Solving Linear Systems:
 Iterative Methods and Sparse Systems

COS 323

Direct vs. Iterative Methods

- So far, have looked at direct methods for solving linear systems
- Predictable number of steps
- No answer until the very end
- Alternative: iterative methods
- Start with approximate answer
- Each iteration improves accuracy
- Stop once estimated error below tolerance

Benefits of Iterative Algorithms

- Some iterative algorithms designed for accuracy:
- Direct methods subject to roundoff error
- Iterate to reduce error to $\mathrm{O}(\varepsilon)$
- Some algorithms produce answer faster
- Most important class: sparse matrix solvers
- Speed depends on \# of nonzero elements, not total \# of elements
- Today: iterative improvement of accuracy, solving sparse systems (not necessarily iteratively)

Iterative Improvement

- Suppose you've solved (or think you've solved) some system $A x=b$
- Can check answer by computing residual:

$$
r=b-A x_{\text {computed }}
$$

- If r is small (compared to b), x is accurate
- What if it's not?

Iterative Improvement

- Large residual caused by error in x :

$$
\mathrm{e}=\mathrm{x}_{\text {correct }}-\mathrm{x}_{\text {computed }}
$$

- If we knew the error, could try to improve x :

$$
\mathrm{x}_{\text {correct }}=\mathrm{x}_{\text {computed }}+\mathrm{e}
$$

- Solve for error:

$$
\begin{gathered}
\mathrm{Ax}_{\text {computed }}=\mathrm{A}\left(\mathrm{x}_{\text {correct }}-\mathrm{e}\right)=\mathrm{b}-\mathrm{r} \\
\mathrm{Ax} \mathrm{x}_{\text {correct }}-\mathrm{Ae}=\mathrm{B}-\mathrm{r} \\
\mathrm{Ae}=\mathrm{r}
\end{gathered}
$$

Iterative Improvement

- So, compute residual, solve for e, and apply correction to estimate of x
- If original system solved using LU, this is relatively fast (relative to $\mathrm{O}\left(n^{3}\right)$, that is):
- $O\left(n^{2}\right)$ matrix/vector multiplication + $O(n)$ vector subtraction to solve for r
- O(n^{2}) forward/backsubstitution to solve for e
$-O(n)$ vector addition to correct estimate of x

Sparse Systems

- Many applications require solution of large linear systems ($\mathrm{n}=$ thousands to millions)
- Local constraints or interactions: most entries are 0
- Wasteful to store all n^{2} entries
- Difficult or impossible to use $\mathrm{O}\left(\mathrm{n}^{3}\right)$ algorithms

Goal: solve system with:

- Storage proportional to \# of nonzero elements
- Running time $\ll \mathrm{n}^{3}$

Special Case: Band Diagonal

- Last time: tridiagonal (or band diagonal) systems
- Storage O(n): only relevant diagonals
- Time $O(n)$: Gauss-Jordan with bookkeeping

Cyclic Tridiagonal

- Interesting extension: cyclic tridiagonal

$$
\left[\begin{array}{llllll}
a_{11} & a_{12} & & & & a_{16} \\
a_{21} & a_{22} & a_{23} & & & \\
& a_{32} & a_{33} & a_{34} & & \\
& & a_{43} & a_{44} & a_{45} & \\
& & & a_{54} & a_{55} & a_{56} \\
& & & & a_{65} & a_{66}
\end{array}\right] x=b
$$

Could derive yet another special case algorithm, but there's a better way

Updating Inverse

- Suppose we have some fast way of finding A^{-1} for some matrix A
- Now A changes in a special way:

$$
\mathrm{A}^{*}=\mathrm{A}+u \mathrm{~V}^{\top}
$$

for some $n \times 1$ vectors u and v

- Goal: find a fast way of computing $\left(\mathrm{A}^{*}\right)^{-1}$
- Eventually, a fast way of solving $\left(A^{*}\right) x=b$

Analogue for Scalars

$$
Q: \text { Knowing } \frac{1}{\alpha}, \text { how to compute } \frac{1}{\alpha+\beta} ?
$$

$$
A: \frac{1}{\alpha+\beta}=\frac{1}{\alpha}\left(1-\frac{\beta / \alpha}{1+\beta / \alpha}\right)
$$

Sherman-Morrison Formula

$\mathbf{A}^{*}=\mathbf{A}+u v^{\mathrm{T}}=\mathbf{A}\left(\mathbf{I}+\mathbf{A}^{-1} u v^{\mathrm{T}}\right)$
$\left(\mathbf{A}^{*}\right)^{-1}=\left(\mathbf{I}+\mathbf{A}^{-1} u v^{\mathrm{T}}\right)^{-1} \mathbf{A}^{-1}$

Let $\mathbf{x}=\mathbf{A}^{-1} u v^{\mathrm{T}}$
Note that $\mathbf{x}^{2}=\mathbf{A}^{-1} u v^{T} \mathbf{A}^{-1} u v^{T}$
Scalar! Call it λ
$x^{2}=A^{-1} u \lambda v^{T}=\lambda \mathbf{A}^{-1} u v^{T}=\lambda \mathbf{x}$

Sherman-Morrison Formula

$$
\begin{aligned}
& \mathbf{x}^{2}=\lambda \mathbf{x} \\
& \mathbf{x}(\mathbf{I}+\mathbf{x})=\mathbf{x}(1+\lambda) \\
& -\mathbf{x}+\frac{\mathbf{x}}{1+\lambda}(\mathbf{I}+\mathbf{x})=\mathbf{0} \\
& \mathbf{I}+\mathbf{x}-\frac{\mathbf{x}}{1+\lambda}(\mathbf{I}+\mathbf{x})=\mathbf{I} \\
& \left(\mathbf{I}-\frac{\mathbf{x}}{1+\lambda}\right)(\mathbf{I}+\mathbf{x})=\mathbf{I} \\
& \therefore\left(\mathbf{I}-\frac{\mathbf{x}}{1+\lambda}\right)=(\mathbf{I}+\mathbf{x})^{-1} \\
& \therefore\left(\mathbf{A}^{*}\right)^{-1}=\mathbf{A}^{-1}-\frac{\mathbf{A}^{-1} u v^{T} \mathbf{A}^{-1}}{1+v^{T} \mathbf{A}^{-1} u}
\end{aligned}
$$

Sherman-Morrison Formula

$$
x=\left(\mathbf{A}^{*}\right)^{-1} b=\mathbf{A}^{-1} b-\frac{\mathbf{A}^{-1} u v^{\mathrm{T}} \mathbf{A}^{-1} b}{1+v^{\mathrm{T}} \mathbf{A}^{-1} u}
$$

So, to solve $\left(\mathbf{A}^{*}\right) x=b$,
solve $\mathbf{A} y=b, \quad \mathbf{A} z=u, \quad x=y-\frac{z v^{T} y}{1+v^{T} z}$

Applying Sherman-Morrison

Let's consider cyclic tridiagonal again:

$$
\left[\begin{array}{cccccc}
a_{11} & a_{12} & & & & a_{16} \\
a_{21} & a_{22} & a_{23} & & & \\
& a_{32} & a_{33} & a_{34} & & \\
& & a_{43} & a_{44} & a_{45} & \\
& & & a_{54} & a_{55} & a_{56} \\
a_{61} & & & & a_{65} & a_{66}
\end{array}\right] x=b
$$

$$
\text { Take } \mathbf{A}=\left[\begin{array}{cccccc}
a_{11}-1 & a_{12} & & & & \\
a_{21} & a_{22} & a_{23} & & & \\
& a_{32} & a_{33} & a_{34} & & \\
& & a_{43} & a_{44} & a_{45} & \\
& & & a_{54} & a_{55} & a_{56} \\
& & & & a_{65} & a_{66}-a_{61} a_{16}
\end{array}\right], u=\left[\begin{array}{c}
1 \\
\\
\\
\end{array}\right.
$$

Applying Sherman-Morrison

- Solve $A y=b, A z=u$ using special fast algorithm
- Applying Sherman-Morrison takes a couple of dot products
- Total: O(n) time
- Generalization for several corrections: Woodbury

$$
\begin{gathered}
\mathbf{A}^{*}=\mathbf{A}+\mathbf{U V}^{\mathrm{T}} \\
\left(\mathbf{A}^{*}\right)^{-1}=\mathbf{A}^{-1}-\mathbf{A}^{-1} \mathbf{U}\left(\mathbf{I}+\mathbf{V}^{\mathrm{T}} \mathbf{A}^{-1} \mathbf{U}\right)^{-1} \mathbf{V}^{\mathrm{T}} \mathbf{A}^{-1}
\end{gathered}
$$

More General Sparse Matrices

- More generally, we can represent sparse matrices by noting which elements are nonzero
- Critical for $A x$ and $A^{\top} x$ to be efficient: proportional to \# of nonzero elements
- We'll see an algorithm for solving $\mathrm{Ax}=\mathrm{b}$ using only these two operations!

Compressed Sparse Row Format

- Three arrays
- Values: actual numbers in the matrix
- Cols: column of corresponding entry in values
- Rows: index of first entry in each row
- Example: (zero-based! C/C++/Java, not Matlab!)

$$
\left[\begin{array}{llll}
0 & 3 & 2 & 3 \\
2 & 0 & 0 & 5 \\
0 & 0 & 0 & 0 \\
0 & 1 & 2 & 3
\end{array}\right]
$$

values 32325123
cols 12303123
rows 03558

Compressed Sparse Row Format

$$
\left.\left[\begin{array}{llll}
0 & 3 & 2 & 3 \\
2 & 0 & 0 & 5 \\
0 & 0 & 0 & 0 \\
0 & 1 & 2 & 3
\end{array}\right] \quad \begin{array}{l}
\text { values } \\
\hline
\end{array}\right] 2 \begin{array}{lllllll}
& 3 & 2 & 5 & 1 & 2 & 3 \\
\text { cols } & 1 & 2 & 3 & 0 & 3 & 1
\end{array} 2 \begin{array}{llll}
\text { rows } & 0 & 3 & 5
\end{array} 5
$$

- Multiplying Ax:

$$
\text { for }(i=0 ; i<n ; i++)\{
$$

$$
\text { out }[i]=0 ;
$$

$$
\text { for }(j=\operatorname{rows}[i] ; j<\operatorname{rows}[i+1] ; j++)
$$

$$
\operatorname{out}[i]+=\operatorname{values}[j] * x[\operatorname{cols}[j]] ;
$$

\}

Solving Sparse Systems

- Transform problem to a function minimization!

> Solve $A x=b$
> \Rightarrow Minimize $f(x)=x^{\top} A x-2 b^{\top} x$

- To motivate this, consider 1D:

$$
\begin{gathered}
f(x)=a x^{2}-2 b x \\
d f / d x=2 a x-2 b=0 \\
a x=b
\end{gathered}
$$

Solving Sparse Systems

- Preferred method: conjugate gradients
- Recall: plain gradient descent has a problem...

Solving Sparse Systems

... that's solved by conjugate gradients

- Walk along direction

$$
d_{k+1}=-g_{k+1}+\beta_{k} d_{k}
$$

- Polak and Ribiere formula:

$$
\beta_{k}=\frac{g_{k+1}^{\mathrm{T}}\left(g_{k+1}-g_{k}\right)}{g_{k}^{\mathrm{T}} g_{k}}
$$

Solving Sparse Systems

- Easiest to think about A = symmetric
- First ingredient: need to evaluate gradient

$$
\begin{aligned}
& f(x)=x^{\mathrm{T}} \mathbf{A} x-2 b^{\mathrm{T}} x \\
& \nabla f(x)=2(A x-b)
\end{aligned}
$$

- As advertised, this only involves A multiplied by a vector

Solving Sparse Systems

- Second ingredient: given point x_{i}, direction d_{i} minimize function in that direction

Define $m_{i}(t)=f\left(x_{i}+t d_{i}\right)$
Minimize $m_{i}(t): \frac{d}{d t} m_{i}(t)=0$
$\frac{d m_{i}(t)}{d t}=2 d_{i}^{\mathrm{T}}\left(\mathbf{A} x_{i}-b\right)+2 t d_{i}^{\mathrm{T}} \mathbf{A} d_{i} \stackrel{\text { want }}{=} 0$
$t_{\min }=-\frac{d_{i}^{\mathrm{T}}\left(\mathbf{A} x_{i}-b\right)}{d_{i}^{\mathrm{T}} \mathbf{A} d_{i}}$
$x_{i+1}=x_{i}+t_{\min } d_{i}$

Solving Sparse Systems

- Just a few sparse matrix-vector multiplies (plus some dot products, etc.) per iteration
- For m nonzero entries, each iteration $O(\max (m, n))$
- Conjugate gradients may need n iterations for "perfect" convergence, but often get decent answer well before then
- For non-symmetric matrices: biconjugate gradient (maintains 2 residuals, requires $\mathrm{A}^{\top} \times$ multiplication)

