
Linear Systems

COS 323

Linear Systems

3333232131

2323222121

1313212111

bxaxaxa
bxaxaxa
bxaxaxa

=+++
=+++
=+++

=

3

2

1

3

2

1

333231

232221

131211

b

b

b

x

x

x

aaa

aaa

aaa

Linear Systems

• Solve Ax=b, where A is an n×n matrix and
b is an n×1 column vector

• Can also talk about non-square systems where
A is m×n, b is m×1, and x is n×1
– Overdetermined if m>n:

“more equations than unknowns”

– Underdetermined if n>m:
“more unknowns than equations”
Can look for best solution using least squares

Singular Systems

• A is singular if some row is
linear combination of other rows

• Singular systems can be underdetermined:

or inconsistent:
1064
532

21

21

=+
=+

xx
xx

1164
532

21

21

=+
=+

xx
xx

Inverting a Matrix

• Usually not a good idea to compute x=A-1b
– Inefficient

– Prone to roundoff error

• In fact, compute inverse using linear solver
– Solve Axi=bi where bi are columns of identity,

xi are columns of inverse

– Many solvers can solve several R.H.S. at once

Gauss-Jordan Elimination

• Fundamental operations:
1. Replace one equation with linear combination

of other equations
2. Interchange two equations
3. Re-label two variables

• Combine to reduce to trivial system

• Simplest variant only uses #1 operations,
but get better stability by adding
#2 (partial pivoting) or #2 and #3 (full pivoting)

Gauss-Jordan Elimination

• Solve:

• Only care about numbers – form “tableau” or
“augmented matrix”:

1354
732

21

21

=+
=+

xx
xx

13

7

54

32

Gauss-Jordan Elimination

• Given:

• Goal: reduce this to trivial system

and read off answer from right column

13

7

54

32

?

?

10

01

Gauss-Jordan Elimination

• Basic operation 1: replace any row by
linear combination with any other row

• Here, replace row1 with 1/2 * row1 + 0 * row2

13

7

54

32

1354

1 2
7

2
3

Gauss-Jordan Elimination

• Replace row2 with row2 – 4 * row1

• Negate row2

1354

1 2
7

2
3

−− 110

1 2
7

2
3

110

1 2
7

2
3

Gauss-Jordan Elimination

• Replace row1 with row1 – 3/2 * row2

• Read off solution: x1 = 2, x2 = 1

110

1 2
7

2
3

1

2

10

01

Gauss-Jordan Elimination

• For each row i:
– Multiply row i by 1/aii

– For each other row j:
• Add –aji times row i to row j

• At the end, left part of matrix is identity,
answer in right part

• Can solve any number of R.H.S. simultaneously

Pivoting

• Consider this system:

• Immediately run into problem:
algorithm wants us to divide by zero!

• More subtle version:

8

2

32

10

8

2

32

1001.0

Pivoting

• Conclusion: small diagonal elements bad

• Remedy: swap in larger element from
somewhere else

Partial Pivoting

• Swap rows 1 and 2:

• Now continue:

8

2

32

10

2

8

10

32

2

1

10

01

2

4

10

1 2
3

Full Pivoting

• Swap largest element onto diagonal by
swapping rows 1 and 2 and columns 1 and 2:

• Critical: when swapping columns, must
remember to swap results!

8

2

32

10

2

8

01

23

Full Pivoting

• Full pivoting more stable, but only slightly

2

8

01

23

−− 3
2

3
8

3
2

3
2

0

1

1

2

10

01

* Swap results
1 and 2

Operation Count

• For one R.H.S., how many operations?

• For each of n rows:
– Do n times:

• For each of n+1 columns:

– One add, one multiply

• Total = n3+n2 multiplies, same # of adds

• Asymptotic behavior: when n is large,
dominated by n3

Faster Algorithms

• Our goal is an algorithm that does this in
1/3 n3 operations, and does not require
all R.H.S. to be known at beginning

• Before we see that, let’s look at a few
special cases that are even faster

Tridiagonal Systems

• Common special case:

• Only main diagonal + 1 above and 1 below

4

3

2

1

4443

343332

232221

1211

00

0

0

00

b

b

b

b

aa

aaa

aaa

aa

Solving Tridiagonal Systems

• When solving using Gauss-Jordan:
– Constant # of multiplies/adds in each row

– Each row only affects 2 others

4

3

2

1

4443

343332

232221

1211

00

0

0

00

b

b

b

b

aa

aaa

aaa

aa

Running Time

• 2n loops, 4 multiply/adds per loop
(assuming correct bookkeeping)

• This running time has a fundamentally different
dependence on n: linear instead of cubic
– Can say that tridiagonal algorithm is O(n) while

Gauss-Jordan is O(n3)

Big-O Notation

• Informally, O(n3) means that the dominant term
for large n is cubic

• More precisely, there exist a c and n0 such that
running time ≤ c n3

if
n > n0

• This type of asymptotic analysis is often used
to characterize different algorithms

Triangular Systems

• Another special case: A is lower-triangular

4

3

2

1

44434241

333231

2221

11

0

00

000

b

b

b

b

aaaa

aaa

aa

a

Triangular Systems

• Solve by forward substitution

4

3

2

1

44434241

333231

2221

11

0

00

000

b

b

b

b

aaaa

aaa

aa

a

11

1
1 a

bx =

Triangular Systems

• Solve by forward substitution

4

3

2

1

44434241

333231

2221

11

0

00

000

b

b

b

b

aaaa

aaa

aa

a

22

1212
2 a

xabx −
=

Triangular Systems

• Solve by forward substitution

4

3

2

1

44434241

333231

2221

11

0

00

000

b

b

b

b

aaaa

aaa

aa

a

33

2321313
3 a

xaxabx −−
=

Triangular Systems

• If A is upper triangular, solve by backsubstitution

5

4

3

2

1

55

4544

353433

25242322

1514131211

0000

000

00

0

b

b

b

b

b

a

aa

aaa

aaaa

aaaaa

55

5
5 a

bx =

Triangular Systems

• If A is upper triangular, solve by backsubstitution

5

4

3

2

1

55

4544

353433

25242322

1514131211

0000

000

00

0

b

b

b

b

b

a

aa

aaa

aaaa

aaaaa

44

5454
4 a

xabx −
=

Triangular Systems

• Both of these special cases can be solved in
O(n2) time

• This motivates a factorization approach to
solving arbitrary systems:
– Find a way of writing A as LU, where L and U are

both triangular

– Ax=b ⇒ LUx=b ⇒ Ly=b ⇒ Ux=y

– Time for factoring matrix dominates computation

Cholesky Decomposition

• For symmetric matrices, choose U=LT

• Perform decomposition

• Ax=b ⇒ LLTx=b ⇒ Ly=b ⇒ LTx=y

⇒

33

3222

312111

333231

2221

11

332313

232212

131211

00

00

00

l

ll

lll

lll

ll

l

aaa

aaa

aaa

Cholesky Decomposition

22

312123
322332223121

2
21222222

2
22

2
21

11

13
31133111

11

12
21122111

111111
2

11

l
llalallll

lalall

l
alall

l
alall

alal

−
=⇒=+

−=⇒=+

=⇒=

=⇒=

=⇒=

⇒

33

3222

312111

333231

2221

11

332313

232212

131211

00

00

00

l

ll

lll

lll

ll

l

aaa

aaa

aaa

Cholesky Decomposition

ii

i

k
jkikij

ji

i

k
ikiiii

l

lla
l

lal

∑

∑
−

=

−

=

−
=

−=

1

1

1

1

2

⇒

33

3222

312111

333231

2221

11

332313

232212

131211

00

00

00

l

ll

lll

lll

ll

l

aaa

aaa

aaa

Cholesky Decomposition

• This fails if it requires taking square root of a
negative number

• Need another condition on A: positive definite

For any v, vT A v > 0

(Equivalently, all positive eigenvalues)

Cholesky Decomposition

• Running time turns out to be 1/6n3

– Still cubic, but much lower constant

• Result: this is preferred method for solving
symmetric positive definite systems

LU Decomposition

• Again, factor A into LU, where
L is lower triangular and U is upper triangular

• Last 2 steps in O(n2) time, so total time
dominated by decomposition

Ax=b
LUx=b
Ly=b
Ux=y

Doolittle Factorization

• More unknowns than equations!

• Let all lii=1
(Could also take all uii=1 – Crout’s method)

⇒

33

2322

131211

333231

2221

11

333231

232221

131211

00

00

00

u

uu

uuu

lll

ll

l

aaa

aaa

aaa

Doolittle Factorization

⇒

33

2322

131211

3231

21

333231

232221

131211

00

0

1

01

001

u

uu

uuu

ll

l

aaa

aaa

aaa

22

123132
323222321231

1221222222221221

1212

11

31
31311131

11

21
21211121

1111

u
ulalaulul

ulauauul
au

u
alaul

u
alaul

au

−
=⇒=+

−=⇒=+
=

=⇒=

=⇒=

=

Doolittle Factorization

• For i = 1..n
– For j = 1..i

– For j = i+1..n

⇒

33

2322

131211

3231

21

333231

232221

131211

00

0

1

01

001

u

uu

uuu

ll

l

aaa

aaa

aaa

∑
−

=

−=
1

1

j

k
kijkjiji ulau

ii

i

k
kijkji

ji u

ula
l

∑
−

=

−
=

1

1

Doolittle Factorization

• Interesting note: # of outputs = # of inputs,
algorithm only refers to elements not output yet
– Can do this in-place!

– Algorithm replaces A with matrix
of l and u values, 1s are implied

– Resulting matrix must be interpreted in a special way:
not a regular matrix

– Can rewrite forward/backsubstitution routines to use
this “packed” l-u matrix

333231

232221

131211

ull

uul

uuu

LU Decomposition

• Running time is 1/3n3

– Only a factor of 2 slower than symmetric case

– This is the preferred general method for
solving linear equations

• Pivoting very important
– Partial pivoting is sufficient, and widely implemented

– LU with pivoting can succeed even if matrix is singular (!)
(but back/forward substitution fails…)

Running Time – Is O(n3) the Limit?

• How fast is matrix multiplication?

• 8 multiples, 4 adds, right?
(In general n3 multiplies and n2(n-1) adds…)

2222122122

2122112121

2212121112

2112111111

2221

1211

2221

1211

2221

1211

babac
babac
babac
babac

bb
bb

aa
aa

cc
cc

+=
+=
+=
+=

=

Running Time – Is O(n3) the Limit?

• Strassen’s method [1969]

632122

4221

5312

754111

222122127

121111216

2212115

1121224

2211113

1122212

221122111

))((
))((

)(
)(
)(

)(
))((

MMMMc
MMc
MMc

MMMMc
bbaaM
bbaaM

baaM
bbaM
bbaM

baaM
bbaaM

++−=
+=
+=

+−+=
+−=
+−=

+=
−=
−=

+=
++=

=

2221

1211

2221

1211

2221

1211

bb
bb

aa
aa

cc
cc

Volker Strassen

Running Time – Is O(n3) the Limit?

• Strassen’s method [1969]

• Uses only 7 multiplies
(and a whole bunch of adds)

• Can be applied recursively!

632122

4221

5312

754111

222122127

121111216

2212115

1121224

2211113

1122212

221122111

))((
))((

)(
)(
)(

)(
))((

MMMMc
MMc
MMc

MMMMc
bbaaM
bbaaM

baaM
bbaM
bbaM

baaM
bbaaM

++−=
+=
+=

+−+=
+−=
+−=

+=
−=
−=

+=
++=

=

2221

1211

2221

1211

2221

1211

bb
bb

aa
aa

cc
cc

Running Time – Is O(n3) the Limit?

• Recursive application for 4 half-size submatrices
needs 7 half-size matrix multiplies

• Asymptotic running time is
– Only worth it for large n, because of big

constant factors (all those additions…)

– Still, practically useful for n > hundreds or thousands

• Current state of the art: Coppersmith-Winograd
algorithm achieves
– Not used in practice

)()(8.27log2 nOnO ≈

)(...376.2nO

Running Time – Is O(n3) the Limit?

• Similar sub-cubic algorithms for inverse,
determinant, LU, etc.
– Most “cubic” linear-algebra problems aren’t!

• Major open question: what is the limit?
– Hypothesis: O(n2) or O(n2 log n)

	Linear Systems
	Linear Systems
	Linear Systems
	Singular Systems
	Inverting a Matrix
	Gauss-Jordan Elimination
	Gauss-Jordan Elimination
	Gauss-Jordan Elimination
	Gauss-Jordan Elimination
	Gauss-Jordan Elimination
	Gauss-Jordan Elimination
	Gauss-Jordan Elimination
	Pivoting
	Pivoting
	Partial Pivoting
	Full Pivoting
	Full Pivoting
	Operation Count
	Faster Algorithms
	Tridiagonal Systems
	Solving Tridiagonal Systems
	Running Time
	Big-O Notation
	Triangular Systems
	Triangular Systems
	Triangular Systems
	Triangular Systems
	Triangular Systems
	Triangular Systems
	Triangular Systems
	Cholesky Decomposition
	Cholesky Decomposition
	Cholesky Decomposition
	Cholesky Decomposition
	Cholesky Decomposition
	LU Decomposition
	Doolittle Factorization
	Doolittle Factorization
	Doolittle Factorization
	Doolittle Factorization
	LU Decomposition
	Running Time – Is O(n3) the Limit?
	Running Time – Is O(n3) the Limit?
	Running Time – Is O(n3) the Limit?
	Running Time – Is O(n3) the Limit?
	Running Time – Is O(n3) the Limit?

