate higher-order derivatives, dependence of g on t

Example: $\ddot{y}+\alpha \dot{y}+\beta y=f(t)$

$$
x_{1} \sim y \quad \dot{x}_{1}=x_{2}
$$

Introduce : $x_{2} \sim \dot{y} \quad$ Then : $\dot{x}_{2}=f\left(x_{3}\right)-\alpha x_{2}-\beta x_{1}$

$$
x_{3} \sim t \quad \dot{x}_{3}=1
$$

State Space

Traditional example: the (nonlinear) pendulum

$$
\ddot{\theta}+(g / l) \sin \theta=0
$$

Pendulum in the Phase Plane

Varieties of Behavior

- Stable focus

Periodic

- Limit cycle

Varieties of Behavior

- Stable focus
- Periodic
- Limit cycle
- Chaos

Numerical Evaluation of ODEs

- Today considering only Initial Value Problems (vs. Boundary Value Problems)
- Euler's method: simple-minded, basis of many others
- Runge-Kutta (usually 4th-order): faster convergence
- Richardson extrapolation: fast, robust, can add other tricks

Criteria for Evaluating

- Accuracy: use Taylor series, big-Oh, classical numerical analysis
- Efficiency: running time may be hard to predict, sometimes step size is adaptive
- Stability: some methods diverge on some problems

Forward (Explicit) Euler

$$
\begin{aligned}
\dot{x} & =g(x) \\
x^{(k+1)} & =x^{(k)}+g\left(x^{(k)}\right) \Delta t \quad(h=\Delta t)
\end{aligned}
$$

- Local error $=O\left(h^{2}\right)$
- Global (accumulated) error $=\mathrm{O}(\mathrm{h})$
- Limitation on step size: consider on $\dot{x}=-\lambda x$
- Unstable for $h>1 / \lambda$

Towards Higher Order

- Midpoint method

$$
\begin{array}{rlrl}
a=h g\left(x^{(k)}\right) & a & =h g\left(x^{(k)}\right) \\
b=h g\left(x^{(k)}+a / 2\right) & b & =h g\left(x^{(k)}+a / 2\right) \\
x^{(k+1)}=x^{(k)}+b+O\left(h^{3}\right) & c & =h g\left(x^{(k)}+b / 2\right) \\
d & =h g\left(x^{(k)}+c\right) \\
x^{(k+1)} & =x^{(k)}+\frac{1}{6}(a+2 b+2 c+d) \\
& & +O\left(h^{5}\right)
\end{array}
$$

Extrapolation

- Richardson: compute for several values of h, combine to cancel error: higher-order method
- As with integration, yields some "classical" algorithms: Euler + Richardson \rightarrow Runge Kutta
- Burlisch-Stoer: fit function (polynomial or rational) to approximation as a function of h; extrapolate to $\mathrm{h}=0$

Backward (Implicit) Euler

$$
x^{(k+1)}=x^{(k)}+g\left(x^{(k+1)}\right) h
$$

- Local error still $\mathrm{O}\left(\mathrm{h}^{2}\right)$
- Stable for large step size! (At least on $\dot{x}=-\lambda x$)
- In general, requires nonlinear root finding
- Implicit and semi-implicit methods for higher orders

Accuracy and Stability

- Implicit methods important for "stiff" systems: explicit methods would need small h only for stability, not accuracy

$$
\dot{x}=\left(\begin{array}{cc}
-1 & 0 \\
0 & -100
\end{array}\right) x, \text { where } x_{0}=\binom{1}{0.0001}
$$

