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Digital “Signals”

• 1D: functions of space or time (e.g., sound)

• 2D: often functions of 2 spatial dimensions
(e.g. images)

• 3D: functions of 3 spatial dimensions
(CAT, MRI scans) or 2 space, 1 time (video)



Digital Signal Processing

1. Understand analogues of filters

2. Understand nature of sampling



Filtering

• Consider a noisy 1D signal f(x)

• Basic operation: smooth the signal
– Output = new function h(x)

– Want properties: linearity, shift invariance

• Linear Shift-Invariant Filters
– If you double input, double output

– If you shift input, shift output



Convolution

• Output signal at each point = weighted average of 
local region of input signal
– Depends on input signal, pattern of weights

– “Filter” g(x) = function of weights for linear combination

– Basic operation = move filter to some position x,
add up f times g



Convolution
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Convolution

• f is called “signal” and g is “filter” or “kernel”, 
but the operation is symmetric

• Usually desirable to leave a constant signal
unchanged: choose g such that
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Filter Choices

• Simple filters: box, triangle



Gaussian Filter

• Very commonly used filter
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Gaussian Filters

• Gaussians are used because:
– Smooth (infinitely differentiable)

– Decay to zero rapidly

– Simple analytic formula

– Separable: multidimensional Gaussian =
product of Gaussians in each dimension

– Convolution of 2 Gaussians = Gaussian

– Limit of applying multiple filters (*) is Gaussian
(Central limit theorem)



2D Gaussian Filter



Sampled Signals

• Can’t store continuous signal: instead store 
“samples”
– Usually evenly sampled:

f0=f(x0), f1=f(x0+∆x), f2=f(x0+2∆x), f3=f(x0+3∆x), …

• Instantaneous measurements of continuous signal
– This can lead to problems
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Aliasing

• Reconstructed signal might be very different 
from original: “aliasing”

• Solution: smooth the signal before sampling

→ →



Discrete Convolution

• Integral becomes sum over samples

• Normalization condition is
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Computing Discrete Convolutions

• What happens near edges of signal?
– Ignore (Output is smaller than input)

– Pad with zeros (edges get dark)

– Replicate edge samples

– Wrap around

– Reflect

– Change filter
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Computing Discrete Convolutions

• If f has n samples and g has m nonzero samples,
straightforward computation takes time

O(nm)

• OK for small filter kernels, bad for large ones
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Example: Smoothing

Original image Smoothed with
2D Gaussian kernel



Example: Smoothed Derivative

• Derivative of noisy signal = more noisy

• Solution: smooth with a Gaussian
before taking derivative

• Differentiation and convolution both linear 
operators: they “commute”
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Example: Smoothed Derivative

• Result: good way of finding derivative = 
convolution with derivative of Gaussian



Smoothed Derivative in 2D

• What is “derivative” in 2D?  Gradient:

• Gaussian is separable!

• Combine smoothing, differentiation:
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Smoothed Derivative in 2D
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Smoothed Derivative in 2D

Original Image Smoothed Gradient Magnitude



Canny Edge Detector

• Smooth

• Find derivative

• Find maxima

• Threshold



Canny Edge Detector

Original Image Edges



Fourier Transform

• Transform applied to function to analyze its 
“frequency” content

• Several versions
– Fourier series:

• input = continuous, bounded; output = discrete, unbounded

– Fourier transform:
• input = continuous, unbounded; output = continuous, unbounded

– Discrete Fourier transform (DFT):
• input = discrete, bounded; output = discrete, bounded



Fourier Series

• Periodic function f(x) defined over [–π .. π ]
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Fourier Series

• This works because sines, cosines are 
orthonormal over [–π .. π ]:

• Kronecker delta:
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Fourier Transform

• Continuous Fourier transform:

• Discrete Fourier transform:

• F is a function of frequency – describes how much of 
each frequency f contains

• Fourier transform is invertible
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Fourier Transform and Convolution

• Fourier transform turns convolution
into multiplication:

F (f(x) * g(x)) = F (f(x)) F (g(x))

(and vice versa):

F (f(x) g(x)) = F (f(x)) * F (g(x))



Fourier Transform and Convolution

• Useful application #1: Use frequency space to 
understand effects of filters
– Example: Fourier transform of a Gaussian

is a Gaussian

– Thus: attenuates high frequencies
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Fourier Transform and Convolution

• Box function?

• In frequency space:
sinc function
– sinc(x) = sin(x) / x

– Not as good at attenuating
high frequencies



Fourier Transform and Convolution

• Fourier transform of derivative:

• Blows up for high frequencies!
– After Gaussian smoothing, doesn’t blow up
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Fourier Transform and Convolution

• Useful application #2: Efficient computation
– Fast Fourier Transform (FFT) takes time

O(n log n)

– Thus, convolution can be performed in time
O(n log n + m log m)

– Greatest efficiency gains for large filters
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