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Nonlinear Least Squares

Some problems can be rewritten to linear

y e aebx

= (log y) = (log a) + bx

Fit data points (x;, logy,) to a"+bx, a = e?

Big problem: this no longer minimizes
squared error!



Nonlinear Least Squares

Can write error function, minimize directly
7? :Z(yi e, )

Set i =0, i =0, etc.
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For the exponential, no analytic solution for a, b:
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Newton’s Method

Apply Newton’s method for minimization:

a a
= b| -H'G

“ i+l * /i
where H is Hessian (matrix of all 2nd derivatives)
and G is gradient (vector of all 15t derivatives)



Newton’s Method for Least Squares
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Gradient has 1%t derivatives of f, Hessian 2




(Gauss-Newton Iteration

Consider 1 term of Hessian:
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If close to answer, first term close to 0O

Gauss-Newton method: ignore first term!

— Eliminates requirement to calculate 2" derivatives of f



(Gauss-Newton Iteration
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— Surprising fact: still superlinear convergence if

“close enough” to answer



Example: Logistic Regression

Model probability of an event based on
values of explanatory variables, using
generalized linear model, logistic function g(z)

p(X) = g(ax, +bx, +---)
1
1+e

0(z) =

=Z




Logistic Regression

Uses assumption that positive and negative
examples are normally distributed, with different
means but same variance

Applications: predict odds of election victories,
sports events, medical outcomes, etc.

Estimate parameters a, b, ... using Gauss-Newton
on individual positive, negative examples

Handy hint: g'(z) = g(z) (1-g(2))



Levenberg-Marquardt

Newton (and Gauss-Newton) work well when
close to answer, terribly when far away

Steepest descent safe when far away

Levenberg-Marquardt idea: let’s do both
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Levenberg-Marquardt

Trade off between constants depending on how far
away you are...

Clever way of doing this:

a a L+ )22 AR
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If 2 is small, mostly like Gauss-Newton

If A is big, matrix becomes mostly diagonal,
behaves like steepest descent



Levenberg-Marquardt

Final bit of cleverness: adjust A depending on
how well we're doing
— Start with some 4, e.g. 0.001

— If last iteration decreased error, accept the step and
decrease A to A/10

— If last iteration increased error, reject the step and
increase A to 104

Result: fairly stable algorithm, not too painful
(no 29 derivatives), used a lot



Outliers

A lot of derivations assume Gaussian distribution
for errors

Unfortunately, nature (and experimenters)

probability

< /
sometimes don't cooperate /\

Outliers: points with extremely low probabili’q;
of occurrence (according to Gaussian statistics)

Can have strong influence on least squares



Robust Estimation

Goal: develop parameter estimation methods
insensitive to small numbers of large errors

General approach: try to give large deviations
less weight

M-estimators: minimize some function other
than square of y — f(x,a,b,...)



Least Absolute Value Fitting

Minimize 2|y - f(x,ab,..)
instead of Z(yi —Fean )

Points far away from trend get comparatively
less influence



Example: Constant

For constant function y = a,
minimizing X(y—a)’ gave a = mean

Minimizing X|y-a| gives a = median



Doing Robust Fitting

In general case, nasty function:
discontinuous derivative

Simplex method often a good choice



[teratively Reweighted Least Squares

Sometimes-used approximation:
convert to iterated weighted least squares
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with w; based on previous iteration



M-Estimators

Different options for weights

— Avoid problems with infinities

— Give even less weight to outliers

1
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[teratively Reweighted Least Squares

Danger! This is not guaranteed to converge
to the right answer!

— Needs good starting point, which is available if
initial least squares estimator is reasonable

— In general, works OK'if few outliers, not too far off



Outlier Detection and Rejection

Special case of IRWLS: set weight = 0 if outlier,
1 otherwise

Detecting outliers: (y—f(x.))> > threshold

— One choice: multiple of mean squared difference

— Better choice: multiple of median squared difference
— Can iterate...

— As before, not guaranteed to do anything reasonable,
tends to work OK if only a few outliers



RANSAC

RANdom SAmple Consensus: desgined for
bad data (in best case, up to 50% outliers)

Take many random subsets of data
— Compute least squares fit for each sample

— See how many points agree: (y.—f(x,))?> < threshold

— Threshold user-specified or estimated from more trials

At end, use fit that agreed with most points

— Can do one final least squares with all inliers
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