Solving Linear Systems: Iterative Methods and Sparse Systems

COS 323

Direct vs. Iterative Methods

- So far, have looked at direct methods for solving linear systems Predictable number of steps – No answer until the very end • Alternative: *iterative methods* - Start with approximate answer Each iteration improves accuracy
 - Stop once estimated error below tolerance

Benefits of Iterative Algorithms

- Some iterative algorithms designed for accuracy:
 - Direct methods subject to roundoff error
 - Iterate to reduce error to $O(\varepsilon)$
- Some algorithms produce answer faster
 - Most important class: sparse matrix solvers
 - Speed depends on # of nonzero elements, not total # of elements
- Today: iterative improvement of accuracy, solving sparse systems (not necessarily iteratively)

Iterative Improvement

- Suppose you've solved (or think you've solved) some system Ax=b
- Can check answer by computing residual:
 r = b Ax_{computed}
- If r is small (compared to b), x is accurate
- What if it's not?

Iterative Improvement

Large residual caused by error in x: e = x_{correct} - x_{computed}
If we knew the error, could try to improve x: x_{correct} = x_{computed} + e
Solve for error:

$$Ax_{computed} = A(x_{correct} - e) = b - r$$
$$Ax_{correct} - Ae = b - r$$
$$Ae = r$$

Iterative Improvement

- So, compute residual, solve for e, and apply correction to estimate of x
- If original system solved using LU, this is relatively fast (relative to O(n³), that is):
 - O(n²) matrix/vector multiplication + O(n) vector subtraction to solve for r
 - $O(n^2)$ forward/backsubstitution to solve for e
 - O(n) vector addition to correct estimate of x

- Many applications require solution of large linear systems (n = thousands to millions)
 Local constraints or interactions: most entries are 0
 - Wasteful to store all n² entries
 - Difficult or impossible to use $O(n^3)$ algorithms
- Goal: solve system with:
 - Storage proportional to # of *nonzero* elements
 - Running time $<< n^3$

Special Case: Band Diagonal

Last time: tridiagonal (or band diagonal) systems

 Storage O(n): only relevant diagonals
 Time O(n): Gauss-Jordan with bookkeeping

Cyclic Tridiagonal

Interesting extension: cyclic tridiagonal

	a_{11}	<i>a</i> ₁₂				a_{16}	
	<i>a</i> ₂₁	<i>a</i> ₂₂	<i>a</i> ₂₃				
G. T. S. W. W. W.		<i>a</i> ₃₂	<i>a</i> ₃₃	<i>a</i> ₃₄			x = b
			<i>a</i> ₄₃	a_{44}	a_{45}		
				a_{54}	<i>a</i> ₅₅	a_{56}	
	$_{a_{61}}$				<i>a</i> ₆₅	a ₆₆ _	

 Could derive yet another special case algorithm, but there's a better way

Updating Inverse

- Suppose we have some fast way of finding A⁻¹ for some matrix A
- Now A changes in a special way: $A^* = A + uv^{T}$

for some n×1 vectors u and v

Goal: find a fast way of computing (A*)⁻¹
 – Eventually, a fast way of solving (A*) x = b

Analogue for Scalars

Q: Knowing
$$\frac{1}{\alpha}$$
, how to compute $\frac{1}{\alpha + \beta}$?

$$A: \quad \frac{1}{\alpha+\beta} = \frac{1}{\alpha} \left(1 - \frac{\beta_{\alpha}}{1+\beta_{\alpha}} \right)$$

Sherman-Morrison Formula

$$\mathbf{A}^* = \mathbf{A} + uv^{\mathrm{T}} = \mathbf{A}(\mathbf{I} + \mathbf{A}^{-1}uv^{\mathrm{T}})$$
$$\left(\mathbf{A}^*\right)^{-1} = (\mathbf{I} + \mathbf{A}^{-1}uv^{\mathrm{T}})^{-1} \mathbf{A}^{-1}$$

Let $\mathbf{x} = \mathbf{A}^{-1} u v^{\mathrm{T}}$ Note that $\mathbf{x}^{2} = \mathbf{A}^{-1} u v^{\mathrm{T}} \mathbf{A}^{-1} u v^{\mathrm{T}}$ Scalar! Call it λ

 $\mathbf{x}^{2} = \mathbf{A}^{-1} u \lambda v^{\mathrm{T}} = \lambda \mathbf{A}^{-1} u v^{\mathrm{T}} = \lambda \mathbf{x}$

Sherman-Morrison Formula

$$\mathbf{x}^{2} = \lambda \mathbf{x}$$
$$\mathbf{x} (\mathbf{I} + \mathbf{x}) = \mathbf{x} (1 + \lambda)$$
$$-\mathbf{x} + \frac{\mathbf{x}}{1 + \lambda} (\mathbf{I} + \mathbf{x}) = 0$$
$$\mathbf{I} + \mathbf{x} - \frac{\mathbf{x}}{1 + \lambda} (\mathbf{I} + \mathbf{x}) = \mathbf{I}$$
$$\left(\mathbf{I} - \frac{\mathbf{x}}{1 + \lambda}\right) (\mathbf{I} + \mathbf{x}) = \mathbf{I}$$
$$\therefore \left(\mathbf{I} - \frac{\mathbf{x}}{1 + \lambda}\right) (\mathbf{I} + \mathbf{x}) = \mathbf{I}$$
$$\therefore \left(\mathbf{I} - \frac{\mathbf{x}}{1 + \lambda}\right) = (\mathbf{I} + \mathbf{x})^{-1}$$
$$\therefore \left(\mathbf{A}^{*}\right)^{-1} = \mathbf{A}^{-1} - \frac{\mathbf{A}^{-1} \mathbf{u} \mathbf{v}^{\mathrm{T}} \mathbf{A}}{1 + \mathbf{v}^{\mathrm{T}} \mathbf{A}^{-1}}$$

-1

U

Sherman-Morrison Formula

$$x = (\mathbf{A}^*)^{-1}b = \mathbf{A}^{-1}b - \frac{\mathbf{A}^{-1}u \ v^{\mathrm{T}} \ \mathbf{A}^{-1}b}{1 + v^{\mathrm{T}} \ \mathbf{A}^{-1}u}$$

So, to solve $(\mathbf{A}^*)x = b$,
solve $\mathbf{A}y = b$, $\mathbf{A}z = u$, $x = y - \frac{z \ v^{\mathrm{T}}y}{1 + v^{\mathrm{T}}z}$

Applying Sherman-Morrison

 Let's consider cyclic tridiagonal again:

$\begin{bmatrix} a_{11} \end{bmatrix}$	<i>a</i> ₁₂				a_{16}^{-}	
<i>a</i> ₂₁	<i>a</i> ₂₂	a_{23}				
	<i>a</i> ₃₂	<i>a</i> ₃₃	<i>a</i> ₃₄			x = b
		<i>a</i> ₄₃	$a_{_{44}}$	a_{45}		x = 0
			<i>a</i> ₅₄	a_{55}	a_{56}	
a_{61}				a ₆₅	a_{66} _	

Applying Sherman-Morrison

- Solve Ay=b, Az=u using special fast algorithm
- Applying Sherman-Morrison takes a couple of dot products
- Total: O(n) time
- Generalization for several corrections: Woodbury

 $\mathbf{A}^* = \mathbf{A} + \mathbf{U}\mathbf{V}^{\mathrm{T}}$ $\left(\mathbf{A}^*\right)^{-1} = \mathbf{A}^{-1} - \mathbf{A}^{-1}\mathbf{U}\left(\mathbf{I} + \mathbf{V}^{\mathrm{T}}\mathbf{A}^{-1}\mathbf{U}\right)^{-1} \mathbf{V}^{\mathrm{T}}\mathbf{A}^{-1}$

More General Sparse Matrices

More generally, we can represent sparse matrices by noting which elements are nonzero
Critical for Ax and A^Tx to be efficient: proportional to # of nonzero elements

We'll see an algorithm for solving Ax=b using only these two operations!

Compressed Sparse Row Format

Three arrays

- Values: actual numbers in the matrix
- Cols: column of corresponding entry in values
- Rows: index of first entry in each row
- Example: (zero-based! C/C++/Java, not Matlab!)

$$\begin{bmatrix} 0 & 3 & 2 & 3 \\ 2 & 0 & 0 & 5 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 2 & 3 \end{bmatrix}$$

values32325123cols12303123rows035585

Compressed Sparse Row Format

	values	S	2	S	2	5	1	2	3
2 0 0 5	values								
2 0 0 5 0 0 0 0	cols		2	3	0	3		2	3
	rows	0	3	5	5	8			

• Multiplying Ax:

}

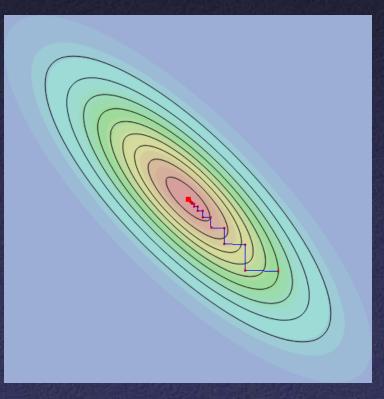
for (i = 0; i < n; i++) {
 out[i] = 0;
 for (j = rows[i]; j < rows[i+1]; j++)
 out[i] += values[j] * x[cols[j]];</pre>

Transform problem to a function minimization!

Solve Ax = b \Rightarrow Minimize $f(x) = x^TAx - 2b^Tx$

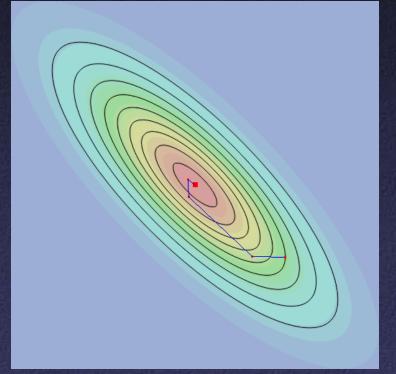
• To motivate this, consider 1D: $f(x) = ax^{2} - 2bx$ $\frac{df}{dx} = 2ax - 2b = 0$ ax = b

- Preferred method: conjugate gradients
- Recall: plain gradient descent has a problem...



• ... that's solved by conjugate gradients

 Walk along direction $d_{k+1} = -g_{k+1} + \beta_k d_k$ Polak and Ribiere formula: $\beta_k = \frac{g_{k+1}^{\mathrm{T}}(g_{k+1} - g_k)}{g_k^{\mathrm{T}}g_k}$



- Easiest to think about A = symmetric
- First ingredient: need to evaluate gradient

 $f(x) = x^{\mathrm{T}} \mathbf{A} x - 2b^{\mathrm{T}} x$ $\nabla f(x) = 2(\mathbf{A} x - b)$

 As advertised, this only involves A multiplied by a vector

 Second ingredient: given point x_i, direction d_i, minimize function in that direction

> Define $m_i(t) = f(x_i + t d_i)$ Minimize $m_i(t)$: $\frac{d}{dt}m_i(t) = 0$

$$\frac{dm_i(t)}{dt} = 2d_i^{\mathrm{T}} (\mathbf{A}x_i - b) + 2t d_i^{\mathrm{T}} \mathbf{A} d_i = 0$$
$$t_{\min} = -\frac{d_i^{\mathrm{T}} (\mathbf{A}x_i - b)}{d_i^{\mathrm{T}} \mathbf{A} d_i}$$
$$x_{i+1} = x_i + t_{\min} d_i$$

- Just a few sparse matrix-vector multiplies (plus some dot products, etc.) per iteration
- For m nonzero entries, each iteration O(max(m,n))
- Conjugate gradients may need n iterations for "perfect" convergence, but often get decent answer well before then
- For non-symmetric matrices: biconjugate gradient (maintains 2 residuals, requires A^Tx multiplication)