Data Modeling and
 Least Squares Fitting

COS 323

Data Modeling

- Given: data points, functional form, find constants in function
- Example: given $\left(x_{i}, y_{i}\right)$, find line through them; i.e., find a and b in $y=a x+b$

Data Modeling

- You might do this because you actually care about those numbers...
- Example: measure position of falling object, fit parabola

$p=-1 / 2 g t^{2}$
\Rightarrow Estimate g from fit

Data Modeling

... or because some aspect of behavior is unknown and you want to ignore it

- Example: measuring relative resonant frequency of two ions, want to ignore magnetic field drift

Least Squares

- Nearly universal formulation of fitting: minimize squares of differences between data and function
- Example: for fitting a line, minimize

$$
x^{2}=\sum_{i}\left(y_{i}-\left(a x_{i}+b\right)\right)^{2}
$$

with respect to a and b

- Most general solution technique: take derivatives w.r.t. unknown variables, set equal to zero

Least Squares

- Computational approaches:
- General numerical algorithms for function minimization
- Take partial derivatives; general numerical algorithms for root finding
- Specialized numerical algorithms that take advantage of form of function
- Important special case: linear least squares

Linear Least Squares

General pattern:

$$
\begin{aligned}
& y_{i}=a f\left(\vec{x}_{i}\right)+b g\left(\vec{x}_{i}\right)+c h\left(\vec{x}_{i}\right)+\cdots \\
& \text { Given }\left(\vec{x}_{i}, y_{i}\right) \text {, solve for } a, b, c, \ldots
\end{aligned}
$$

- Note that dependence on unknowns is linear, not necessarily function!

Solving Linear Least Squares Problem

- Take partial derivatives:

$$
\begin{gathered}
x^{2}=\sum_{i}\left(y_{i}-a f\left(x_{i}\right)-b g\left(x_{i}\right)-\cdots\right)^{2} \\
\frac{\partial}{\partial a}=\sum_{i}-2 f\left(x_{i}\right)\left(y_{i}-a f\left(x_{i}\right)-b g\left(x_{i}\right)-\cdots\right)=0 \\
a \sum_{i} f\left(x_{i}\right) f\left(x_{i}\right)+b \sum_{i} f\left(x_{i}\right) g\left(x_{i}\right)+\cdots=\sum_{i} f\left(x_{i}\right) y_{i} \\
\frac{\partial}{\partial b}=\sum_{i}-2 g\left(x_{i}\right)\left(y_{i}-a f\left(x_{i}\right)-b g\left(x_{i}\right)-\cdots\right)=0 \\
a \sum_{i} g\left(x_{i}\right) f\left(x_{i}\right)+b \sum_{i} g\left(x_{i}\right) g\left(x_{i}\right)+\cdots=\sum_{i} g\left(x_{i}\right) y_{i}
\end{gathered}
$$

Solving Linear Least Squares Problem

- For convenience, rewrite as matrix:

$$
\left[\begin{array}{lll}
\sum_{i} f\left(x_{i}\right) f\left(x_{i}\right) & \sum_{i} f\left(x_{i}\right) g\left(x_{i}\right) & \cdots \\
\sum_{i} g\left(x_{i}\right) f\left(x_{i}\right) & \sum_{i} g\left(x_{i}\right) g\left(x_{i}\right) & \vdots \\
\vdots &
\end{array}\right]\left[\begin{array}{c}
a \\
b \\
\vdots
\end{array}\right]=\left[\begin{array}{c}
\sum_{i} f\left(x_{i}\right) y_{i} \\
\sum_{i} g\left(x_{i}\right) y_{i} \\
\vdots
\end{array}\right]
$$

- Factor:

$$
\sum_{i}\left[\begin{array}{c}
f\left(x_{i}\right) \\
g\left(x_{i}\right) \\
\vdots
\end{array}\right]\left[\begin{array}{c}
f\left(x_{i}\right) \\
g\left(x_{i}\right) \\
\vdots
\end{array}\right]^{\mathrm{T}}\left[\begin{array}{c}
a \\
b \\
\vdots
\end{array}\right]=\sum_{i} y_{i}\left[\begin{array}{c}
f\left(x_{i}\right) \\
g\left(x_{i}\right) \\
\vdots
\end{array}\right]
$$

Linear Least Squares

- There's a different derivation of this: overconstrained linear system

$$
\mathbf{A} x=b
$$

$$
(x)(x)=(b)
$$

- A has n rows and $m<n$ columns: more equations than unknowns

Linear Least Squares

- Interpretation: find x that comes "closest" to satisfying $A x=b$
- i.e., minimize b-Ax
- i.e., minimize || b-Ax ||
- Equivalently, minimize || $b-A x \|^{2}$ or (b-Ax).(b-Ax)

$$
\begin{gathered}
\min (b-\mathbf{A} x)^{\mathrm{T}}(b-\mathbf{A} x) \\
\nabla\left((b-\mathbf{A} x)^{\mathrm{T}}(b-\mathbf{A} x)\right)=-2 \mathbf{A}^{\mathrm{T}}(b-\mathbf{A} x)=\overrightarrow{0} \\
\mathbf{A}^{\mathrm{T}} \mathbf{A} x=\mathbf{A}^{\mathrm{T}} b
\end{gathered}
$$

Linear Least Squares

- If fitting data to linear function:
- Rows of A are functions of x_{i}
- Entries in b are y_{i}
- Minimizing sum of squared differences!

$$
\begin{gathered}
\mathbf{A}=\left[\begin{array}{ccc}
f\left(x_{1}\right) & g\left(x_{1}\right) & \cdots \\
f\left(x_{2}\right) & g\left(x_{2}\right) & \cdots
\end{array}\right], \quad b=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots
\end{array}\right] \\
\mathbf{A}^{\mathrm{T}} \mathbf{A}=\left[\begin{array}{ccc}
\sum_{i} f\left(x_{i}\right) f\left(x_{i}\right) & \sum_{i} f\left(x_{i}\right) g\left(x_{i}\right) & \cdots \\
\sum_{i} g\left(x_{i}\right) f\left(x_{i}\right) & \sum_{i} g\left(x_{i}\right) g\left(x_{i}\right) & \cdots \\
\vdots
\end{array}\right], \quad \mathbf{A}^{\mathrm{T}} b=\left[\begin{array}{c}
\sum_{i} y_{i} f\left(x_{i}\right) \\
\sum_{i} y_{i} g\left(x_{i}\right) \\
\vdots
\end{array}\right]
\end{gathered}
$$

Linear Least Squares

- Compare two expressions we've derived - equal!

$$
\left[\begin{array}{ccc}
\sum_{i} f\left(x_{i}\right) f\left(x_{i}\right) & \sum_{i} f\left(x_{i}\right) g\left(x_{i}\right) & \cdots \\
\sum_{i} g\left(x_{i}\right) f\left(x_{i}\right) & \sum_{i}^{i} g\left(x_{i}\right) g\left(x_{i}\right) & \cdots
\end{array}\right]\left[\begin{array}{c}
a \\
b \\
\vdots
\end{array}\right]=\left[\begin{array}{c}
\sum_{i} y_{i} f\left(x_{i}\right) \\
\sum_{i} y_{i} g\left(x_{i}\right) \\
\vdots
\end{array}\right]
$$

$$
\sum_{i}\left[\begin{array}{c}
f\left(x_{i}\right) \\
g\left(x_{i}\right) \\
\vdots
\end{array}\right]\left[\begin{array}{c}
f\left(x_{i}\right) \\
g\left(x_{i}\right) \\
\vdots
\end{array}\right]^{\mathrm{T}}\left[\begin{array}{c}
a \\
b \\
\vdots
\end{array}\right]=\sum_{i} y_{i}\left[\begin{array}{c}
f\left(x_{i}\right) \\
g\left(x_{i}\right) \\
\vdots
\end{array}\right]
$$

Ways of Solving Linear Least Squares

- Option 1 :
for each x_{i}, y_{i}
compute $f\left(x_{\mathrm{i}}\right), \mathrm{g}\left(\mathrm{x}_{\mathrm{i}}\right)$, etc.
store in row i of A
store y_{i} in b
compute ($\left.\mathrm{A}^{\top} \mathrm{A}\right)^{-1} \mathrm{~A}^{\top} b$
- $\left(A^{\top} A\right)^{-1} A^{\top}$ is known as "pseudoinverse" of A

Ways of Solving Linear Least Squares

- Option 2:
for each x_{i}, y_{i}
compute $f\left(x_{i}\right), g\left(x_{i}\right)$, etc.
store in row i of A
store y_{i} in b
compute $A^{\top} A, A^{\top} b$
solve $A^{\top} A x=A^{\top} b$
These are known as the "normal equations" of the least squares problem

Ways of Solving Linear Least Squares

- These can be inefficient, since A typically much larger than $\mathrm{A}^{\top} \mathrm{A}$ and $\mathrm{A}^{\top} \mathrm{b}$
- Option 3: for each x_{i}, y_{i}
compute $f\left(x_{i}\right), g\left(x_{i}\right)$, etc. accumulate outer product in U accumulate product with y_{i} in v solve $U x=v$

Normal Equations

- Solving linear least squares via normal equations can be inaccurate
- Independent of solution method
$-\operatorname{cond}\left(\mathrm{A}^{\top} \mathrm{A}\right)=[\operatorname{cond}(\mathrm{A})]^{2}$
- Next week: SVD
- More expensive, but more accurate
- Also allows diagnosing insufficient data

Special Case: Constant

- Let's try to model a function of the form

$$
y=a
$$

- In this case, $f\left(x_{i}\right)=1$ and we are solving

$$
\begin{gathered}
\sum_{i}[1][a]=\sum_{i}\left[y_{i}\right] \\
\therefore \quad \sum_{i=\frac{1}{l} y_{i}}^{n}
\end{gathered}
$$

- Punchline: mean is least-squares estimator for best constant fit

Special Case: Line

- Fit to $y=a+b x$

$$
\begin{gathered}
\sum_{i}\left[\begin{array}{c}
1 \\
x_{i}
\end{array}\right]\left[\begin{array}{ll}
1 & \left.x_{i}\right]
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\sum_{i} y_{i}\left[\begin{array}{c}
1 \\
x_{i}
\end{array}\right] \\
\left(\mathbf{A}^{\mathrm{T}} \mathbf{A}\right)^{-1}=\left[\begin{array}{cc}
n & \Sigma x_{i} \\
\Sigma x_{i} & \Sigma x_{i}^{2}
\end{array}\right]^{-1}=\frac{\left[\begin{array}{cc}
\Sigma x_{i}^{2} & -\Sigma x_{i} \\
-\Sigma x_{i} & n
\end{array}\right]}{n \Sigma x_{i}^{2}-\left(\Sigma x_{i}\right)^{2}}, \quad \mathbf{A}^{\mathrm{T}} b=\left[\begin{array}{c}
\Sigma y_{i} \\
\Sigma x_{i} y_{i}
\end{array}\right] \\
a=\frac{\Sigma x_{i}^{2} \Sigma y_{i}-\Sigma x_{i} \Sigma x_{i} y_{i}}{n \Sigma x_{i}^{2}-\left(\Sigma x_{i}\right)^{2}}, \quad b=\frac{n \Sigma x_{i} y_{i}-\Sigma x_{i} \Sigma y_{i}}{n \Sigma x_{i}^{2}-\left(\Sigma x_{i}\right)^{2}}
\end{gathered}
$$

Weighted Least Squares

- Common case: the $\left(x_{i}, y_{i}\right)$ have different uncertainties associated with them
- Want to give more weight to measurements of which you are more certain
- Weighted least squares minimization

$$
\min \chi^{2}=\sum_{i} w_{i}\left(y_{i}-f\left(x_{i}\right)\right)^{2}
$$

- If uncertainty is σ, best to take $w_{i}=1 / \sigma_{i}^{2}$

Weighted Least Squares

Define weight matrix W as
$\mathbf{W}=\left(\begin{array}{ccccc}w_{1} & & & & 0 \\ & w_{2} & & & \\ & & w_{3} & & \\ & & & w_{4} & \\ 0 & & & & \ddots\end{array}\right)$

Then solve weighted least squares via

$$
\mathbf{A}^{\mathrm{T}} \mathbf{W} \mathbf{A} x=\mathbf{A}^{\mathrm{T}} \mathbf{W} b
$$

Error Estimates from Linear Least Squares

- For many applications, finding values is useless without estimate of their accuracy
- Residual is b-Ax
- Can compute $\chi^{2}=(b-A x) \cdot(b-A x)$
- How do we tell whether answer is good?
- Lots of measurements
- x^{2} is small
- χ^{2} increases quickly with perturbations to x

Error Estimates from Linear Least Squares

- Let's look at increase in χ^{2} :

$$
\begin{aligned}
& x \rightarrow x+\delta x \\
& (b-\mathbf{A}(x+\delta x))^{\mathrm{T}}(b-\mathbf{A}(x+\delta x)) \\
& \left.=((b-\mathbf{A} x)-\mathbf{A} \delta x))^{\mathrm{T}}((b-\mathbf{A} x)-\mathbf{A} \delta x)\right) \\
& =(b-\mathbf{A x})^{\mathrm{T}}(b-\mathbf{A x})-2 \delta \mathbf{x}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}}(b-\mathbf{A x})+\delta \mathrm{X}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}} \mathbf{A} \delta x \\
& =\chi^{2}-2 \delta \mathbf{x}^{\mathrm{T}}\left(\mathbf{A}^{\mathrm{T}} b-\mathbf{A}^{\mathrm{T}} \mathbf{A x}\right)+\delta \mathrm{x}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}} \mathbf{A} \delta x \\
& \text { So, } \chi^{2} \rightarrow \chi^{2}+\delta \mathbf{x}^{\mathrm{T}} \mathrm{~A}^{\mathrm{T}} \mathrm{~A} \delta \boldsymbol{x}
\end{aligned}
$$

- So, the bigger $\mathrm{A}^{\top} \mathrm{A}$ is, the faster error increases as we move away from current x

Error Estimates from Linear Least Squares

- $\mathrm{C}=\left(\mathrm{A}^{\top} \mathrm{A}\right)^{-1}$ is called covariance of the data
- The "standard variance" in our estimate of x is

$$
\sigma^{2}=\frac{\chi^{2}}{n-m} \mathbf{C}
$$

- This is a matrix:
- Diagonal entries give variance of estimates of components of x
- Off-diagonal entries explain mutual dependence
- $n-m$ is (\# of samples) minus (\# of degrees of freedom in the fit): consult a statistician...

Special Case: Constant

$$
\begin{array}{cc}
y=a & \chi^{2}=\sum_{i}\left(y_{i}-a\right)^{2} \\
\sum_{i}[1][a]=\sum_{i}\left[y_{i}\right] & \sigma^{2}=\frac{\sum_{i}\left(y_{i}-a\right)^{2}}{n-1}\left[\frac{1}{n}\right] \\
\therefore a=\frac{\sum_{i} y_{i}}{n} & \sigma_{a}=\sqrt{\frac{\sum_{i}\left(y_{i}-a\right)^{2}}{n-1}} / \sqrt{n} \\
& \underbrace{}_{\begin{array}{c}
\text { "standard deviation } \\
\text { stand deviation } \\
\text { of samples" }
\end{array}}
\end{array}
$$

Things to Keep in Mind

- In general, uncertainty in estimated parameters goes down slowly: like $1 /$ sqrt(\# samples)
- Formulas for special cases (like fitting a line) are messy: simpler to think of $A^{\top} A x=A^{\top} b$ form
- All of these minimize "vertical" squared distance
- Square not always appropriate
- Vertical distance not always appropriate

