# Ordinary Differential Equations

COS 323

# Ordinary Differential Equations (ODEs)

- One independent variable; (PDEs have more)
- Differential equations are ubiquitous, the lingua franca of the sciences; many different fields are linked by having similar differential equations
  - electrical circuits
  - Newtonian mechanics
  - chemical reactions
  - population dynamics
  - economics... and so on, ad infinitum

# Example: RLC circuit



$$V = RI + L\frac{dI}{dt} + \frac{1}{C}\int I \, dt$$

$$\frac{d^2q}{dt^2} + \frac{R}{L}\frac{dq}{dt} + \frac{1}{LC}q = \frac{V}{L}$$

# Example: Population Dynamics



1798 Malthusian catastrophe
1838 Verhulst, logistic growth
Predator-prey systems, Volterra-Lotka

# Population Dynamics

• Malthus:

$$\frac{dN}{dt} = rN$$



$$N = N_0 e^{rt}$$

Yikes! Population explosion

 Verhulst: Logistic growth

$$\frac{dN}{dt} = rN\left(1 - \frac{N}{K}\right)$$

$$N = \frac{N_0 e^{rt}}{1 + \frac{N_0}{K} \left( e^{rt} - 1 \right)}$$

### Predator-Prey Population Dynamics



#### Hudson Bay Company



#### Predator-Prey Population Dymanics

V .Volterra, commercial fishing in the Adriatic

 $x_1$  = biomass of predators (sharks)  $x_2$  = biomass of prey (fish)

$$\frac{\dot{x}_1}{x_1} = b_{12}x_2 - a_1$$

$$\frac{\dot{x}_2}{x_2} = a_2 - b_{21}x_1$$

# As Functions of Time



# State-Space Diagram: The $x_1$ - $x_2$ Plane



### More Behaviors

#### Self-limiting term $\rightarrow$ stable focus







#### $Delay \rightarrow limit cycle$



### Putting Equations in State-Space Form

Basic form: dx/dt = g(x), where x is vector-valued

 Can introduce extra dimensions (variables) to eliminate higher-order derivatives, dependence of g on t

• Example:  $\ddot{y} + \alpha \dot{y} + \beta y = f(t)$ 

 $x_1 \sim y \qquad \dot{x}_1 = x_2$ Introduce:  $x_2 \sim \dot{y}$  Then:  $\dot{x}_2 = f(x_3) - \alpha x_2 - \beta x_1$  $x_3 \sim t \qquad \dot{x}_3 = 1$ 



#### Traditional example: the (nonlinear) pendulum



 $\ddot{\theta} + (g/l)\sin\theta = 0$ 

## Pendulum in the Phase Plane



# Varieties of Behavior

- Stable focus
- Periodic
- Limit cycle

# Varieties of Behavior



Stable focus
Periodic
Limit cycle
Chaos

# Numerical Evaluation of ODEs

- Today considering only Initial Value Problems (vs. Boundary Value Problems)
- Euler's method: simple-minded, basis of many others
- Runge-Kutta (usually 4th-order): faster convergence
- Richardson extrapolation: fast, robust, can add other tricks

# Criteria for Evaluating

- Accuracy: use Taylor series, big-Oh, classical numerical analysis
- Efficiency: running time may be hard to predict, sometimes step size is adaptive
- Stability: some methods diverge on some problems

# Forward (Explicit) Euler

$$\dot{x} = g(x)$$
$$x^{(k+1)} = x^{(k)} + g(x^{(k)})\Delta t \qquad (h = \Delta t)$$

- Local error =  $O(h^2)$
- Global (accumulated) error = O(h)

• Limitation on step size: consider on  $\dot{x} = -\lambda x$ - Unstable for h > 1/ $\lambda$ 

# Towards Higher Order

Midpoint method

4<sup>th</sup>-order Runge Kutta

 $a = hg(x^{(k)})$   $b = hg(x^{(k)} + a/2)$  $x^{(k+1)} = x^{(k)} + b + O(h^3)$   $a = hg(x^{(k)})$   $b = hg(x^{(k)} + a/2)$   $c = hg(x^{(k)} + b/2)$   $d = hg(x^{(k)} + c)$   $x^{(k+1)} = x^{(k)} + \frac{1}{6}(a + 2b + 2c + d)$  $+ O(h^5)$ 

# Extrapolation

Richardson: compute for several values of h, combine to cancel error: higher-order method

As with integration, yields some "classical" algorithms: Euler + Richardson → Runge Kutta

Burlisch-Stoer: fit function (polynomial or rational) to approximation as a function of h; extrapolate to h=0

# Backward (Implicit) Euler

$$x^{(k+1)} = x^{(k)} + g(x^{(k+1)})h$$

- Local error still O(h<sup>2</sup>)
- Stable for large step size! (At least on  $\dot{x} = -\lambda x$ )
- In general, requires nonlinear root finding
- Implicit and semi-implicit methods for higher orders

# Accuracy and Stability

 Implicit methods important for "stiff" systems: explicit methods would need small h only for stability, not accuracy

$$\dot{x} = \begin{pmatrix} -1 & 0 \\ 0 & -100 \end{pmatrix} x$$
, where  $x_0 = \begin{pmatrix} 1 \\ 0.0001 \end{pmatrix}$