Structure from Motion

Structure from Motion

- For now, static scene and moving camera
- Equivalently, rigidly moving scene and static camera
- Limiting case of stereo with many cameras
- Limiting case of multiview camera calibration with unknown target
- Given n points and N camera positions, have $2 n N$ equations and $3 n+6 N$ unknowns

Approaches

- Obtaining point correspondences
- Optical flow
- Stereo methods: correlation, feature matching
- Solving for points and camera motion
- Nonlinear minimization (bundle adjustment)
- Various approximations...

Orthographic Approximation

- Simplest SFM case: camera approximated by orthographic projection

Orthographic

Weak Perspective

- An orthographic assumption is sometimes well approximated by a telephoto lens

Consequences of

Orthographic Projection

- Scene can be recovered up to scale
- Translation perpendicular to image plane can never be recovered

Orthographic Structure from Motion

- Method due to Tomasi \& Kanade, 1992
- Assume n points in space $\mathbf{p}_{1} \ldots \mathbf{p}_{n}$
- Observed at N points in time at image coordinates $\left(x_{i j}, y_{i j}\right), i=1: N, j=1: n$
- Feature tracking, optical flow, etc.

Orthographic Structure from Motion

- Write down matrix of data

$$
\begin{gathered}
\text { Points } \rightarrow \\
\mathbf{D}=\left[\begin{array}{ccc}
x_{11} & \cdots & x_{1 n} \\
\vdots & \ddots & \vdots \\
x_{N 1} & \cdots & x_{N n} \\
y_{11} & \cdots & y_{1 n} \\
\vdots & \ddots & \vdots \\
y_{N 1} & \cdots & y_{N n}
\end{array}\right]
\end{gathered}
$$

Orthographic Structure from Motion

- Step 1: find translation
- Translation parallel to viewing direction can not be obtained
- Translation perpendicular to viewing direction equals motion of average position of all points

Orthographic Structure from Motion

- Subtract average of each row

$$
\widetilde{\mathbf{D}}=\left[\begin{array}{ccc}
x_{11}-\bar{x}_{1} & \cdots & x_{1 n}-\bar{x}_{1} \\
\vdots & \ddots & \vdots \\
x_{N 1}-\bar{x}_{N} & \cdots & x_{N n}-\bar{x}_{N} \\
y_{11}-\bar{y}_{1} & \cdots & y_{1 n}-\bar{y}_{1} \\
\vdots & \ddots & \vdots \\
y_{N 1}-\bar{y}_{N} & \cdots & y_{N n}-\bar{y}_{N}
\end{array}\right]
$$

Orthographic Structure from Motion

- Step 2: try to find rotation
- Rotation at each frame defines local coordinate axes $\hat{\mathbf{i}}, \hat{\mathbf{j}}$, and $\hat{\mathbf{k}}$
- Then $\tilde{x}_{i j}=\hat{\mathbf{i}}_{i} \cdot \tilde{\mathbf{p}}_{j}, \tilde{y}_{i j}=\hat{\mathbf{j}}_{i} \cdot \tilde{\mathbf{p}}_{j}$

Orthographic Structure from Motion

- So, can write $\tilde{\mathbf{D}}=\mathbf{R S}$ where R is a "rotation" matrix and S is a "shape" matrix

$$
\mathbf{R}=\left[\begin{array}{c}
\hat{\mathbf{i}}_{1}^{\mathrm{T}} \\
\vdots \\
\hat{\mathbf{i}}_{N}{ }^{\mathrm{T}} \\
\hat{\mathbf{j}}_{1}^{\mathrm{T}} \\
\vdots \\
\hat{\mathbf{j}}_{N}^{\mathrm{T}}
\end{array}\right] \quad \mathbf{S}=\left[\begin{array}{lll}
\widetilde{\mathbf{p}}_{1} & \cdots & \widetilde{\mathbf{p}}_{n}
\end{array}\right]
$$

Orthographic Structure from Motion

- Goal is to factor $\tilde{\mathbf{D}}$
- Before we do, observe that $\operatorname{rank}(\tilde{\mathbf{D}})=3$ (in ideal case with no noise)
- Proof:
- Rank of \mathbf{R} is 3 unless no rotation
- Rank of S is 3 iff have noncoplanar points
- Product of 2 matrices of rank 3 has rank 3
- With noise, $\operatorname{rank}(\tilde{\mathbf{D}})$ might be >3

SVD

- Goal is to factor $\tilde{\mathbf{D}}$ into \mathbf{R} and \mathbf{S}
- Apply SVD: $\widetilde{\mathbf{D}}=\mathbf{U W V}^{\mathrm{T}}$
- But $\widetilde{\mathbf{D}}$ should have rank $3 \Rightarrow$ all but 3 of the w_{i} should be 0
- Extract the top $3 w_{i}$, together with the corresponding columns of \mathbf{U} and \mathbf{V}

Factoring for

Orthographic Structure from Motion

- After extracting columns, U_{3} has dimensions $2 \mathrm{~N} \times 3$ (just what we wanted for \mathbf{R})
- $\mathbf{W}_{3} \mathbf{V}_{3}{ }^{\boldsymbol{\top}}$ has dimensions $3 \times n$ (just what we wanted for \mathbf{S})
- So, let $\boldsymbol{R}^{*}=\mathbf{U}_{3}, \mathbf{S}^{*}=\mathbf{W}_{3} \mathbf{V}_{3}{ }^{\top}$

Affine Structure from Motion

- The \mathbf{i} and \mathbf{j} entries of \mathbf{R}^{*} are not, in general, unit length and perpendicular
- We have found motion (and therefore shape) up to an affine transformation
- This is the best we could do if we didn't assume orthographic camera

Ensuring Orthogonality

- Since $\tilde{\mathbf{D}}$ can be factored as $\mathbf{R}^{*} \mathbf{S}^{*}$, it can also be factored as ($\left.\mathbf{R}^{*} \mathbf{Q}\right)\left(\mathbf{Q}^{-1} \mathbf{S}^{*}\right)$, for any \mathbf{Q}
- So, search for \mathbf{Q} such that $\mathbf{R}=\mathbf{R}^{*} \mathbf{Q}$ has the properties we want

Ensuring Orthogonality

- Want $\left(\hat{\mathbf{i}}_{i}^{-\mathrm{T}} \mathbf{Q}\right) \cdot\left(\hat{\mathbf{i}}_{i}^{-\mathrm{T}} \mathbf{Q}\right)=1$ or $\hat{\mathbf{i}}_{i}^{-\mathrm{T}} \mathbf{Q} \mathbf{Q}^{\mathrm{T} \hat{\mathbf{i}}_{i}^{*}=1}$

$$
\begin{aligned}
& \hat{\mathbf{j}}_{i}^{\mathrm{T}} \mathbf{Q Q}^{\mathrm{T}} \mathrm{j}_{i}^{\mathrm{j}}=1 \\
& \hat{\mathbf{i}}_{i}^{\mathrm{T}} \mathbf{Q Q}^{\mathrm{T}} \mathrm{j}_{i}=0
\end{aligned}
$$

- Let $\mathbf{T}=\mathbf{Q Q}^{\mathbf{T}}$
- Equations for elements of \mathbf{T} - solve by
least squares
Ambiguity - add constraints $\mathbf{Q}^{T} \hat{i}_{1}^{*}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], \mathbf{Q}^{T T \hat{S}_{1}^{-}}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$

Ensuring Orthogonality

- Have found $\mathbf{T}=\mathbf{Q Q}^{\mathbf{T}}$
- Find \mathbf{Q} by taking "square root" of \mathbf{T}
- Cholesky decomposition if T is positive definite
- General algorithms (e.g. sqrtm in Matlab)

Orthogonal Structure from Motion

- Let's recap:
- Write down matrix of observations
- Find translation from avg. position
- Subtract translation
- Factor matrix using SVD
- Write down equations for orthogonalization
- Solve using least squares, square root
- At end, get matrix $\mathbf{R}=\mathbf{R}^{*} \mathbf{Q}$ of camera positions and matrix $\mathbf{S}=\mathbf{Q}^{-1} \mathbf{S}^{*}$ of 3 D points

Results

- Image sequence

[Tomasi \& Kanade]

Results

- Tracked features

[Tomasi \& Kanade]

Results

- Reconstructed shape

Top view

Front view
[Tomasi \& Kanade]

Orthographic \rightarrow Perspective

- With orthographic or "weak perspective" can't recover all information
- With full perspective, can recover more information (translation along optical axis)
- Result: can recover geometry and full motion up to global scale factor

Perspective SFM Methods

- Bundle adjustment (full nonlinear minimization)
- Methods based on factorization
- Methods based on fundamental matrices
- Methods based on vanishing points

Motion Field for Camera Motion

- Translation:

- Motion field lines converge (possibly at ∞)

Motion Field for Camera Motion

- Rotation:

- Motion field lines do not converge

Motion Field for Camera Motion

- Combined rotation and translation: motion field lines have component that converges, and component that does not
- Algorithms can look for vanishing point, then determine component of motion around this point
"Focus of expansion / contraction"
"Instantaneous epipole"

Finding Instantaneous Epipole

- Observation: motion field due to translation depends on depth of points
- Motion field due to rotation does not
- Idea: compute difference between motion of a point, motion of neighbors
- Differences point towards instantaneous epipole

SVD (Again!)

- Want to fit direction to all $\Delta \mathrm{v}$ (differences in optical flow) within some neighborhood
- PCA on matrix of $\Delta \mathrm{v}$
- Equivalently, take eigenvector of $\mathbf{A}=\Sigma(\Delta \mathrm{v})(\Delta \mathrm{v})^{\top}$ corresponding to largest eigenvalue
- Gives direction of parallax I_{i} in that patch, together with estimate of reliability

SFM Algorithm

- Compute optical flow
- Find vanishing point (least squares solution)
- Find direction of translation from epipole
- Find perpendicular component of motion
- Find velocity, axis of rotation
- Find depths of points (up to global scale)

