Data Modeling and Least Squares Fitting

COS 323

Data Modeling

- Given: data points, functional form, find constants in function
- Example: given (x_i, y_i), find line through them;
 i.e., find a and b in y = ax+b

Data Modeling

- You might do this because you actually care about those numbers...
 - Example: measure position of falling object, fit parabola

$$p = -\frac{1}{2} gt^2$$

 \Rightarrow Estimate g from fit

Data Modeling

- ... or because some aspect of behavior is unknown and you want to ignore it
 - Example: measuring relative resonant frequency of two ions, want to ignore magnetic field drift

- Nearly universal formulation of fitting: minimize squares of differences between data and function
 - Example: for fitting a line, minimize

$$\chi^2 = \sum_i \left(y_i - (ax_i + b) \right)^2$$

with respect to a and b

Most general solution technique: take derivatives
 w.r.t. unknown variables, set equal to zero

- Computational approaches:
 - General numerical algorithms for function minimization
 - Take partial derivatives; general numerical algorithms for root finding
 - Specialized numerical algorithms that take advantage of form of function
 - Important special case: linear least squares

• General pattern:

 $y_i = a f(\vec{x}_i) + b g(\vec{x}_i) + c h(\vec{x}_i) + \cdots$ Given (\vec{x}_i, y_i) , solve for a, b, c, \ldots

 Note that dependence on unknowns is linear, not necessarily function!

Solving Linear Least Squares Problem

• Take partial derivatives:

$$\chi^{2} = \sum_{i} (y_{i} - a f(x_{i}) - b g(x_{i}) - \cdots)^{2}$$

$$\frac{\partial}{\partial a} = \sum_{i} -2f(x_i) \left(y_i - a f(x_i) - b g(x_i) - \cdots \right) = 0$$
$$a \sum_{i} f(x_i) f(x_i) + b \sum_{i} f(x_i) g(x_i) + \cdots = \sum_{i} f(x_i) y_i$$

 $\frac{\partial}{\partial b} = \sum_{i} -2g(x_i) \left(y_i - a f(x_i) - b g(x_i) - \cdots \right) = 0$ $a \sum_{i} g(x_i) f(x_i) + b \sum_{i} g(x_i) g(x_i) + \cdots = \sum_{i} g(x_i) y_i$

Solving Linear Least Squares Problem

• For convenience, rewrite as matrix:

 $\begin{bmatrix} \sum_{i} f(x_{i})f(x_{i}) & \sum_{i} f(x_{i})g(x_{i}) & \cdots \\ \sum_{i} g(x_{i})f(x_{i}) & \sum_{i} g(x_{i})g(x_{i}) & \cdots \\ \vdots & \vdots & \end{bmatrix} \begin{bmatrix} a \\ b \\ \vdots \end{bmatrix} = \begin{bmatrix} \sum_{i} f(x_{i})y_{i} \\ \sum_{i} g(x_{i})y_{i} \\ \vdots \end{bmatrix}$

• Factor:

$$\sum_{i} \begin{bmatrix} f(x_{i}) \\ g(x_{i}) \\ \vdots \end{bmatrix} \begin{bmatrix} f(x_{i}) \\ g(x_{i}) \\ \vdots \end{bmatrix}^{\mathrm{T}} \begin{bmatrix} a \\ b \\ \vdots \end{bmatrix} = \sum_{i} y_{i} \begin{bmatrix} f(x_{i}) \\ g(x_{i}) \\ \vdots \end{bmatrix}$$

 There's a different derivation of this: overconstrained linear system

 A has n rows and m<n columns: more equations than unknowns

- Interpretation: find x that comes "closest" to satisfying Ax=b
 - i.e., minimize b–Ax
 - i.e., minimize || b–Ax ||
 - Equivalently, minimize || b-Ax ||² or (b-Ax)·(b-Ax) min $(b - \mathbf{A}x)^{\mathrm{T}}$ $(b - \mathbf{A}x)$ $\nabla ((b - \mathbf{A}x)^{\mathrm{T}} (b - \mathbf{A}x)) = -2\mathbf{A}^{\mathrm{T}} (b - \mathbf{A}x) = \vec{0}$ $\mathbf{A}^{\mathrm{T}} \mathbf{A}x = \mathbf{A}^{\mathrm{T}} b$

- If fitting data to linear function:
 - Rows of A are functions of x_i
 - Entries in b are y_i
 - Minimizing sum of squared differences!

$$\mathbf{A} = \begin{bmatrix} f(x_1) & g(x_1) & \cdots \\ f(x_2) & g(x_2) & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix}, \quad b = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \end{bmatrix}$$

$$\mathbf{A}^{\mathrm{T}}\mathbf{A} = \begin{bmatrix} \sum_{i}^{i} f(x_{i})f(x_{i}) & \sum_{i}^{i} f(x_{i})g(x_{i}) & \cdots \\ \sum_{i}^{i} g(x_{i})f(x_{i}) & \sum_{i}^{i} g(x_{i})g(x_{i}) & \cdots \\ \vdots & & \vdots \end{bmatrix}, \quad \mathbf{A}^{\mathrm{T}}b = \begin{bmatrix} \sum_{i}^{i} y_{i}f(x_{i}) \\ \sum_{i}^{i} y_{i}g(x_{i}) \\ \vdots \\ \vdots \end{bmatrix}$$

Compare two expressions we've derived – equal!

$$\begin{bmatrix} \sum_{i} f(x_{i}) f(x_{i}) & \sum_{i} f(x_{i}) g(x_{i}) & \cdots \\ \sum_{i} g(x_{i}) f(x_{i}) & \sum_{i} g(x_{i}) g(x_{i}) & \cdots \\ \vdots & & \end{bmatrix} \begin{bmatrix} a \\ b \\ \vdots \end{bmatrix} = \begin{bmatrix} \sum_{i} y_{i} f(x_{i}) \\ \sum_{i} y_{i} g(x_{i}) \\ \vdots \end{bmatrix}$$

$$\sum_{i} \begin{bmatrix} f(x_i) \\ g(x_i) \\ \vdots \end{bmatrix} \begin{bmatrix} f(x_i) \\ g(x_i) \\ \vdots \end{bmatrix}^{\mathrm{T}} \begin{bmatrix} a \\ b \\ \vdots \end{bmatrix} = \sum_{i} y_i \begin{bmatrix} f(x_i) \\ g(x_i) \\ \vdots \end{bmatrix}$$

Ways of Solving Linear Least Squares

Option 1: for each x_i,y_i compute f(x_i), g(x_i), etc. store in row i of A store y_i in b compute (A^TA)⁻¹ A^Tb
(A^TA)⁻¹ A^T is known as "pseudoinverse" of A

Ways of Solving Linear Least Squares

• Option 2: for each x_i, y_i compute $f(x_i)$, $g(x_i)$, etc. store in row i of A store y_i in b compute A^TA , A^Tb solve $A^TAx = A^Tb$

 These are known as the "normal equations" of the least squares problem

Ways of Solving Linear Least Squares

These can be inefficient, since A typically much larger than $A^T A$ and $A^T b$ • Option 3: for each x_i, y_i compute $f(x_i)$, $g(x_i)$, etc. accumulate outer product in U accumulate product with y_i in v solve Ux = v

Normal Equations

- Solving linear least squares via normal equations can be inaccurate
 - Independent of solution method
 - $-\operatorname{cond}(A^{\mathsf{T}}A) = [\operatorname{cond}(A)]^2$
- Next week: SVD
 - More expensive, but more accurate
 - Also allows diagnosing insufficient data

Special Case: Constant

- Let's try to model a function of the form y = a
 In this case, f(x_i)=1 and we are solving ∑_i[1] [a]=∑_i[y_i] ∴ a= ∑_iy_i
- Punchline: mean is least-squares estimator for best constant fit

Special Case: Line

• Fit to y=a+bx

$$\sum_{i} \begin{bmatrix} 1 \\ x_i \end{bmatrix} \begin{bmatrix} 1 & x_i \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \sum_{i} y_i \begin{bmatrix} 1 \\ x_i \end{bmatrix}$$

$$(\mathbf{A}^{\mathrm{T}}\mathbf{A})^{-1} = \begin{bmatrix} n & \Sigma x_i \\ \Sigma x_i & \Sigma x_i^2 \end{bmatrix}^{-1} = \frac{\begin{bmatrix} \Sigma x_i^2 & -\Sigma x_i \\ -\Sigma x_i & n \end{bmatrix}}{n\Sigma x_i^2 - (\Sigma x_i)^2}, \quad \mathbf{A}^{\mathrm{T}}b = \begin{bmatrix} \Sigma y_i \\ \Sigma x_i y_i \end{bmatrix}$$

$$a = \frac{\sum x_i^2 \sum y_i - \sum x_i \sum x_i y_i}{n \sum x_i^2 - (\sum x_i)^2}, \quad b = \frac{n \sum x_i y_i - \sum x_i \sum y_i}{n \sum x_i^2 - (\sum x_i)^2}$$

Weighted Least Squares

- Common case: the (x_i,y_i) have different uncertainties associated with them
- Want to give more weight to measurements of which you are more certain
- Weighted least squares minimization

 $\min \chi^2 = \sum_i w_i \left(y_i - f(x_i) \right)^2$

• If uncertainty is σ , best to take $w_i = \frac{1}{\sigma_i^2}$

Weighted Least Squares

Define weight matrix W as

• Then solve weighted least squares via $\mathbf{A}^{\mathsf{T}}\mathbf{W}\mathbf{A} x = \mathbf{A}^{\mathsf{T}}\mathbf{W}b$

Error Estimates from Linear Least Squares

- For many applications, finding values is useless without estimate of their accuracy
- Residual is b Ax
- Can compute $\chi^2 = (b Ax) \cdot (b Ax)$
- How do we tell whether answer is good?
 Lots of measurements
 - $-\chi^2$ is small
 - $-\chi^2$ increases quickly with perturbations to x

Error Estimates from Linear Least Squares

• Let's look at increase in χ^2 :

 $x \to x + \delta x$ $(b - \mathbf{A}(x + \delta x))^{\mathrm{T}} (b - \mathbf{A}(x + \delta x))$ $= ((b - \mathbf{A}x) - \mathbf{A}\delta x))^{\mathrm{T}} ((b - \mathbf{A}x) - \mathbf{A}\delta x))$ $= (b - \mathbf{A}x)^{\mathrm{T}} (b - \mathbf{A}x) - 2\delta x^{\mathrm{T}} \mathbf{A}^{\mathrm{T}} (b - \mathbf{A}x) + \delta x^{\mathrm{T}} \mathbf{A}^{\mathrm{T}} \mathbf{A} \delta x$ $= \chi^{2} - 2\delta x^{\mathrm{T}} (\mathbf{A}^{\mathrm{T}} b - \mathbf{A}^{\mathrm{T}} \mathbf{A}x) + \delta x^{\mathrm{T}} \mathbf{A}^{\mathrm{T}} \mathbf{A} \delta x$ $So, \chi^{2} \to \chi^{2} + \delta x^{\mathrm{T}} \mathbf{A}^{\mathrm{T}} \mathbf{A} \delta x$

 So, the bigger A^TA is, the faster error increases as we move away from current x

Error Estimates from Linear Least Squares

- $C = (A^T A)^{-1}$ is called *covariance* of the data
- The "standard variance" in our estimate of x is

$$\sigma^2 = \frac{\chi^2}{n-m} \mathbf{C}$$

- This is a matrix:
 - Diagonal entries give variance of estimates of components of x
 - Off-diagonal entries explain mutual dependence
- n-m is (# of samples) minus (# of degrees of freedom in the fit): consult a statistician...

Special Case: Constant

$$\sum_{i} [1] \quad [a] = \sum_{i} [y_{i}]$$
$$\therefore \quad a = \frac{\sum_{i} y_{i}}{n}$$

y = a

$$\chi^{2} = \sum_{i} (y_{i} - a)^{2}$$

$$\sigma^{2} = \frac{\sum_{i} (y_{i} - a)^{2}}{n - 1} \left[\frac{1}{n}\right]$$

$$\sigma_{a} = \sqrt{\frac{\sum_{i} (y_{i} - a)^{2}}{n - 1}} / \sqrt{n}$$
"standard deviation of mean"

"standard deviation of samples"

Things to Keep in Mind

- In general, uncertainty in estimated parameters goes down slowly: like 1/sqrt(# samples)
- Formulas for special cases (like fitting a line) are messy: simpler to think of A^TAx=A^Tb form
- All of these minimize "vertical" squared distance
 Square not always appropriate
 - Vertical distance not always appropriate