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Nonlinear Least Squares

• Some problems can be rewritten to linear

• Fit data points (xi, log yi) to a*+bx, a = ea*

• Big problem: this no longer minimizes
squared error!
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Nonlinear Least Squares

• Can write error function, minimize directly

• For the exponential, no analytic solution for a, b:
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Newton’s Method

• Apply Newton’s method for minimization:

where H is Hessian (matrix of all 2nd derivatives) 
and G is gradient (vector of all 1st derivatives)
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Newton’s Method for Least Squares

• Gradient has 1st derivatives of f, Hessian 2nd
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Gauss-Newton Iteration

• Consider 1 term of Hessian:

• If close to answer, first term close to 0

• Gauss-Newton method: ignore first term!
– Eliminates requirement to calculate 2nd derivatives of f
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Gauss-Newton Iteration

– Surprising fact: still superlinear convergence if
“close enough” to answer
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Example: Logistic Regression

• Model probability of an event based on
values of explanatory variables, using 
generalized linear model, logistic function g(z)
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Logistic Regression

• Uses assumption that positive and negative 
examples are normally distributed, with different 
means but same variance

• Applications: predict odds of election victories, 
sports events, medical outcomes, etc.

• Estimate parameters a, b, … using Gauss-Newton
on individual positive, negative examples

• Handy hint: g’(z) = g(z) (1-g(z))



Levenberg-Marquardt

• Newton (and Gauss-Newton) work well when 
close to answer, terribly when far away

• Steepest descent safe when far away

• Levenberg-Marquardt idea: let’s do both
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Levenberg-Marquardt

• Trade off between constants depending on how far 
away you are…

• Clever way of doing this:

• If λ is small, mostly like Gauss-Newton

• If λ is big, matrix becomes mostly diagonal,
behaves like steepest descent
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Levenberg-Marquardt

• Final bit of cleverness: adjust λ depending on 
how well we’re doing
– Start with some λ, e.g. 0.001

– If last iteration decreased error, accept the step and 
decrease λ to λ/10

– If last iteration increased error, reject the step and 
increase λ to 10λ

• Result: fairly stable algorithm, not too painful 
(no 2nd derivatives), used a lot



Outliers

• A lot of derivations assume Gaussian distribution 
for errors

• Unfortunately, nature (and experimenters)
sometimes don’t cooperate

• Outliers: points with extremely low probability 
of occurrence (according to Gaussian statistics)

• Can have strong influence on least squares

probability
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Robust Estimation

• Goal: develop parameter estimation methods 
insensitive to small numbers of large errors

• General approach: try to give large deviations 
less weight

• M-estimators: minimize some function other 
than square of y – f(x,a,b,…)



Least Absolute Value Fitting

• Minimize
instead of

• Points far away from trend get comparatively
less influence
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Example: Constant

• For constant function  y = a,
minimizing  Σ(y–a)2 gave  a = mean

• Minimizing  Σ|y–a|  gives  a = median



Doing Robust Fitting

• In general case, nasty function:
discontinuous derivative

• Simplex method often a good choice



Iteratively Reweighted Least Squares

• Sometimes-used approximation:
convert to iterated weighted least squares

with wi based on previous iteration
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M-Estimators

Different options for weights
– Avoid problems with infinities

– Give even less weight to outliers

( )
( )2),,,(

2),,,(
1

),,,(
1

),,,(
1









baxfyk
i

ii
i

ii
i

ii
i

iiew

baxfy
w

baxfy
w

baxfy
w

−−=

−+
=

−+
=

−
=

ε

ε

L1

“Fair”

Cauchy / Lorentzian

Welsch



Iteratively Reweighted Least Squares

• Danger!  This is not guaranteed to converge
to the right answer!
– Needs good starting point, which is available if

initial least squares estimator is reasonable

– In general, works OK if few outliers, not too far off



Outlier Detection and Rejection

• Special case of IRWLS: set weight = 0 if outlier, 
1 otherwise

• Detecting outliers: (yi–f(xi))2 > threshold
– One choice: multiple of mean squared difference

– Better choice: multiple of median squared difference

– Can iterate…

– As before, not guaranteed to do anything reasonable, 
tends to work OK if only a few outliers



RANSAC

• RANdom SAmple Consensus: desgined for
bad data (in best case, up to 50% outliers)

• Take many random subsets of data
– Compute least squares fit for each sample

– See how many points agree: (yi–f(xi))2 < threshold

– Threshold user-specified or estimated from more trials

• At end, use fit that agreed with most points
– Can do one final least squares with all inliers
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