Structure from Motion

Structure from Motion

- For now, static scene and moving camera
 - Equivalently, rigidly moving scene and static camera
- Limiting case of stereo with many cameras
- Limiting case of multiview camera calibration with unknown target
- Given n points and N camera positions, have 2nN equations and 3n+6N unknowns

Approaches

- Obtaining point correspondences
 - Optical flow
 - Stereo methods: correlation, feature matching
- Solving for points and camera motion
 - Nonlinear minimization (bundle adjustment)
 - Various approximations...

Orthographic Approximation

• Simplest SFM case: camera approximated by orthographic projection

Weak Perspective

An orthographic assumption is sometimes well approximated by a telephoto lens

Consequences of Orthographic Projection

- Scene can be recovered up to scale
- Translation perpendicular to image plane can never be recovered

- Method due to Tomasi & Kanade, 1992
- Assume *n* points in space $\mathbf{p}_1 \dots \mathbf{p}_n$
- Observed at N points in time at image coordinates (x_{ij}, y_{ij}) , i = 1:N, j=1:n
 - Feature tracking, optical flow, etc.

Write down matrix of data

Points
$$\rightarrow$$

$$\mathbf{D} = \begin{bmatrix} x_{11} & \cdots & x_{1n} \\ \vdots & \ddots & \vdots \\ x_{N1} & \cdots & x_{Nn} \\ y_{11} & \cdots & y_{1n} \\ \vdots & \ddots & \vdots \\ y_{N1} & \cdots & y_{Nn} \end{bmatrix}$$
Frames \downarrow

- Step 1: find translation
- Translation parallel to viewing direction can not be obtained
- Translation perpendicular to viewing direction equals motion of average position of all points

Subtract average of each row

$$\widetilde{\mathbf{D}} = \begin{bmatrix} x_{11} - \overline{x}_1 & \cdots & x_{1n} - \overline{x}_1 \\ \vdots & \ddots & \vdots \\ x_{N1} - \overline{x}_N & \cdots & x_{Nn} - \overline{x}_N \\ y_{11} - \overline{y}_1 & \cdots & y_{1n} - \overline{y}_1 \\ \vdots & \ddots & \vdots \\ y_{N1} - \overline{y}_N & \cdots & y_{Nn} - \overline{y}_N \end{bmatrix}$$

- Step 2: try to find rotation
- Rotation at each frame defines local coordinate axes \hat{i} , \hat{j} , and \hat{k}
- Then $\widetilde{x}_{ij} = \hat{\mathbf{i}}_i \cdot \widetilde{\mathbf{p}}_j$, $\widetilde{y}_{ij} = \hat{\mathbf{j}}_i \cdot \widetilde{\mathbf{p}}_j$

• So, can write $\tilde{\mathbf{D}} = \mathbf{RS}$ where R is a "rotation" matrix and S is a "shape" matrix

and S is a "shape" matrix
$$\mathbf{R} = \begin{bmatrix} \hat{\mathbf{i}}_{1}^{T} \\ \vdots \\ \hat{\mathbf{j}}_{N}^{T} \\ \vdots \\ \vdots \\ \hat{\mathbf{j}}_{N}^{T} \end{bmatrix} \qquad \mathbf{S} = \begin{bmatrix} \tilde{\mathbf{p}}_{1} & \cdots & \tilde{\mathbf{p}}_{n} \end{bmatrix}$$

- Goal is to factor $\tilde{\mathbf{D}}$
- Before we do, observe that $rank(\tilde{\mathbf{D}}) = 3$ (in ideal case with no noise)
- Proof:
 - Rank of R is 3 unless no rotation
 - Rank of S is 3 iff have noncoplanar points
 - Product of 2 matrices of rank 3 has rank 3
- With noise, $rank(\widetilde{\mathbf{D}})$ might be > 3

SVD

- Goal is to factor $\widetilde{\mathbf{D}}$ into \mathbf{R} and \mathbf{S}
- Apply SVD: $\widetilde{\mathbf{D}} = \mathbf{UWV}^{\mathrm{T}}$
- But $\tilde{\mathbf{D}}$ should have rank 3 \Rightarrow all but 3 of the w_i should be 0
- Extract the top 3 w_i , together with the corresponding columns of **U** and **V**

Factoring for Orthographic Structure from Motion

- After extracting columns, U_3 has dimensions $2N\times3$ (just what we wanted for **R**)
- $\mathbf{W}_3\mathbf{V}_3^{\mathsf{T}}$ has dimensions $3\times n$ (just what we wanted for **S**)
- So, let $\mathbf{R}^* = \mathbf{U}_3$, $\mathbf{S}^* = \mathbf{W}_3 \mathbf{V}_3^T$

Affine Structure from Motion

- The i and j entries of R* are not, in general,
 unit length and perpendicular
- We have found motion (and therefore shape)
 up to an affine transformation
- This is the best we could do if we didn't assume orthographic camera

Ensuring Orthogonality

- Since $\widetilde{\mathbf{D}}$ can be factored as $\mathbf{R}^* \mathbf{S}^*$, it can also be factored as $(\mathbf{R}^* \mathbf{Q})(\mathbf{Q}^{-1} \mathbf{S}^*)$, for any \mathbf{Q}
- So, search for Q such that R = R* Q has the properties we want

Ensuring Orthogonality

• Want
$$(\hat{\mathbf{i}}_i^{*T}\mathbf{Q}) \cdot (\hat{\mathbf{i}}_i^{*T}\mathbf{Q}) = 1$$
 or $\hat{\mathbf{i}}_i^{*T}\mathbf{Q}\mathbf{Q}^T\hat{\mathbf{i}}_i^* = 1$
 $\hat{\mathbf{j}}_i^{*T}\mathbf{Q}\mathbf{Q}^T\hat{\mathbf{j}}_i^* = 1$
 $\hat{\mathbf{i}}_i^{*T}\mathbf{Q}\mathbf{Q}^T\hat{\mathbf{j}}_i^* = 0$

- Let $\mathbf{T} = \mathbf{Q}\mathbf{Q}^{\mathsf{T}}$
- Equations for elements of T solve by least squares
- Ambiguity add constraints $\mathbf{Q}^{\mathrm{T}}\hat{\mathbf{i}}_{1}^{*} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \mathbf{Q}^{\mathrm{T}}\hat{\mathbf{j}}_{1}^{*} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$

Ensuring Orthogonality

- Have found $\mathbf{T} = \mathbf{Q}\mathbf{Q}^{\mathsf{T}}$
- Find Q by taking "square root" of T
 - Cholesky decomposition if **T** is positive definite
 - General algorithms (e.g. **sqrtm** in Matlab)

Orthogonal Structure from Motion

Let's recap:

- Write down matrix of observations
- Find translation from avg. position
- Subtract translation
- Factor matrix using SVD
- Write down equations for orthogonalization
- Solve using least squares, square root
- At end, get matrix $\mathbf{R} = \mathbf{R}^* \mathbf{Q}$ of camera positions and matrix $\mathbf{S} = \mathbf{Q}^{-1}\mathbf{S}^*$ of 3D points

Results

Image sequence

[Tomasi & Kanade]

Results

Tracked features

Results

Reconstructed shape

Top view

Front view

- With orthographic or "weak perspective" can't recover all information
- With full perspective, can recover more information (translation along optical axis)
- Result: can recover geometry and full motion up to global scale factor

Perspective SFM Methods

- Bundle adjustment (full nonlinear minimization)
- Methods based on factorization
- Methods based on fundamental matrices
- Methods based on vanishing points

Motion Field for Camera Motion

• Translation:

Motion field lines converge (possibly at ∞)

Motion Field for Camera Motion

Rotation:

Motion field lines do not converge

Motion Field for Camera Motion

- Combined rotation and translation: motion field lines have component that converges, and component that does not
- Algorithms can look for vanishing point, then determine component of motion around this point
- "Focus of expansion / contraction"
- "Instantaneous epipole"

Finding Instantaneous Epipole

- Observation: motion field due to translation depends on depth of points
- Motion field due to rotation does not
- Idea: compute difference between motion of a point, motion of neighbors
- Differences point towards instantaneous epipole

SVD (Again!)

- Want to fit direction to all Δv (differences in optical flow) within some neighborhood
- PCA on matrix of Δv
- Equivalently, take eigenvector of $\mathbf{A} = \Sigma(\Delta v)(\Delta v)^T$ corresponding to largest eigenvalue
- Gives direction of parallax l_i in that patch, together with estimate of reliability

SFM Algorithm

- Compute optical flow
- Find vanishing point (least squares solution)
- Find direction of translation from epipole
- Find perpendicular component of motion
- Find velocity, axis of rotation
- Find depths of points (up to global scale)