
Ordinary Differential Equations

COS 323



Ordinary Differential Equations (ODEs)

• One independent variable; (PDEs have more)

• Differential equations are ubiquitous, the lingua 
franca of the sciences; many different fields are 
linked by having similar differential equations
– electrical circuits

– Newtonian mechanics

– chemical reactions

– population dynamics

– economics… and so on, ad infinitum



Example: RLC circuit
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Example: Population Dynamics

• 1798  Malthusian 
catastrophe

• 1838  Verhulst,
logistic growth

• Predator-prey systems, 
Volterra-Lotka



Population Dynamics

• Malthus:

• Verhulst: 
Logistic growth
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Yikes!  Population explosion!

Self-limiting



Predator-Prey Population Dynamics

Hudson Bay Company



Predator-Prey Population Dymanics

V .Volterra, commercial fishing in the Adriatic

x1= biomass of predators (sharks)

x2 = biomass of prey (fish)
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As Functions of Time 



State-Space Diagram: The x1-x2 Plane 



More Behaviors
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Self-limiting term → stable focus

Delay → limit cycle



Putting Equations in State-Space Form

• Basic form: dx/dt = g(x), where x is vector-valued
– Can introduce extra dimensions (variables) to eliminate 

higher-order derivatives, dependence of g on t

• Example: )(tfyyy =++ βα 
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State Space

Traditional example: the (nonlinear) pendulum
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Pendulum in the Phase Plane



Varieties of Behavior

• Stable focus

• Periodic

• Limit cycle



Varieties of Behavior

• Stable focus

• Periodic

• Limit cycle

• Chaos



Numerical Evaluation of ODEs

• Today considering only Initial Value Problems
(vs. Boundary Value Problems)

• Euler’s method: simple-minded, basis of        
many others

• Runge-Kutta (usually 4th-order): faster 
convergence

• Richardson extrapolation: fast, robust, can add 
other tricks



Criteria for Evaluating

• Accuracy: use Taylor series, big-Oh,   classical 
numerical analysis

• Efficiency: running time may be hard to predict, 
sometimes step size is adaptive

• Stability: some methods diverge on some 
problems



Forward (Explicit) Euler

• Local error = O(h2)

• Global (accumulated) error = O(h)

• Limitation on step size: consider on
– Unstable for h > 1/λ
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Towards Higher Order

• Midpoint method • 4th-order Runge Kutta
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Extrapolation

• Richardson: compute for several values of h, 
combine to cancel error: higher-order method
– As with integration, yields some “classical” 

algorithms: Euler + Richardson → Runge Kutta

• Burlisch-Stoer: fit function (polynomial or 
rational) to approximation as a function of h;
extrapolate to h=0



Backward (Implicit) Euler

• Local error still O(h2)

• Stable for large step size!  (At least on              )

• In general, requires nonlinear root finding

• Implicit and semi-implicit methods for higher orders
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Accuracy and Stability

• Implicit methods important for “stiff” systems: 
explicit methods would need small h only for 
stability, not accuracy
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