SVD and PCA

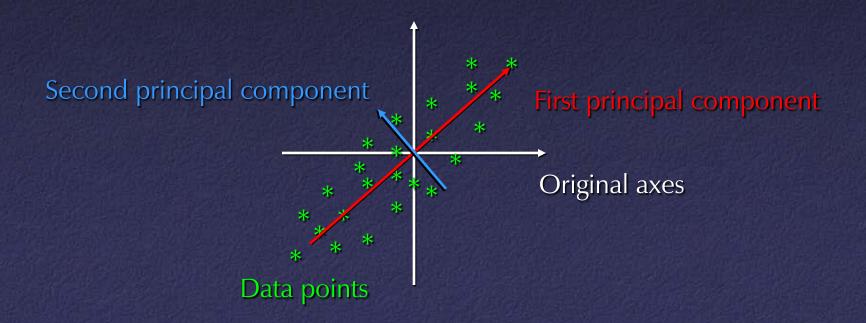
COS 323

Dimensionality Reduction

- Map points in high-dimensional space to lower number of dimensions
- Preserve structure: pairwise distances, etc.
- Useful for further processing:
 - Less computation, fewer parameters
 - Easier to understand, visualize

PCA

 Principal Components Analysis (PCA): approximating a high-dimensional data set with a lower-dimensional linear subspace



SVD and PCA

- Data matrix with points as rows, take SVD
 - Subtract out mean ("whitening")
- Columns of V_k are principal components
- Value of w_i gives importance of each component

PCA on Faces: "Eigenfaces"

First principal component Average face Other components For all except average, "gray" = 0, "white" > 0, "black" < 0

Uses of PCA

- Compression: each new image can be approximated by projection onto first few principal components
- Recognition: for a new image, project onto first few principal components, match feature vectors

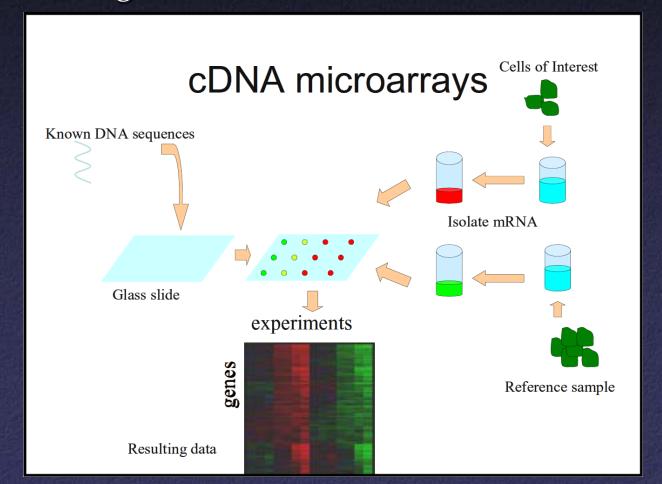
PCA for Relighting

Images under different illumination

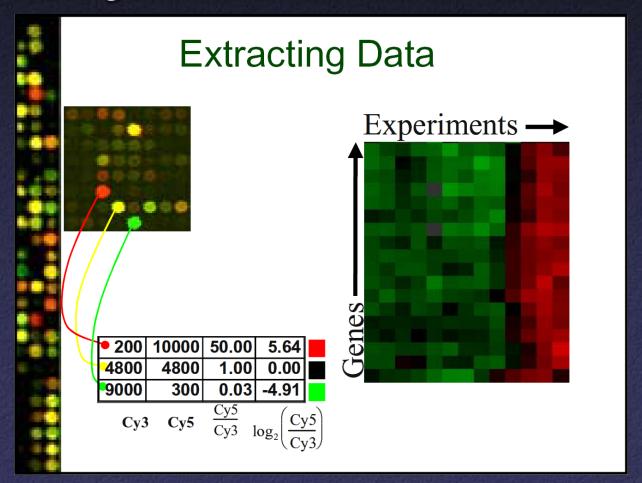
PCA for Relighting

- Images under different illumination
- Most variation captured by first 5 principal components – can re-illuminate by combining only a few images

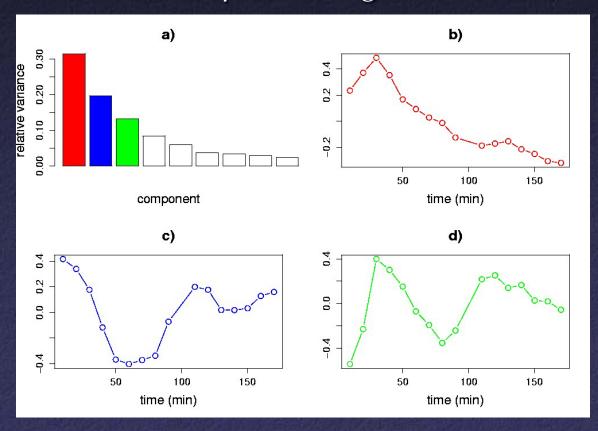
Measure gene activation under different conditions



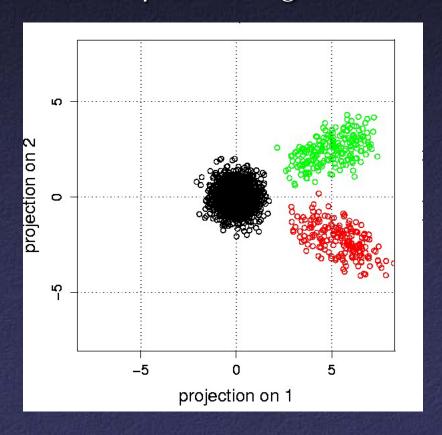
Measure gene activation under different conditions



- PCA shows patterns of correlated activation
 - Genes with same pattern might have similar function



- PCA shows patterns of correlated activation
 - Genes with same pattern might have similar function



Multidimensional Scaling

- In some experiments, can only measure similarity or dissimilarity
 - e.g., is response to stimuli similar or different?
 - Frequent in psychophysical experiments, preference surveys, etc.
- Want to recover absolute positions in k-dimensional space

Multidimensional Scaling

Example: given pairwise distances between cities

	Atl	Chi	Den	Hou	LA	Mia	NYC	SF	Sea	DC
Atlanta	0									
Chicago	587	0								
Denver	1212	920	0							
Houston	701	940	879	0						
LA	1936	1745	831	1374	0					
Miami	604	1188	1726	968	2339	0				·
NYC	748	713	1631	1420	2451	1092	0			
SF	2139	1858	949	1645	347	2594	2571	0		
Seattle	2182	1737	1021	1891	959	2734	2406	678	0	
DC	543	597	1494	1220	2300	923	205	2442	2329	0

Want to recover locations

- Formally, let's say we have $n \times n$ matrix D consisting of squared distances $d_{ij} = (x_i x_j)^2$
- Want to recover n × d matrix X of positions in d-dimensional space

$$D = \begin{pmatrix} 0 & (x_1 - x_2)^2 & (x_1 - x_3)^2 \\ (x_1 - x_2)^2 & 0 & (x_2 - x_3)^2 \\ (x_1 - x_3)^2 & (x_2 - x_3)^2 & 0 \\ & & \ddots \end{pmatrix}$$

$$X = \begin{pmatrix} (\cdots x_1 \cdots) \\ (\cdots x_2 \cdots) \\ \vdots \end{pmatrix}$$

Observe that

$$d_{ij}^{2} = (x_{i} - x_{j})^{2} = x_{i}^{2} - 2x_{i}x_{j} + x_{j}^{2}$$

- Strategy: convert matrix D of d_{ij}^2 into matrix B of $x_i x_j$
 - "Centered" distance matrix
 - $-B = XX^{\mathsf{T}}$

- Centering:
 - Sum of row i of D = sum of column i of D =

$$s_{i} = \sum_{j} d_{ij}^{2} = \sum_{j} x_{i}^{2} - 2x_{i}x_{j} + x_{j}^{2}$$
$$= nx_{i}^{2} - 2x_{i}\sum_{j} x_{j} + \sum_{j} x_{j}^{2}$$

— Sum of all entries in D =

$$s = \sum_{i} s_i = 2n \sum_{i} x_i^2 - 2\left(\sum_{i} x_i\right)^2$$

- Choose $\Sigma x_i = 0$
 - Solution will have average position at origin

$$s_i = nx_i^2 + \sum_j x_j^2, \quad s = 2n\sum_j x_j^2$$

– Then,

$$d_{ij}^{2} - \frac{1}{n} s_{i} - \frac{1}{n} s_{j} + \frac{1}{n^{2}} s = -2x_{i} x_{j}$$

- So, to get B:
 - compute row (or column) sums
 - compute sum of sums
 - apply above formula to each entry of D
 - Divide by -2

- Now have B, want to factor into XX^T
- If X is $n \times d$, B must have rank d
- Take SVD, set all but top d singular values to 0
 - Eliminate corresponding columns of U and V
 - Have $B_3 = U_3 W_3 V_3^T$
 - -B is square and symmetric, so U = V
 - $\overline{-}$ Take $X = U_3$ times square root of W_3

Multidimensional Scaling

• Result (d = 2):

Multidimensional Scaling

- Caveat: actual axes, center not necessarily what you want (can't recover them!)
- This is "classical" or "Euclidean" MDS [Torgerson 52]
 - Distance matrix assumed to be actual Euclidean distance
- More sophisticated versions available
 - "Non-metric MDS": not Euclidean distance, sometimes just inequalities
 - "Weighted MDS": account for observer bias