
Integration

COS 323



Numerical Integration Problems

• Basic 1D numerical integration
– Given ability to evaluate f (x) for any x, find

– Goal: best accuracy with fewest samples

– Classic problem – even analytic functions
not necessarily integrable in closed form

• Other problems (future lectures):
– Multi-dimensional integration

– Ordinary differential equations

– Partial differential equations
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Quadrature

• Sample f(x) at a set of points

• Approximate by a function

• Integrate function

• Alternatives:
– Fit single function vs. multiple (piecewise)

– Even vs. uneven spacing



Trapezoidal Rule

• Approximate function by trapezoid
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Trapezoidal Rule
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Extended Trapezoidal Rule
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Divide into segments of width h,
piecewise trapezoidal approximation
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Trapezoidal Rule Error Analysis

• How accurate is this approximation?

• Start with Taylor series for f (x) around midpoint m
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Trapezoidal Rule Error Analysis

• Expand LHS:

• Expand RHS:
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Trapezoidal Rule Error Analysis

• So,

• In general, error for a single segment 
proportional to h3

• Error for subdividing entire a→b interval 
proportional to h2

– “Cubic local accuracy, quadratic global accuracy”

– Exact for linear functions

– Note that only even-power terms in error: h2, h4, etc.
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Determining Step Size

• Change in integral when reducing step size
is a reasonable guess for accuracy

• For trapezoidal rule, easy to go from h → h/2
without wasting previous samples
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• Approximate integral by
parabola through
three points

• Better accuracy for same # of evaluations
– Global error O(h4), exact for cubic (!) functions

• Higher-order polynomials (Newton-Cotes): 
– Global error O(hk+1) for k odd, O(hk+2) for k even

Simpson’s Rule
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Richardson Extrapolation

• Better way of getting higher accuracy for a
given # of samples

• Suppose we’ve evaluated integral for step size
h and step size h/2 using trapezoidal rule:

• Then
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Richardson Extrapolation

• This treats the approximation as a function of h 
and “extrapolates” the result to h=0

• Can repeat:
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Open Methods

• Trapezoidal rule won’t work if function 
undefined at one of the points where evaluating
– Most often: function infinite at one endpoint

• Open methods only evaluate function on the 
open interval (i.e., not at endpoints)
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Midpoint Rule

• Approximate function by rectangle evaluated at 
midpoint
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Extended Midpoint Rule
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Divide into segments of width h:
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Midpoint Rule Error Analysis

• Following similar analysis to trapezoidal rule,
find that local accuracy is cubic,
quadratic global accuracy
– Surprisingly, leading-order constant is ½ as big!

– Better than trapezoidal rule with fewer samples…

• Formula suitable for adaptive methods and
Richardson extrapolation, but can’t
halve intervals without wasting samples



Extended / Adaptive Midpoint Rule

• Can cut interval into thirds:

a b a b



Limits at Infinity

• Usual trick: change of variables

• Works with a, b same sign, one of them infinite
– Otherwise, split into multiple pieces

• Also requires f to decrease faster than 1/x2

– Else need different change of variables, if possible!
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Other Quadrature Rules

• Nonuniform sampling: complexity vs. accuracy

• Clenshaw-Curtis: Chebyshev polynomials
– Change of variables: x=cos θ

– Sample at extrema of polynomials

– FFT-based algorithm to find weights

• Gaussian quadrature
– Optimize sampling locations to get highest possible 

accuracy: O(h2n) for n sampling points



Discontinuities

• All the above error analyses assumed nice 
(continuous, differentiable) functions

• In the presence of a discontinuity, all methods
revert to accuracy proportional to h
– In general, if the k-th order derivative is discontinuous, 

can do no better than O(hk+1)

• Locally-adaptive methods: do not subdivide
all intervals equally, focus on those with large error
(estimated from change with a single subdivision)
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