
Image Alignment and Mosaicing
Feature Tracking and the Kalman Filter



Image Alignment Applications

• Local alignment:
– Tracking

– Stereo

• Global alignment:
– Camera jitter elimination

– Image enhancement

– Panoramic mosaicing



Image Enhancement

Original Enhanced

Anandan



Panoramic Mosaicing

Anandan



Correspondence Approaches

• Optical flow

• Correlation

• Correlation + optical flow

• Any of the above, iterated (e.g. Lucas-Kanade)

• Any of the above, coarse-to-fine
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Optical Flow for Image Registration

• Compute local matches

• Least-squares fit to motion model

• Problem: outliers



Outlier Rejection

• Robust estimation: tolerant of outliers

• In general, methods based on absolute value 
rather than square:

minimize Σ|xi-f|, not Σ(xi-f )2
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Correlation / Search Methods

• Assume translation only

• Given images I1, I2
• For each translation (tx, ty) compute

• Select translation that maximizes c

• Depending on window size, local or global
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Cross-Correlation

• Statistical definition of correlation:

• Disadvantage: sensitive to local variations in 
image brightness
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Normalized Cross-Correlation

• Normalize to eliminate brightness sensitivity:
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Sum of Squared Differences

• More intuitive measure:

• Negative sign so that higher values mean greater 
similarity

• Expand:
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Local vs. Global

• Correlation with local windows not too 
expensive

• High cost if window size = whole image

• But computation looks like convolution
– FFT to the rescue!



Correlation
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Fourier Transform with Translation
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Fourier Transform with Translation

• Therefore, if I1 and I2 differ by translation,

• So, F-1(F1/F2) will have a peak at (∆x,∆y)
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Phase Correlation

• In practice, use cross power spectrum

• Compute inverse FFT, look for peaks

• [Kuglin & Hines 1975]
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Phase Correlation

• Advantages
– Fast computation

– Low sensitivity to global brightness changes
(since equally sensitive to all frequencies)



Phase Correlation

• Disadvantages
– Sensitive to white noise

– No robust version

– Translation only
• Extensions to rotation, scale

• But not local motion

• Not too bad in practice with small local motions
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Correlation plus Optical Flow

• Use e.g. phase correlation to find average 
translation (may be large)

• Use optical flow to find local motions
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Image Pyramids

• Pre-filter images to collect information at 
different scales

• More efficient computation, allows
larger motions



Image Pyramids

Szeliski



Blending

• Blend over too small a region: seams

• Blend over too large a region: ghosting



Multiresolution Blending

• Different blending regions for different levels in 
a pyramid [Burt & Adelson]
– Blend low frequencies over large regions (minimize 

seams due to brightness variations)

– Blend high frequencies over small regions (minimize 
ghosting)



Pyramid Blending

Szeliski



Minimum-Cost Cuts

• Instead of blending high frequencies along a 
straight line, blend along line of minimum 
differences in image intensities



Minimum-Cost Cuts

Moving object, simple blending → blur

[Davis 98]



Minimum-Cost Cuts

Minimum-cost cut → no blur

[Davis 98]



Feature Tracking

• Local region

• Take advantage of many frames
– Prediction, uncertainty estimation

– Noise filtering

– Handle short occlusions



Kalman Filtering

• Assume that results of experiment
(i.e., optical flow) are noisy
measurements of system state

• Model of how system evolves

• Optimal combination
of system model and observations

• Prediction / correction framework
Rudolf Emil Kalman

Acknowledgment: much of the following material is based on the
SIGGRAPH 2001 course by Greg Welch and Gary Bishop (UNC)



Simple Example

• Measurement of a single point z1

• Variance σ1
2 (uncertainty σ1)

– Assuming Gaussian distribution

• Best estimate of true position 

• Uncertainty in best estimate
11̂ zx =
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Simple Example

• Second measurement z2, variance σ2
2

• Best estimate of true position?

z1 z2



Simple Example

• Second measurement z2, variance σ2
2

• Best estimate of true position: weighted average 

• Uncertainty in best estimate
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Online Weighted Average

• Combine successive measurements into 
constantly-improving estimate

• Uncertainty decreases over time

• Only need to keep current measurement,
last estimate of state and uncertainty



Terminology

• In this example, position is state
(in general, any vector)

• State can be assumed to evolve over time 
according to a system model or process model
(in this example, “nothing changes”)

• Measurements (possibly incomplete, possibly 
noisy) according to a measurement model

• Best estimate of state     with covariance Px̂



Linear Models

• For “standard” Kalman filtering, everything
must be linear

• System model:

• The matrix Φk is state transition matrix

• The vector ξk represents additive noise,
assumed to have covariance Q

111 −−− +Φ= kkkk xx ξ



Linear Models

• Measurement model:

• Matrix H is measurement matrix

• The vector µ is measurement noise,
assumed to have covariance R

kkkk xHz µ+=



PV Model

• Suppose we wish to incorporate velocity
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Prediction/Correction

• Predict new state

• Correct to take new measurements into account
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Kalman Gain

• Weighting of process model vs. measurements

• Compare to what we saw earlier:
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Results: Position-Only Model

Moving Still

[Welch & Bishop]



Results: Position-Velocity Model

[Welch & Bishop]

Moving Still



Extension: Multiple Models

• Simultaneously run many KFs with different 
system models

• Estimate probability each KF is correct

• Final estimate: weighted average



Probability Estimation

• Given some Kalman filter, the probability of a 
measurement zk is just n-dimensional Gaussian

where
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Results: Multiple Models

[Welch & Bishop]



Results: Multiple Models

[Welch & Bishop]



Results: Multiple Models

[Welch & Bishop]



Extension: SCAAT

• H can be different at different time steps
– Different sensors, types of measurements

– Sometimes measure only part of state

• Single Constraint At A Time (SCAAT)
– Incorporate results from one sensor at once

– Alternative: wait until you have measurements from 
enough sensors to know complete state (MCAAT)

– MCAAT equations often more complex, but 
sometimes necessary for initialization



UNC HiBall

• 6 cameras, looking at LEDs on ceiling

• LEDs flash over time

[Welch & Bishop]



Extension: Nonlinearity (EKF)

• HiBall state model has nonlinear degrees of 
freedom (rotations)

• Extended Kalman Filter allows nonlinearities by:
– Using general functions instead of matrices

– Linearizing functions to project forward

– Like 1st order Taylor series expansion

– Only have to evaluate Jacobians (partial derivatives), 
not invert process/measurement functions



Other Extensions

• On-line noise estimation

• Using known system input (e.g. actuators)

• Using information from both past and future

• Non-Gaussian noise and particle filtering
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