Integration

COS 323

Numerical Integration Problems

- Basic 1D numerical integration
- Given ability to evaluate $f(x)$ for any x, find $\int f(x) d x$
- Goal: best accuracy with fewest samples
- Classic problem - even analytic functions not necessarily integrable in closed form

$$
G(x)=\int_{-\infty}^{x} e^{-t^{2}} d t
$$

- Other problems (future lectures):
- Multi-dimensional integration
- Ordinary differential equations
- Partial differential equations

Quadrature

- Sample $f(x)$ at a set of points
- Approximate by a function
- Integrate function
- Alternatives:
- Fit single function vs. multiple (piecewise)
- Even vs. uneven spacing

Trapezoidal Rule

- Approximate function by trapezoid

Trapezoidal Rule

$$
\int_{a}^{b} f(x) d x \approx(b-a) \frac{f(a)+f(b)}{2}
$$

Extended Trapezoidal Rule

$$
\int_{a}^{b} f(x) d x \approx(b-a) \frac{f(a)+f(b)}{2}
$$

Divide into segments of width h, piecewise trapezoidal approximation

$$
\int_{a}^{b} f(x) d x \approx h\left(\frac{1}{2} f(a)+f\left(x_{1}\right)+\cdots+f\left(x_{n-1}\right)+\frac{1}{2} f(b)\right)
$$

Trapezoidal Rule Error Analysis

- How accurate is this approximation?

$$
\int_{a}^{b} f(x) d x \approx \frac{(b-a)}{2}(f(a)+f(b))+\mathscr{E}
$$

- Start with Taylor series for $f(x)$ around midpoint m

$$
\begin{array}{r}
f(x) \approx f(m)+(x-m) f^{\prime}(m)+\frac{1}{2}(x-m)^{2} f^{\prime \prime}(m)+ \\
\frac{1}{6}(x-m)^{3} f^{\prime \prime \prime}(m)+\frac{1}{24}(x-m)^{4} f^{(4)}(m)+\cdots
\end{array}
$$

Trapezoidal Rule Error Analysis

$\operatorname{Expand}_{b} \mathrm{LHS}$:

$$
\begin{gathered}
\int_{a} f(x) d x \approx(b-a) f(m)+0+\frac{1}{24}(b-a)^{3} f^{\prime \prime}(m)+ \\
0+\frac{1}{1920}(b-a)^{5} f^{(4)}(m)+\cdots
\end{gathered}
$$

Expand RHS:

$$
\begin{aligned}
\frac{(b-a)}{2}(f(a)+f(b))+\mathscr{E}= & \frac{1}{2}(b-a)\left[2 f(m)+0+\frac{1}{4}(b-a)^{2} f^{\prime \prime}(m)+\right. \\
& \left.0+\frac{1}{192}(b-a)^{4} f^{(4)}(m)+\cdots\right]+\mathscr{C}
\end{aligned}
$$

Trapezoidal Rule Error Analysis

- So,

$$
\mathscr{E}=-\frac{1}{12}(b-a)^{3} f^{\prime \prime}(m)-\frac{1}{480}(b-a)^{5} f^{(4)}(m)+\cdots
$$

- In general, error for a single segment proportional to h^{3}
- Error for subdividing entire $a \rightarrow b$ interval proportional to h^{2}
- "Cubic local accuracy, quadratic global accuracy"
- Exact for linear functions
- Note that only even-power terms in error: h^{2}, h^{4}, etc.

Determining Step Size

- Change in integral when reducing step size is a reasonable guess for accuracy
- For trapezoidal rule, easy to go from $h \rightarrow h / 2$ without wasting previous samples

Simpson's Rule

- Approximate integral by parabola through three points

$$
\int_{a}^{b} f(x) d x \approx \frac{b-a}{6}\left(f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right)+O\left(h^{5}\right)
$$

- Better accuracy for same \# of evaluations
- Global error $O\left(h^{4}\right)$, exact for cubic (!) functions
- Higher-order polynomials (Newton-Cotes):
- Global error $\mathrm{O}\left(h^{k+1}\right)$ for k odd, $\mathrm{O}\left(h^{k+2}\right)$ for k even

Richardson Extrapolation

- Better way of getting higher accuracy for a given \# of samples
- Suppose we've evaluated integral for step size h and step size $h / 2$ using trapezoidal rule:

$$
\begin{aligned}
F_{h} & =F+\alpha h^{2}+\beta h^{4}+\cdots \\
F_{h / 2} & =F+\alpha\left(\frac{h}{2}\right)^{2}+\beta\left(\frac{h}{2}\right)^{4}+\cdots
\end{aligned}
$$

- Then

$$
\frac{4}{3} F_{h / 2}-\frac{1}{3} F_{h}=F+O\left(h^{4}\right)
$$

Richardson Extrapolation

- This treats the approximation as a function of h and "extrapolates" the result to $\mathrm{h}=0$
- Can repeat:

Open Methods

- Trapezoidal rule won't work if function undefined at one of the points where evaluating
- Most often: function infinite at one endpoint

$$
\int_{0}^{1} \frac{d x}{x^{2}}
$$

- Open methods only evaluate function on the open interval (i.e., not at endpoints)

Midpoint Rule

- Approximate function by rectangle evaluated at midpoint

Extended Midpoint Rule

$$
\int_{a}^{b} f(x) d x \approx(b-a) f\left(\frac{a+b}{2}\right)
$$

Divide into segments of width h :

$$
\int_{a}^{b} f(x) d x \approx h\left(f\left(a+\frac{h}{2}\right)+f\left(a+\frac{3 h}{2}\right)+\cdots+f\left(b-\frac{h}{2}\right)\right)
$$

Midpoint Rule Error Analysis

- Following similar analysis to trapezoidal rule, find that local accuracy is cubic, quadratic global accuracy
- Surprisingly, leading-order constant is $1 / 2$ as big!
- Better than trapezoidal rule with fewer samples...
- Formula suitable for adaptive methods and Richardson extrapolation, but can't halve intervals without wasting samples

Extended / Adaptive Midpoint Rule

- Can cut interval into thirds:

Limits at Infinity

- Usual trick: change of variables

$$
\int_{a}^{b} f(x) d x=\int_{1 / a}^{1 / b} \frac{1}{t^{2}} f\left(\frac{1}{t}\right) d t
$$

- Works with a, b same sign, one of them infinite
- Otherwise, split into multiple pieces

Also requires f to decrease faster than $1 / x^{2}$

- Else need different change of variables, if possible!

Other Quadrature Rules

- Nonuniform sampling: complexity vs. accuracy
- Clenshaw-Curtis: Chebyshev polynomials
- Change of variables: $x=\cos \theta$
- Sample at extrema of polynomials
- FFT-based algorithm to find weights
- Gaussian quadrature

- Optimize sampling locations to get highest possible accuracy: $O\left(h^{2 n}\right)$ for n sampling points

Discontinuities

- All the above error analyses assumed nice (continuous, differentiable) functions
- In the presence of a discontinuity, all methods revert to accuracy proportional to h
- In general, if the k-th order derivative is discontinuous, can do no better than $O\left(h^{k+1}\right)$
- Locally-adaptive methods: do not subdivide all intervals equally, focus on those with large error (estimated from change with a single subdivision)

