Radiometry \& Shape from Shading

Shape acquisition recap

- stereo
- observe objects from multiple positions
- establish correspondences
- triangulation gives depth (" Z ') maps, meshes
- structure from motion

Shape acquisition recap

- passive stereo has problems finding correspondences
- active stereo has resolution limits
- multi-megapixel cameras: cheap + available
- scan line techniques take lots of time for hi-res models
- multi-megapixel projectors: expensive

Shape from appearance

- material appearance gives cues for shape
- can be precise locally (per-pixel)
- challenging to get full geometry

Normal maps

Normal maps

http://en.wikipedia.org/wiki/File:Normal_map_example.png
Author: Paolo Cignoni, License: Creative Commons Attribution Share-Alike I.0

Normal maps

http://en.wikipedia.org/wiki/File:Normal_map_example.png
Author: Paolo Cignoni, License: Creative Commons Attribution Share-Alike I.0

- normal maps can be measured in every surface point
- with active methods
- by looking at local appearance

Today's Menu

- Radiometry
- Lambert's Cosine law
- Photometric Stereo
- Shape from Shading

Solid Angle

length, unit 1 meter $=1 \mathrm{~m}$

area, unit $1 \mathrm{~m}^{2}$

Solid Angle

angle $=$ arc length of projection on unit circle, unit 1 radian $=1 \mathrm{rad}$

solid angle = area of projection on unit sphere, unit 1 steradian $=1 \mathrm{sr}$

Radiometry

Name Energy
Symbol Q
Unit $\quad[Q]=1$ Joule $=1 \mathrm{~J}=1 \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-2}$

Radiometry

Name radiant power, flux
Symbol $\quad P=\frac{d Q}{d t}, \quad \Phi$
Unit
$[P]=1 \mathrm{~J} \mathrm{~s}^{-1}=1 \mathrm{Watt}=1 \mathrm{~W}$

Radiometry

Name radiant power, flux
Symbol $\quad P=\frac{d Q}{d t}, \quad \Phi$
Unit $\quad[P]=1 \mathrm{~J} \mathrm{~s}^{-1}=1 \mathrm{Watt}=1 \mathrm{~W}$

Radiometry

Name radiant intensity (in direction, of a point light source)
Symbol $\quad I=\frac{d P}{d \boldsymbol{\omega}}$
Unit $\quad[I]=1 \mathrm{~W} \mathrm{sr}^{-1}$

Radiometry

Name irradiance (in a point on the surface)
Symbol $E=\frac{d P}{d A}$
Unit $\quad[E]=1 \mathrm{Wm}^{-2}$

Radiometry

Name radiant exitance, radiosity (from a point)
Symbol $\quad B=\frac{d P}{d A}$
Unit $\quad[B]=1 \mathrm{Wm}^{-2}$

Radiometry

Name radiance
Symbol $L=\frac{d^{2} P}{d \boldsymbol{\omega} d A}$
Unit $\quad[L]=1 W_{\mathrm{sr}^{-}} 1 \mathrm{~m}^{-2}$

Radiometry

In vacuum,

radiance is constant along rays!

Radiometry

Pinhole cameras record radiance.

Lambertian Surfaces appear equally bright from all directions

Lambertian Surfaces

 appear equally bright from all directions$$
L=\frac{\rho}{\pi} E
$$

Albedo ρ ranges from 0 (perfect black) to I (perfect white).

How is E computed?

How is E computed?

How is E computed?

Lambert's Cosine Law

$E \sim \cos \theta \cdot I$

Lambert's Cosine Law

$$
E \sim\langle\vec{l}, \vec{n}\rangle \cdot I
$$

Lambertian Surfaces

$$
\begin{aligned}
& L=\frac{\rho}{\pi} E \\
& L=\frac{\rho}{\pi} \cdot\langle\vec{l}, \vec{n}\rangle \cdot \frac{I}{r^{2}}
\end{aligned}
$$

Lambertian Surfaces

$$
L \sim \rho \cdot\langle\vec{l}, \vec{n}\rangle
$$

Photometric Stereo

$\rho \cdot\left(\begin{array}{lll}l_{x} & l_{y} & l_{z}\end{array}\right) \cdot\left(\begin{array}{c}n_{x} \\ n_{y} \\ n_{z}\end{array}\right)=\alpha L$
α subsumes camera properties, light source brightness, r^{2} ρ and \vec{n} are unknown

Photometric Stereo

$$
\left(\begin{array}{lll}
l_{x} & l_{y} & l_{z}
\end{array}\right) \cdot\left(\begin{array}{c}
\rho \cdot n_{x} \\
\rho \cdot n_{y} \\
\rho \cdot n_{z}
\end{array}\right)=\alpha L
$$

Photometric Stereo

$$
\left(\begin{array}{ccc}
l_{1, x} & l_{1, y} & l_{1, z} \\
l_{2, x} & l_{2, y} & l_{2, z} \\
l_{3, x} & l_{3, y} & l_{3, z}
\end{array}\right) \cdot\left(\begin{array}{c}
\rho \cdot n_{x} \\
\rho \cdot n_{y} \\
\rho \cdot n_{z}
\end{array}\right)=\alpha\left(\begin{array}{c}
L_{1} \\
L_{2} \\
L_{3}
\end{array}\right)
$$

Photometric Stereo

- In practice, use more light sources
- discard darkest observations: shadowed
- discard brightest observations: not Lambertian
- use least-squares solution for over-determined system

Photometric Stereo

[Rushmeier et al., 1997]

Photometric Stereo

Input images
Estimated normals (lit)

Estimated albedo

[Rushmeier et al., 1997]

Photometric Stereo

Practical considerations:

- illumination: flashes vs. steady light sources
- subtract dark frame
- calibrate: light source positions
- either build or measure (mirror balls)
- calibrate: light source intensities
- move same light source: very precise
- observe on known reflectance target: more flexible
- some pre-computation possible

Photometric Stereo

- good:
- fast (real-time)
- high resolution (one normal vector per pixel!)
- bad:
- normals only
- active light only

Shape from Shading

- like photometric stereo, but with one image and one light source only!
- useful for astronomy etc.
- underconstrained problem. Assume:
- uniform, known albedo
- known illumination
- smooth variation in surface normal

Shape from Shading

- Further simplifications:
- Camera far from object: (x, y) in image $=(x, y)$ in world
- $z(x, y)$ denotes the depth in pixel

Shape from Shading

Definitions:
Let $p:=\frac{\partial}{\partial x} z, \quad q:=\frac{\partial}{\partial y} z$
Then, $\left(\begin{array}{l}1 \\ 0 \\ p\end{array}\right)$ and $\left(\begin{array}{l}0 \\ 1 \\ q\end{array}\right)$ are tangents, and the normal is

$$
\vec{n}=\frac{1}{\sqrt{1+p^{2}+q^{2}}}\left(\begin{array}{l}
1 \\
0 \\
p
\end{array}\right) \times\left(\begin{array}{l}
0 \\
1 \\
q
\end{array}\right)
$$

Shape from Shading

Definitions:
Let $p:=\frac{\partial}{\partial x} z, \quad q:=\frac{\partial}{\partial y} z$
Then, $\left(\begin{array}{l}1 \\ 0 \\ p\end{array}\right)$ and $\left(\begin{array}{l}0 \\ 1 \\ q\end{array}\right)$ are tangents, and the normal is

$$
\vec{n}=\frac{1}{\sqrt{1+p^{2}+q^{2}}}\left(\begin{array}{c}
-p \\
-q \\
1
\end{array}\right)
$$

Shape from Shading

Definitions:

Let

$$
R(p, q):=\rho \cdot\left\langle\vec{l}, \frac{1}{\sqrt{1+p^{2}+q^{2}}}\left(\begin{array}{c}
-p \\
-q \\
1
\end{array}\right)\right\rangle \cdot \frac{1}{\alpha}
$$

be the radiance for a hypothesis of p and q, and

$$
L
$$

be the radiance in the captured picture.

Shape from Shading

Minimize the functional:

$$
\int_{A}(L-R(p, q))^{2}+\lambda\left(|\nabla p|^{2}+|\nabla q|^{2}\right) d x d y
$$

for a control parameter λ

Shape from Shading

$$
\int_{A}(L-R(p, q))^{2}+\lambda\left(|\nabla p|^{2}+|\nabla q|^{2}\right) d x d y
$$

Solve by iteration:

- initialize with an estimate for p and q
- after step k, set

$$
\begin{aligned}
& p_{k+1}=\bar{p}_{k}+\frac{1}{4 \lambda}\left(L-R\left(p_{k}, q_{k}\right)\right) \frac{\partial R\left(p_{k}, q_{k}\right)}{\partial p} \\
& q_{k+1}=\bar{q}_{k}+\frac{1}{4 \lambda}\left(L-R\left(p_{k}, q_{k}\right)\right) \frac{\partial R\left(p_{k}, q_{k}\right)}{\partial q}
\end{aligned}
$$

for local averages \bar{p} and \bar{q}

- iterate

Shape from Shading

- Problems:
- end of computation not necessarily a global optimum
- boundary conditions need to be chosen (enforce after each iteration)
- for a consistent surface,

$$
\frac{\partial^{2} z}{\partial x \partial y}=\frac{\partial^{2} z}{\partial y \partial x} \Rightarrow \frac{\partial p}{\partial y}=\frac{\partial q}{\partial x}
$$

but this is not necessarily the case

Shape from Shading

- Enforce constraint in functional: add

$$
\left(\frac{\partial p}{\partial y}-\frac{\partial q}{\partial x}\right)^{2}
$$

to the energy functional (makes things difficult)

- Maintain constraint throughout optimization
- after each iteration, project p and q to closest integrable function pair (in Fourier space)

Shape form shading

When consistent, p and q can be integrated to yield z :

Figure 9.2 Two images of the same Lambertian surface seen from above but illuminated from different directions and 3-D rendering of the surface. Practically all the points in the top left image receive direct illumination $\left(\mathbf{i}=[0.20,0,0.98]^{\top}\right)$; some regions of the top right image are in the dark due to self-shadowing effects $\left(\mathbf{i}=[0.94,0.31,0.16]^{\top}\right)$.

Shape form shading

When consistent, p and q can be integrated to yield z :

Limitations

- material properties
- occlusions (shadows)
- how to know albedo and light intensity?
- further assumptions needed

Conclusions

- appearance can be used to estimate shape
- assumptions required, Lambertian common
- photometric stereo is precise, but active light required
- shape from shading can be useful where stereo is impossible

Knowing more ...

- with more assumptions, you can know more about the shape
- a statistical model + a single image can give you
- shape
- texture + colors
- additional semantics ...

Knowing more ...

Application

to Images

Video source: http://mi.informatik.uni-siegen.de/movies/siggraph99.mpg
[Blanz and Vetter, I 999]

Questions?

