Fourier Transforms

COS 323

Life in the Frequency Domain

Jean Baptiste Joseph
Fourier (1768-1830)

Spectrogram, Northern Cardinal

JPEG Image Compression

a. Original image

FIGURE 27-15
Example of JPEG distortion. Figure (a) shows the original image, while (b) and (c) shows restored images using compression ratios of $10: 1$ and $45: 1$, respectively. The high compression ratio used in (c) results in each 8×8 pixel group being represented by less than 12 bits.

b. With 10:1 compression

c. With $45: 1$ compression

Discrete Cosine Transform (DCT)

[Steven W. Smith 1997]

Fourier Transform and Convolution

- Fourier transform turns convolution into multiplication:

$$
F(f(x) * g(x))=F(f(x)) F(g(x))
$$

(and vice versa):

$$
F(f(x) g(x))=F(f(x)) * F(g(x))
$$

Fourier Transform

- Continuous Fourier transform:

$$
F(k)=F(f(x))=\int_{-\infty}^{\infty} f(x) e^{-2 \pi k x} d x
$$

- Discrete Fourier transform:

$$
\mathrm{F}_{\mathrm{k}}=\sum_{x=0}^{n-1} f_{x} e^{-2 \pi \pi \frac{k}{n} x}
$$

- Fis a function of frequency - describes how much of each frequency f contains
- Fourier transform is invertible

Computing Discrete Fourier Transform

$$
\mathrm{F}_{\mathrm{k}}=\sum_{x=0}^{n-1} f_{x} e^{-2 \pi \frac{k}{n} x}
$$

- Straightforward computation: for each of n DFT values, loop over n input samples. Total: $O\left(n^{2}\right)$
- Fast Fourier Transform (FFT): O(n $\log _{2} n$) time
- Revolutionized signal processing, filtering, compression, etc.

The FFT

Discovered by Johann Carl Friedrich Gauss (1777-1855)

The FFT

Rediscovered and popularized in 1965 by
J. W. Cooley and John Tukey (Princeton alum and faculty)

The FFT

$$
\mathrm{F}_{\mathrm{k}}=\sum_{x=0}^{n-1} f_{x} e^{-2 \pi \frac{k}{n} x}
$$

Let $\omega_{n}=e^{-2 \pi i / n}=\cos (2 \pi / n)-i \sin (2 \pi / n)$
Then $\mathrm{F}_{\mathrm{k}}=\sum_{x=0}^{n-1} f_{x} \omega_{n}{ }^{k k}$

$$
=\sum_{x=0}^{n / 2-1} f_{2 x} \omega_{n}^{2 x k}+\sum_{x=0}^{n / 2-1} f_{2 x+1} \omega_{n}^{(2 x+1) k}
$$

The FFT

Key idea: divide and conquer

- Separate computation on even and odd elements

$$
\begin{aligned}
\mathrm{F}_{\mathrm{k}} & =\sum_{\sum_{x=0}^{n / 2-1} f_{2 x} \omega_{n}^{2 x k}}+\underbrace{\sum_{x=0}^{n / 2-1} f_{2 x+1} \omega_{n}^{(2 x+1) k}} \\
& =\underbrace{\sum_{\text {Half-size FFT on }}}_{\begin{array}{c}
\text { Half-size FFT on } \\
\text { even elements }
\end{array}} f_{2 x} \omega_{n / 2}{ }_{\text {odd elements }}{ }^{x k}+\omega_{n}{ }^{k} \underbrace{\sum_{x=0}^{n / 2-1} f_{2 x+1} \omega_{n / 2}{ }^{x k}}_{x=0}
\end{aligned}
$$

The FFT

- Now apply algorithm recursively!

FFT Butterfly

The FFT

- Final detail: how to find elements involved in initial size-2 FFTs?

- Bit reversal!

$$
\begin{aligned}
& 0 \rightarrow 000 \rightarrow 000 \rightarrow 0 \\
& 1 \rightarrow 001 \rightarrow 100 \rightarrow 4 \\
& 2 \rightarrow 010 \rightarrow 010 \rightarrow 2 \\
& 3 \rightarrow 011 \rightarrow 110 \rightarrow 6 \\
& 4 \rightarrow 100 \rightarrow 001 \rightarrow 1 \\
& 5 \rightarrow 101 \rightarrow 101 \rightarrow 5 \\
& 6 \rightarrow 110 \rightarrow 011 \rightarrow 3 \\
& 7 \rightarrow 111 \rightarrow 111 \rightarrow 7
\end{aligned}
$$

FFT Running Time

- Time to compute FFT of length n :
- Solve two subproblems of length $n / 2$
- Additional processing proportional to n

$$
T(n)=2 T(n / 2)+c n
$$

- Recurrence relation with solution

$$
T(n)=c n \log _{2} n
$$

FFT Running Time

- Proof:

$$
T(n)=2 T(n / 2)+c n
$$

cn $\log _{2} n \stackrel{?}{=} 2\left(c n / 2 \log _{2} n / 2\right)+c n$
$c n \log _{2} n \stackrel{?}{=} c n\left(\left(\log _{2} n\right)-1\right)+c n$
$c n \log _{2} n \stackrel{\imath}{=} c n \log _{2} n-c n+c n$

DFT of Real Signals

- Standard FFT is complex \rightarrow complex
- n real numbers as input yields n complex numbers
- But: symmetry relation for real inputs $F_{n-k}=\left(F_{k}\right)^{*}$
- Variants of FFT to compute this efficiently
- Discrete Cosine Transform (DCT)
- Reflect real input to get signal of length $2 n$
- Resulting FFT real and symmetric
- n real numbers as input, n real numbers as output

Application: JPEG Image Compression

- Perceptually-based lossy compression of images
- Algorithm
- Transform colors
- Divide into 8×8 blocks
- 2-dimensional DCT on each block
- Perceptually-guided quantization
- Lossless run-length and Huffman encoding

Application: JPEG Image Compression

a. Original image

FIGURE 27-15
Example of JPEG distortion. Figure (a) shows the original image, while (b) and (c) shows restored images using compression ratios of $10: 1$ and $45: 1$, respectively. The high compression ratio used in (c) results in each 8×8 pixel group being represented by less than 12 bits.

b. With 10:1 compression

c. With $45: 1$ compression

Discrete Cosine Transform (DCT)

Application: Polynomial Multiplication

- Usual algorithm for multiplying two polynomials of degree n is $\mathrm{O}\left(n^{2}\right)$
- Observation: can use DFT to efficiently go between polynomial coefficients f_{x}

$$
f(t)=\sum_{x=0}^{n-1} f_{x} t^{x}
$$

and polynomial evaluated at ω_{n}^{k}

$$
f\left(\omega_{n}^{k}\right)=\mathrm{F}_{\mathrm{k}}=\sum_{x=0}^{n-1} f_{x} \omega_{n}^{k x}
$$

Application: Polynomial Multiplication

- So, we have an $\mathrm{O}(n \log n)$ algorithm for multiplying two degree-n polynomials:
- DFT on coefficients
- Multiply
- Inverse DFT

Application: Diffraction

- (Far-field) diffraction pattern of parallel light passing through an aperture is Fourier transform of aperture

Application: Diffraction

Square aperture

Application: Diffraction

Circular aperture: Airy disk

Application: Diffraction

Diffraction + defocus in telescope image

