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Linear Systems

• Solve Ax=b, where A is an n×n matrix and
b is an n×1 column vector

• Can also talk about non-square systems where
A is m×n, b is m×1, and x is n×1
– Overdetermined if m>n:

“more equations than unknowns”

– Underdetermined if n>m:
“more unknowns than equations”
Can look for best solution using least squares



Singular Systems

• A is singular if some row is
linear combination of other rows

• Singular systems can be underdetermined:

or inconsistent:
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Inverting a Matrix

• Usually not a good idea to compute x=A-1b
– Inefficient

– Prone to roundoff error

• In fact, compute inverse using linear solver
– Solve Axi=bi where bi are columns of identity,

xi are columns of inverse

– Many solvers can solve several R.H.S. at once



Gauss-Jordan Elimination

• Fundamental operations:
1. Replace one equation with linear combination

of other equations
2. Interchange two equations
3. Re-label two variables

• Combine to reduce to trivial system

• Simplest variant only uses #1 operations,
but get better stability by adding
#2 (partial pivoting) or #2 and #3 (full pivoting)



Gauss-Jordan Elimination

• Solve:

• Only care about numbers – form “tableau” or 
“augmented matrix”:
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Gauss-Jordan Elimination

• Given:

• Goal: reduce this to trivial system

and read off answer from right column
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Gauss-Jordan Elimination

• Basic operation 1: replace any row by
linear combination with any other row

• Here, replace row1 with 1/2 * row1 + 0 * row2
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Gauss-Jordan Elimination

• Replace row2 with row2 – 4 * row1

• Negate row2
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Gauss-Jordan Elimination

• Replace row1 with row1 – 3/2 * row2

• Read off solution: x1 = 2,  x2 = 1
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Gauss-Jordan Elimination

• For each row i:
– Multiply row i by 1/aii

– For each other row j:
• Add –aji times row i to row j

• At the end, left part of matrix is identity,
answer in right part

• Can solve any number of R.H.S. simultaneously



Pivoting

• Consider this system:

• Immediately run into problem:
algorithm wants us to divide by zero!

• More subtle version:
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Pivoting

• Conclusion: small diagonal elements bad

• Remedy: swap in larger element from 
somewhere else



Partial Pivoting

• Swap rows 1 and 2:

• Now continue:
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Full Pivoting

• Swap largest element onto diagonal by 
swapping rows 1 and 2 and columns 1 and 2:

• Critical: when swapping columns, must 
remember to swap results!
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Full Pivoting

• Full pivoting more stable, but only slightly
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Operation Count

• For one R.H.S., how many operations?

• For each of n rows:
– Do n times:

• For each of n+1 columns:

– One add, one multiply

• Total = n3+n2 multiplies, same # of adds

• Asymptotic behavior: when n is large, 
dominated by n3



Faster Algorithms

• Our goal is an algorithm that does this in
1/3 n3 operations, and does not require
all R.H.S. to be known at beginning

• Before we see that, let’s look at a few
special cases that are even faster



Tridiagonal Systems

• Common special case:

• Only main diagonal + 1 above and 1 below
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Solving Tridiagonal Systems

• When solving using Gauss-Jordan:
– Constant # of multiplies/adds in each row

– Each row only affects 2 others
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Running Time

• 2n loops, 4 multiply/adds per loop
(assuming correct bookkeeping)

• This running time has a fundamentally different 
dependence on n: linear instead of cubic
– Can say that tridiagonal algorithm is O(n) while

Gauss-Jordan is O(n3)



Big-O Notation

• Informally, O(n3) means that the dominant term 
for large n is cubic

• More precisely, there exist a c and n0 such that 
running time ≤ c n3

if
n > n0

• This type of asymptotic analysis is often used
to characterize different algorithms



Triangular Systems

• Another special case: A is lower-triangular
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Triangular Systems

• Solve by forward substitution
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Triangular Systems

• Solve by forward substitution
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Triangular Systems

• Solve by forward substitution
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Triangular Systems

• If A is upper triangular, solve by backsubstitution
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Triangular Systems

• If A is upper triangular, solve by backsubstitution
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Triangular Systems

• Both of these special cases can be solved in
O(n2) time

• This motivates a factorization approach to 
solving arbitrary systems:
– Find a way of writing A as LU, where L and U are 

both triangular

– Ax=b    ⇒ LUx=b    ⇒ Ly=b    ⇒ Ux=y

– Time for factoring matrix dominates computation



Cholesky Decomposition

• For symmetric matrices, choose U=LT

• Perform decomposition

• Ax=b    ⇒ LLTx=b    ⇒ Ly=b    ⇒ LTx=y
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Cholesky Decomposition
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Cholesky Decomposition
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Cholesky Decomposition

• This fails if it requires taking square root of a 
negative number

• Need another condition on A: positive definite

For any v,  vT A v > 0

(Equivalently, all positive eigenvalues)



Cholesky Decomposition

• Running time turns out to be 1/6n3

– Still cubic, but much lower constant

• Result: this is preferred method for solving
symmetric positive definite systems



LU Decomposition

• Again, factor A into LU, where
L is lower triangular and U is upper triangular

• Last 2 steps in O(n2) time, so total time 
dominated by decomposition

Ax=b
LUx=b
Ly=b
Ux=y



Doolittle Factorization

• More unknowns than equations!

• Let all lii=1
(Could also take all uii=1 – Crout’s method)
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Doolittle Factorization
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Doolittle Factorization

• For i = 1..n
– For j = 1..i

– For j = i+1..n
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Doolittle Factorization

• Interesting note: # of outputs = # of inputs,
algorithm only refers to elements not output yet
– Can do this in-place!

– Algorithm replaces A with matrix
of l and u values, 1s are implied

– Resulting matrix must be interpreted in a special way: 
not a regular matrix

– Can rewrite forward/backsubstitution routines to use 
this “packed” l-u matrix
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LU Decomposition

• Running time is 1/3n3

– Only a factor of 2 slower than symmetric case

– This is the preferred general method for
solving linear equations

• Pivoting very important
– Partial pivoting is sufficient, and widely implemented

– LU with pivoting can succeed even if matrix is singular (!)
(but back/forward substitution fails…)



Running Time – Is O(n3) the Limit?

• How fast is matrix multiplication?

• 8 multiples, 4 adds, right?
(In general n3 multiplies and n2(n-1) adds…)
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Running Time – Is O(n3) the Limit?

• Strassen’s method [1969]
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Running Time – Is O(n3) the Limit?

• Strassen’s method [1969]

• Uses only 7 multiplies
(and a whole bunch of adds)

• Can be applied recursively!
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Running Time – Is O(n3) the Limit?

• Recursive application for 4 half-size submatrices
needs 7 half-size matrix multiplies

• Asymptotic running time is
– Only worth it for large n, because of big

constant factors (all those additions…)

– Still, practically useful for n > hundreds or thousands

• Current state of the art: Coppersmith-Winograd
algorithm achieves 
– Not used in practice

)()( 8.27log2 nOnO ≈

)( ...376.2nO



Running Time – Is O(n3) the Limit?

• Similar sub-cubic algorithms for inverse, 
determinant, LU, etc.
– Most “cubic” linear-algebra problems aren’t!

• Major open question: what is the limit?
– Hypothesis: O(n2) or O(n2 log n)
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