
Data Modeling and
Least Squares Fitting

COS 323



Data Modeling

• Given: data points, functional form,
find constants in function

• Example: given (xi, yi), find line through them;
i.e., find a and b in y = ax+b

(x1,y1)

(x2,y2)

(x3,y3)

(x4,y4)

(x5,y5)
(x6,y6)

(x7,y7)

y=ax+b



Data Modeling

• You might do this because you actually care 
about those numbers…
– Example: measure position of falling object,

fit parabola

p = –1/2 gt2

po
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time

⇒ Estimate g from fit



Data Modeling

• … or because some aspect of behavior is 
unknown and you want to ignore it
– Example: measuring

relative resonant
frequency of two ions,
want to ignore
magnetic field drift



Least Squares

• Nearly universal formulation of fitting:
minimize squares of differences between
data and function
– Example: for fitting a line, minimize

with respect to a and b

– Most general solution technique: take derivatives 
w.r.t. unknown variables, set equal to zero
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Least Squares

• Computational approaches:
– General numerical algorithms for function minimization

– Take partial derivatives; general numerical algorithms 
for root finding

– Specialized numerical algorithms that take advantage of 
form of function

– Important special case: linear least squares



Linear Least Squares

• General pattern:

• Note that dependence on unknowns is linear,
not necessarily function!
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Solving Linear Least Squares Problem

• Take partial derivatives:
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Solving Linear Least Squares Problem

• For convenience, rewrite as matrix:

• Factor:
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Linear Least Squares

• There’s a different derivation of this:
overconstrained linear system

• A has n rows and m<n columns:
more equations than unknowns
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Linear Least Squares

• Interpretation: find x that comes “closest” to 
satisfying Ax=b
– i.e., minimize b–Ax

– i.e., minimize || b–Ax ||

– Equivalently, minimize || b–Ax ||2 or (b–Ax)⋅(b–Ax)
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Linear Least Squares

• If fitting data to linear function:
– Rows of A are functions of xi

– Entries in b are yi

– Minimizing sum of squared differences!
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Linear Least Squares

• Compare two expressions we’ve derived – equal!
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Ways of Solving Linear Least Squares

• Option 1:
for each xi,yi

compute f(xi), g(xi), etc. 
store in row i of A
store yi in b

compute (ATA)-1 ATb

• (ATA)-1 AT is known as “pseudoinverse” of A



Ways of Solving Linear Least Squares

• Option 2:
for each xi,yi

compute f(xi), g(xi), etc.
store in row i of A
store yi in b

compute ATA, ATb
solve ATAx=ATb

• These are known as the “normal equations” of 
the least squares problem



Ways of Solving Linear Least Squares

• These can be inefficient, since A typically much 
larger than ATA and ATb

• Option 3:
for each xi,yi

compute f(xi), g(xi), etc.
accumulate outer product in U
accumulate product with yi in v

solve Ux=v



Normal Equations

• Solving linear least squares via normal equations 
can be inaccurate
– Independent of solution method

– cond(ATA) = [cond(A)]2

• Next week: SVD
– More expensive, but more accurate

– Also allows diagnosing insufficient data



Special Case: Constant

• Let’s try to model a function of the form
y = a

• In this case, f(xi)=1 and we are solving

• Punchline: mean is least-squares estimator for 
best constant fit
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Special Case: Line

• Fit to y=a+bx
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Weighted Least Squares

• Common case: the (xi,yi) have different 
uncertainties associated with them

• Want to give more weight to measurements
of which you are more certain

• Weighted least squares minimization

• If uncertainty is σ, best to take
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Weighted Least Squares

• Define weight matrix W as

• Then solve weighted least squares via
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Error Estimates from Linear Least Squares

• For many applications, finding values is useless 
without estimate of their accuracy

• Residual is b – Ax

• Can compute χ2 = (b – Ax)⋅(b – Ax)

• How do we tell whether answer is good?
– Lots of measurements

– χ2 is small

– χ2 increases quickly with perturbations to x



Error Estimates from Linear Least Squares

• Let’s look at increase in χ2:

• So, the bigger ATA is, the faster error increases
as we move away from current x
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Error Estimates from Linear Least Squares

• C=(ATA)–1 is called covariance of the data

• The “standard variance” in our estimate of x is

• This is a matrix:
– Diagonal entries give variance of estimates of 

components of x
– Off-diagonal entries explain mutual dependence

• n–m is (# of samples) minus (# of degrees of 
freedom in the fit): consult a statistician…
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Special Case: Constant
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Things to Keep in Mind

• In general, uncertainty in estimated parameters
goes down slowly: like 1/sqrt(# samples)

• Formulas for special cases (like fitting a line) are 
messy: simpler to think of ATAx=ATb form

• All of these minimize “vertical” squared distance
– Square not always appropriate

– Vertical distance not always appropriate
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