Singular Value Decomposition

COS 323

Underconstrained Least Squares

- What if you have fewer data points than parameters in your function?
- Intuitively, can't do standard least squares
- Recall that solution takes the form $\mathrm{A}^{\top} \mathrm{Ax}=\mathrm{A}^{\top} b$
- When A has more columns than rows,
$\mathrm{A}^{\mathrm{T}} \mathrm{A}$ is singular: can't take its inverse, etc.

Underconstrained Least Squares

- More subtle version: more data points than unknowns, but data poorly constrains function
- Example: fitting to $y=a x^{2}+b x+c$

Underconstrained Least Squares

- Problem: if problem very close to singular, roundoff error can have a huge effect
- Even on "well-determined" values!
- Can detect this:
- Uncertainty proportional to covariance $C=\left(A^{\top} A\right)^{-1}$
- In other words, unstable if $A^{\top} A$ has small values
- More precisely, care if $x^{\top}\left(A^{\top} A\right) x$ is small for any x
- Idea: if part of solution unstable, set answer to 0
- Avoid corrupting good parts of answer

Singular Value Decomposition (SVD)

- Handy mathematical technique that has application to many problems
- Given any $m \times n$ matrix \mathbf{A}, algorithm to find matrices \mathbf{U}, \mathbf{V}, and \mathbf{W} such that
$\mathbf{A}=\mathbf{U} \mathbf{W} \mathbf{V}^{\top}$
\mathbf{U} is $m \times n$ and orthonormal
\mathbf{W} is $n \times n$ and diagonal
V is $n \times n$ and orthonormal

SVD

$$
\mathbf{A})=\left(\mathbf{U} \quad\left(\begin{array}{ccc}
w_{1} & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & w_{n}
\end{array}\right)(\mathbf{V})^{\mathrm{T}}\right.
$$

Treat as black box: code widely available In Matlab: $[\mathbf{U}, \mathrm{W}, \mathrm{V}]=\operatorname{svd}(\mathrm{A}, 0)$

SVD

- The w_{i} are called the singular values of A
- If \mathbf{A} is singular, some of the w_{i} will be 0
- In general rank(A) = number of nonzero w_{i}
- SVD is mostly unique (up to permutation of singular values, or if some w_{i} are equal)

SVD and Inverses

- Why is SVD so useful?
- Application \#1: inverses
- $\mathbf{A}^{-1}=\left(\mathbf{V}^{\top}\right)^{-1} \mathbf{W}^{-1} \mathbf{U}^{-1}=\mathbf{V} \mathbf{W}^{-1} \mathbf{U}^{\top}$
- Using fact that inverse $=$ transpose for orthogonal matrices
- Since \mathbf{W} is diagonal, \mathbf{W}^{-1} also diagonal with reciprocals of entries of \mathbf{W}

SVD and Inverses

- $\mathbf{A}^{-1}=\left(\mathbf{V}^{\top}\right)^{-1} \mathbf{W}^{-1} \mathbf{U}^{-1}=\mathbf{V} \mathbf{W}^{-1} \mathbf{U}^{\top}$
- This fails when some w_{i} are 0
- It's supposed to fail - singular matrix
- Pseudoinverse: if $w_{i}=0$, set $1 / w_{i}$ to $0(!)$
- "Closest" matrix to inverse
- Defined for all (even non-square, singular, etc.) matrices
- Equal to $\left(\mathbf{A}^{\top} \mathbf{A}\right)^{-1} \mathbf{A}^{\top}$ if $\mathbf{A}^{\top} \mathbf{A}$ invertible

SVD and Least Squares

- Solving $\mathbf{A x}=\mathbf{b}$ by least squares
- $\mathbf{x}=$ pseudoinverse(\mathbf{A}) times \mathbf{b}
- Compute pseudoinverse using SVD
- Lets you see if data is singular
- Even if not singular, ratio of max to min singular values (= condition number) tells you how stable the solution will be
- Set $1 / w_{i}$ to 0 if w_{i} is small (even if not exactly 0)

SVD and Eigenvectors

- Let $\mathbf{A}=\mathbf{U W} \mathbf{V}^{\top}$, and let x_{i} be $i^{\text {th }}$ column of \mathbf{V}
- Consider $\mathbf{A}^{\top} \mathbf{A} x_{i}$:
$\mathbf{A}^{\mathrm{T}} \mathbf{A} x_{i}=\mathbf{V W}^{\mathrm{T}} \mathbf{U}^{\mathrm{T}} \mathbf{U} \mathbf{W V}^{\mathrm{T}} x_{i}=\mathbf{V} \mathbf{W}^{2} \mathbf{V}^{\mathrm{T}} x_{i}=\mathbf{V W}^{2}\left(\begin{array}{c}\vdots \\ 1 \\ \vdots \\ 0\end{array}\right)=\mathbf{V}\left(\begin{array}{c}\vdots \\ w_{i}^{2} \\ \vdots \\ 0\end{array}\right)=w_{i}{ }^{2} x_{i}$
- So elements of \mathbf{W} are sqrt(eigenvalues) and columns of \mathbf{V} are eigenvectors of $\mathbf{A}^{\top} \mathbf{A}$
- What we wanted for robust least squares fitting!

SVD and Matrix Similarity

- One common definition for the norm of a matrix is the Frobenius norm:

$$
\|\mathbf{A}\|_{\mathrm{F}}=\sum_{i} \sum_{j} a_{i j}{ }^{2}
$$

- Frobenius norm can be computed from SVD

$$
\|\mathbf{A}\|_{\mathrm{F}}=\sum_{i} w_{i}^{2}
$$

So changes to a matrix can be evaluated by looking at changes to singular values

SVD and Matrix Similarity

- Suppose you want to find best rank-k approximation to \mathbf{A}
- Answer: set all but the largest k singular values to zero
- Can form compact representation by eliminating columns of \mathbf{U} and \mathbf{V} corresponding to zeroed w_{i}

SVD and PCA

- Principal Components Analysis (PCA): approximating a high-dimensional data set with a lower-dimensional subspace

SVD and PCA

- Data matrix with points as rows, take SVD
- Subtract out mean ("whitening")
- Columns of \mathbf{V}_{k} are principal components
- Value of w_{i} gives importance of each component

PCA on Faces: "Eigenfaces"

Using PCA for Recognition

- Store each person as coefficients of projection onto first few principal components

$$
\text { image }=\sum_{i=0}^{i_{\operatorname{man}}} a_{i} \text { Eigenface }_{\mathrm{i}}
$$

- Compute projections of target image, compare to database ("nearest neighbor classifier")

Total Least Squares

- One final least squares application
- Fitting a line: vertical vs. perpendicular error

Total Least Squares

- Distance from point to line:

$$
d_{i}=\binom{x_{i}}{y_{i}} \cdot \vec{n}-a
$$

where n is normal vector to line, a is a constant

- Minimize:

$$
\chi^{2}=\sum_{i} d_{i}^{2}=\sum_{i}\left[\binom{x_{i}}{y_{i}} \cdot \vec{n}-a\right]^{2}
$$

Total Least Squares

- First, let's pretend we know n, solve for a

$$
\begin{aligned}
& x^{2}=\sum_{i}\left[\binom{x_{i}}{y_{i}} \cdot \vec{n}-a\right]^{2} \\
& a=\frac{1}{m} \sum_{i}\binom{x_{i}}{y_{i}} \cdot \vec{n}
\end{aligned}
$$

$$
d_{i}=\binom{x_{i}}{y_{i}} \cdot \vec{n}-a=\binom{x_{i}-\frac{\Sigma x_{i}}{m}}{y_{i}-\frac{\Sigma y_{i}}{m}} \cdot \vec{n}
$$

Total Least Squares

- So, let's define

$$
\binom{\tilde{x}_{i}}{\tilde{y}_{i}}=\binom{x_{i}-\frac{\Sigma x_{i}}{m}}{y_{i}-\frac{\Sigma y_{i}}{m}}
$$

and minimize

$$
\sum_{i}\left[\binom{\tilde{x}_{i}}{\tilde{y}_{i}} \cdot \vec{n}\right]^{2}
$$

Total Least Squares

- Write as linear system

$$
\left(\begin{array}{cc}
\tilde{x}_{1} & \tilde{y}_{1} \\
\tilde{x}_{2} & \tilde{y}_{2} \\
\tilde{x}_{3} & \tilde{y}_{3}
\end{array}\right)\binom{n_{x}}{n_{y}}=\overrightarrow{0}
$$

- Have An=0
- Problem: lots of n are solutions, including $n=0$
- Standard least squares will, in fact, return $n=0$

Constrained Optimization

- Solution: constrain n to be unit length
- So, try to minimize $|A n|^{2}$ subject to $|n|^{2}=1$

$$
\|\mathbf{A} \vec{n}\|^{2}=(\mathbf{A} \vec{n})^{\mathrm{T}}(\mathbf{A} \vec{n})=\vec{n}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}} \mathbf{A} \vec{n}
$$

- Expand in eigenvectors e_{i} of $\mathrm{A}^{\top} \mathrm{A}$:

$$
\begin{gathered}
\vec{n}=\mu_{1} \mathbf{e}_{1}+\mu_{2} \mathbf{e}_{2} \\
\vec{n}^{\mathrm{T}}\left(\mathbf{A}^{\mathrm{T}} \mathbf{A}\right) \vec{n}=\lambda_{1} \mu_{1}^{2}+\lambda_{2} \mu_{2}^{2} \\
\|\vec{n}\|^{2}=\mu_{1}^{2}+\mu_{2}^{2}
\end{gathered}
$$

where the λ_{i} are eigenvalues of $\mathrm{A}^{\mathrm{T}} \mathrm{A}$

Constrained Optimization

- To minimize $\lambda_{1} \mu_{1}^{2}+\lambda_{2} \mu_{2}^{2}$ subject to $\mu_{1}^{2}+\mu_{2}^{2}=1$ set $\mu_{\text {min }}=1$, all other $\mu_{\mathrm{i}}=0$
- That is, n is eigenvector of $A^{\top} A$ with the smallest corresponding eigenvalue

