Radiometry & Shape from Shading

Martin Fuchs mfuchs@cs.princeton.edu

Monday, December 14, 2009

1

Shape acquisition recap

- stereo
 - observe objects from multiple positions
 - establish correspondences
 - triangulation gives depth ("Z") maps, meshes

structure from motion

Shape acquisition recap

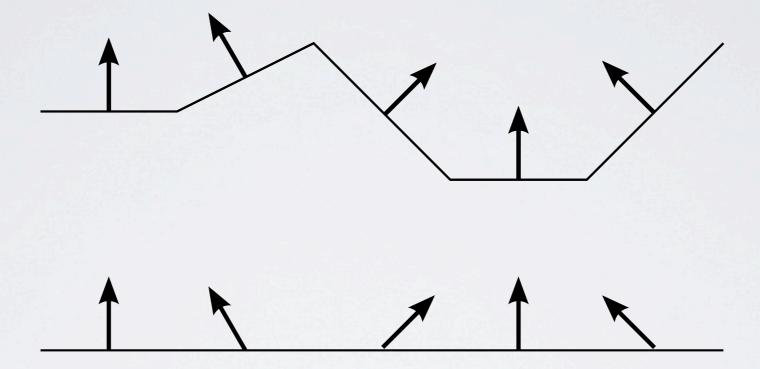
- passive stereo has problems finding correspondences
- active stereo has resolution limits
 - multi-megapixel cameras: cheap + available
 - scan line techniques take lots of time for hi-res models
 - multi-megapixel projectors: expensive

Shape from appearance

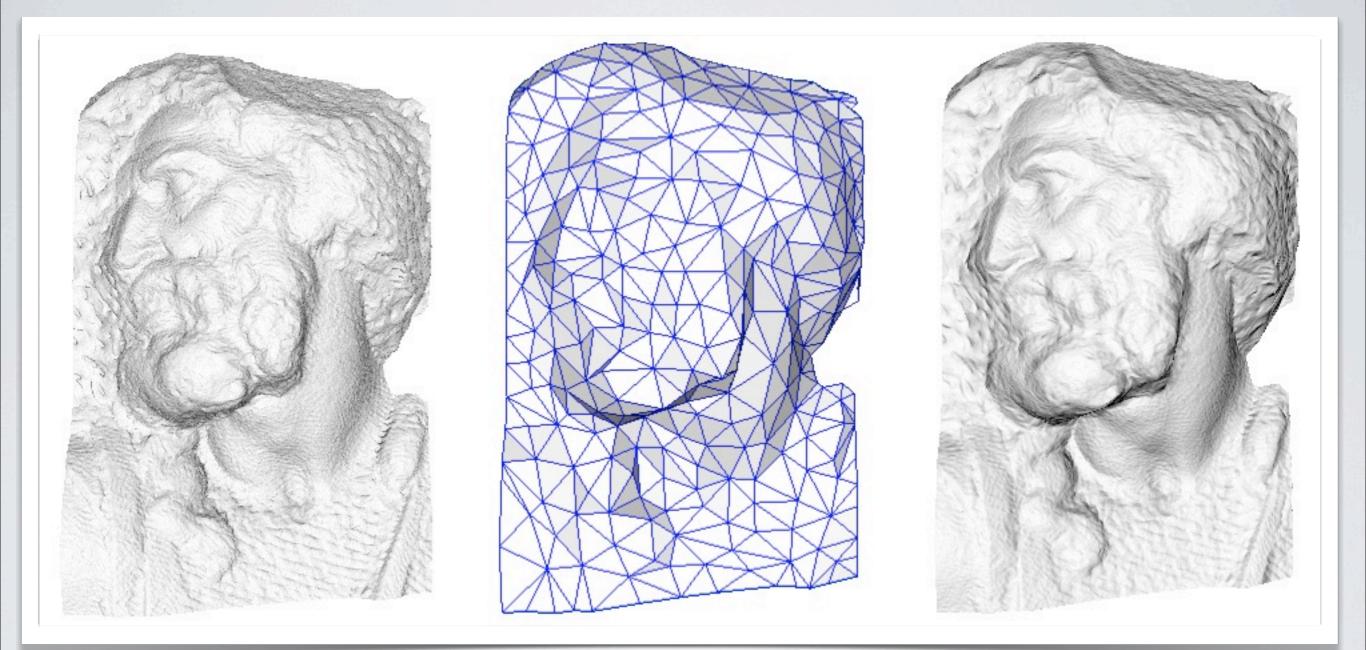
- material appearance gives cues for shape
- can be precise locally (per-pixel)

• challenging to get full geometry

Normal maps

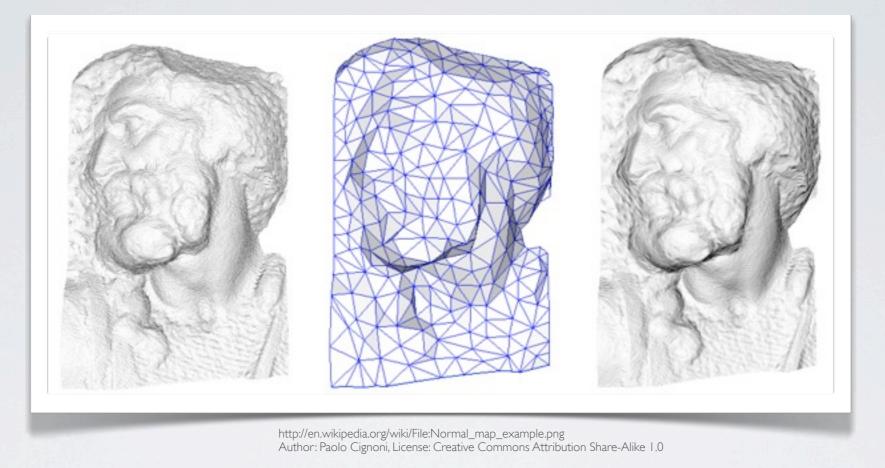


Normal maps



http://en.wikipedia.org/wiki/File:Normal_map_example.png Author: Paolo Cignoni, License: Creative Commons Attribution Share-Alike 1.0

Normal maps



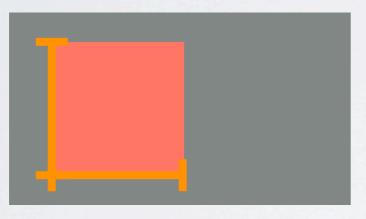
- normal maps can be measured in every surface point
 - with active methods
 - by looking at local appearance

Today's Menu

- Radiometry
- Lambert's Cosine law
- Photometric Stereo
- Shape from Shading

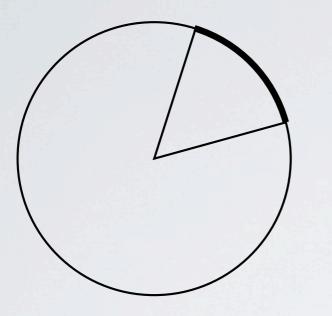
Solid Angle

-

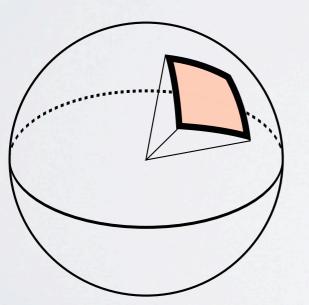


area, unit $1 \ \mathrm{m}^2$

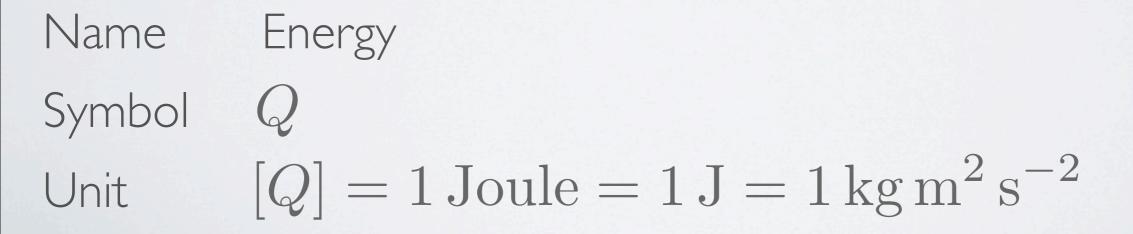
Solid Angle

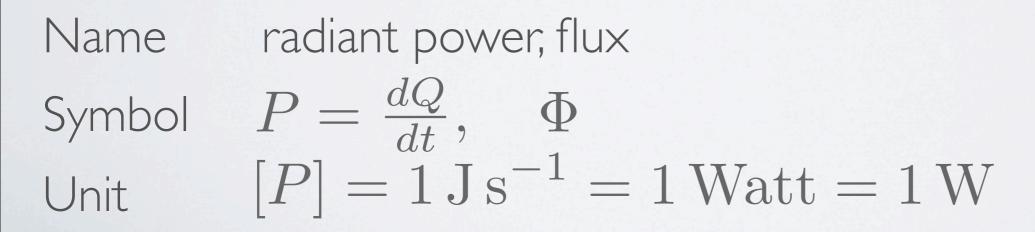


angle = arc length of projection on unit circle, unit $1 \operatorname{radian} = 1 \operatorname{rad}$

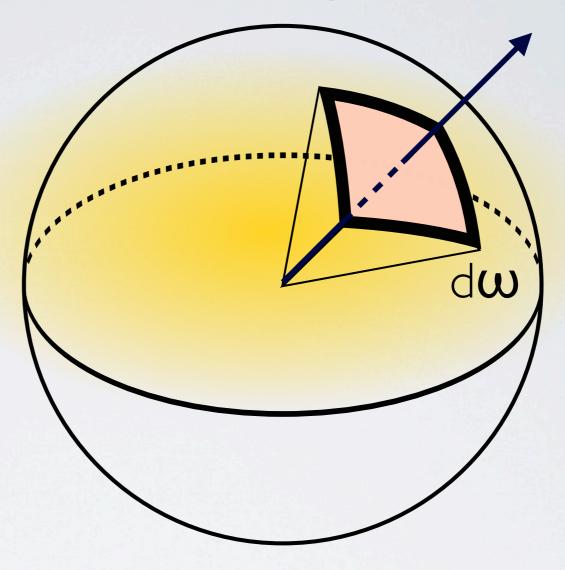


solid angle = area of projection on unit sphere, unit 1 steradian = 1 sr

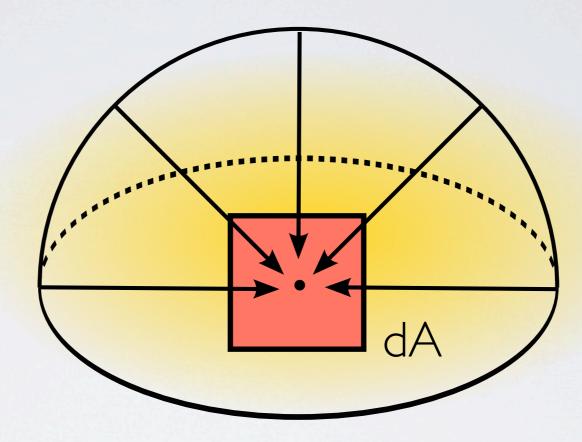




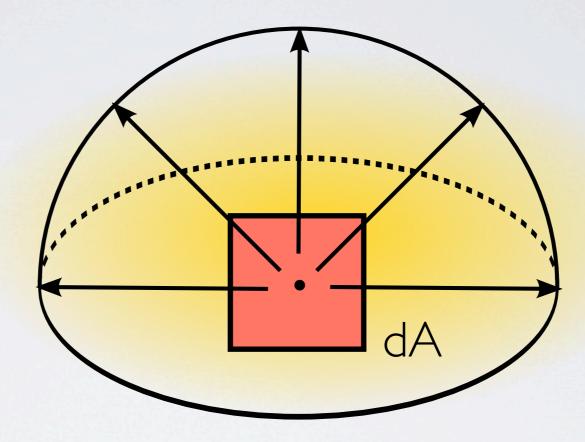
Name radiant power, flux
Symbol
$$P = \frac{dQ}{dt}$$
, Φ
Unit $[P] = 1 \text{ J s}^{-1} = 1 \text{ Watt} = 1 \text{ W}$



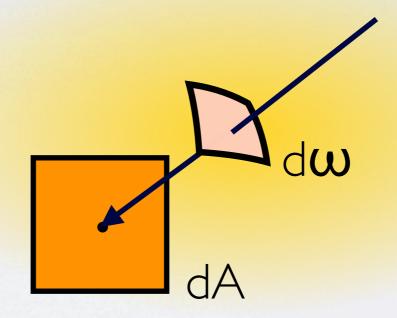
Nameradiant intensity (in direction, of a point light source)Symbol $I = \frac{dP}{d\omega}$ Unit $[I] = 1 \, \mathrm{W} \, \mathrm{sr}^{-1}$



Nameirradiance (in a point on the surface)Symbol
$$E = \frac{dP}{dA}$$
Unit $[E] = 1 \, \mathrm{W} \, \mathrm{m}^{-2}$



Nameradiant exitance, radiosity (from a point)Symbol $B = \frac{dP}{dA}$ Unit $[B] = 1 \,\mathrm{W}\,\mathrm{m}^{-2}$

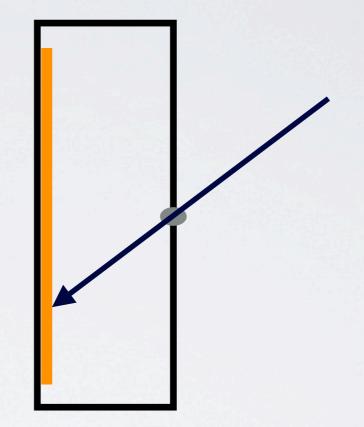


Name radiance
Symbol
$$L = \frac{d^2 P}{d\omega \, dA}$$

Unit $[L] = 1 \, W \mathrm{sr}^{-1} \mathrm{m}^{-2}$

In vacuum,

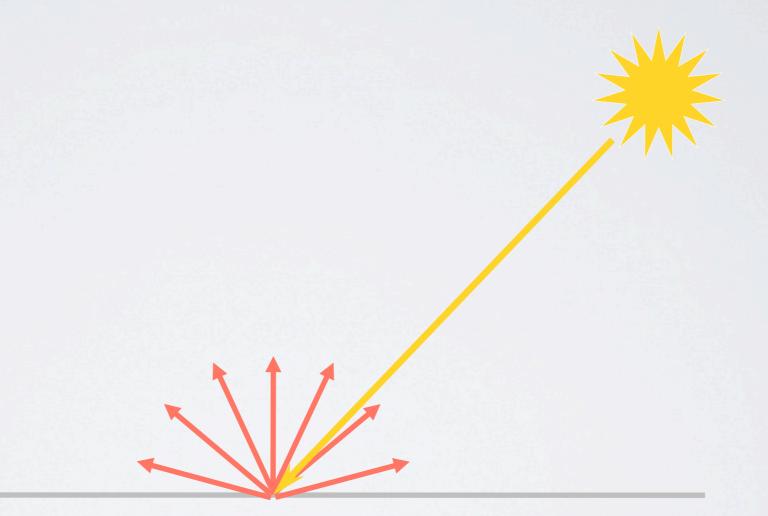
radiance is constant along rays!



Pinhole cameras record radiance.

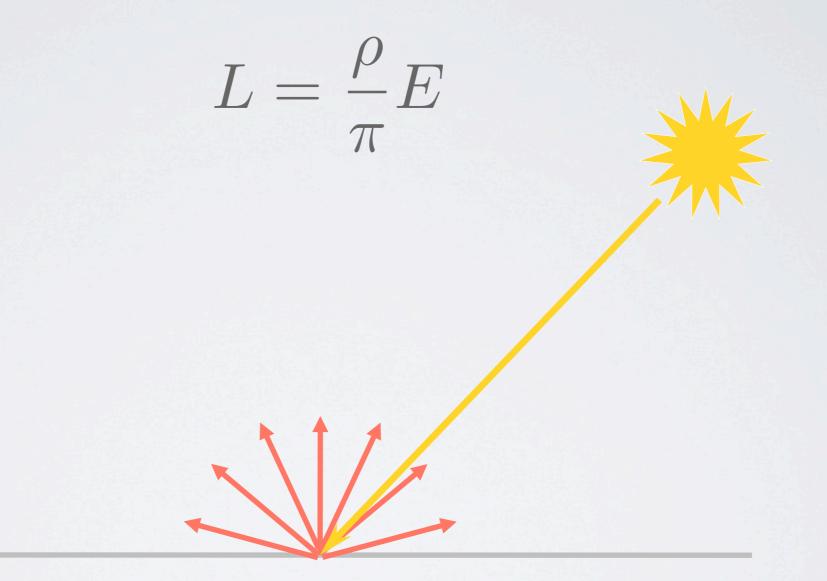
Lambertian Surfaces

appear equally bright from all directions

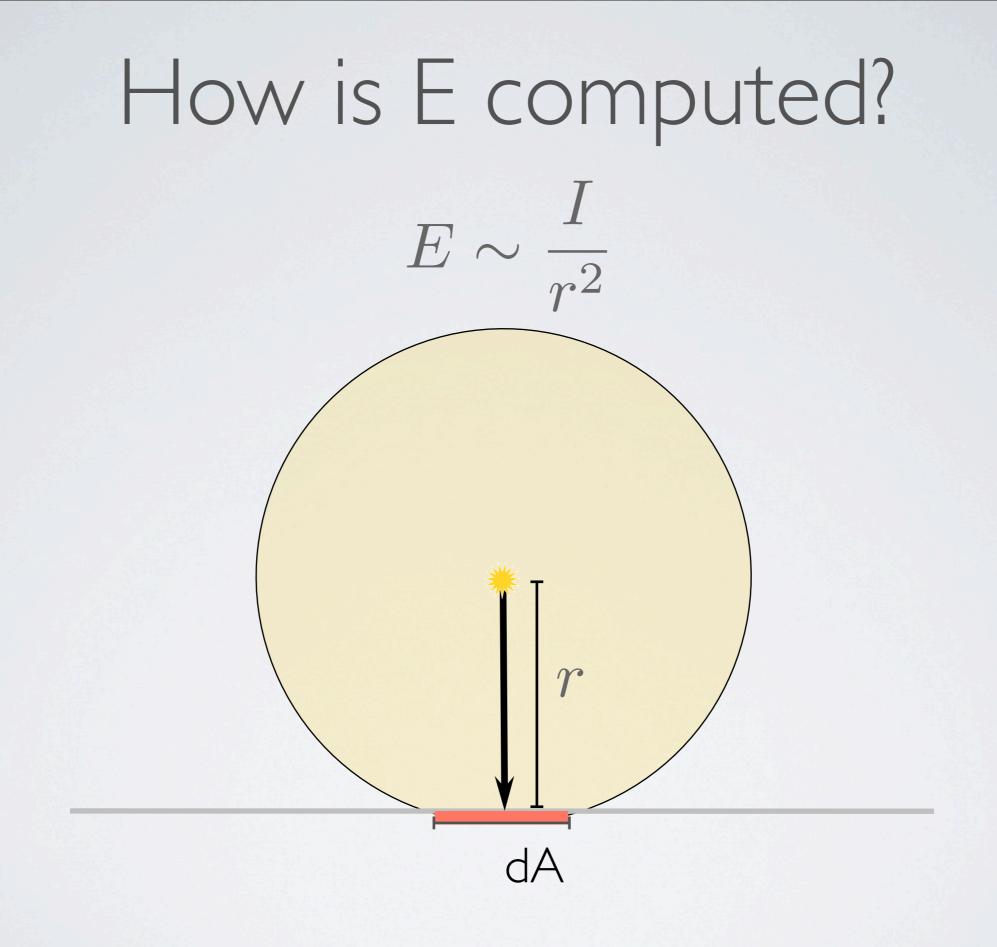


Lambertian Surfaces

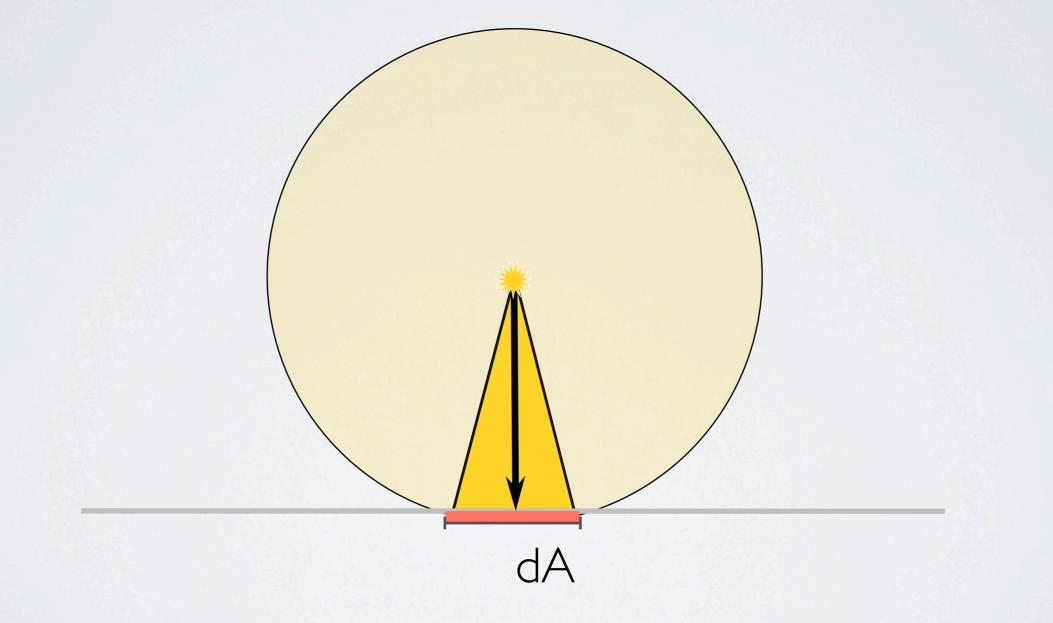
appear equally bright from all directions



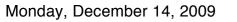
Albedo ρ ranges from 0 (perfect black) to 1 (perfect white).



How is E computed?



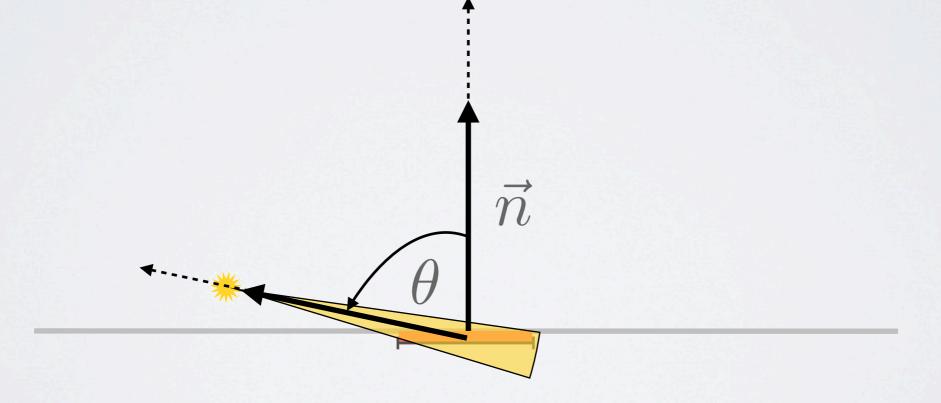
How is E computed?

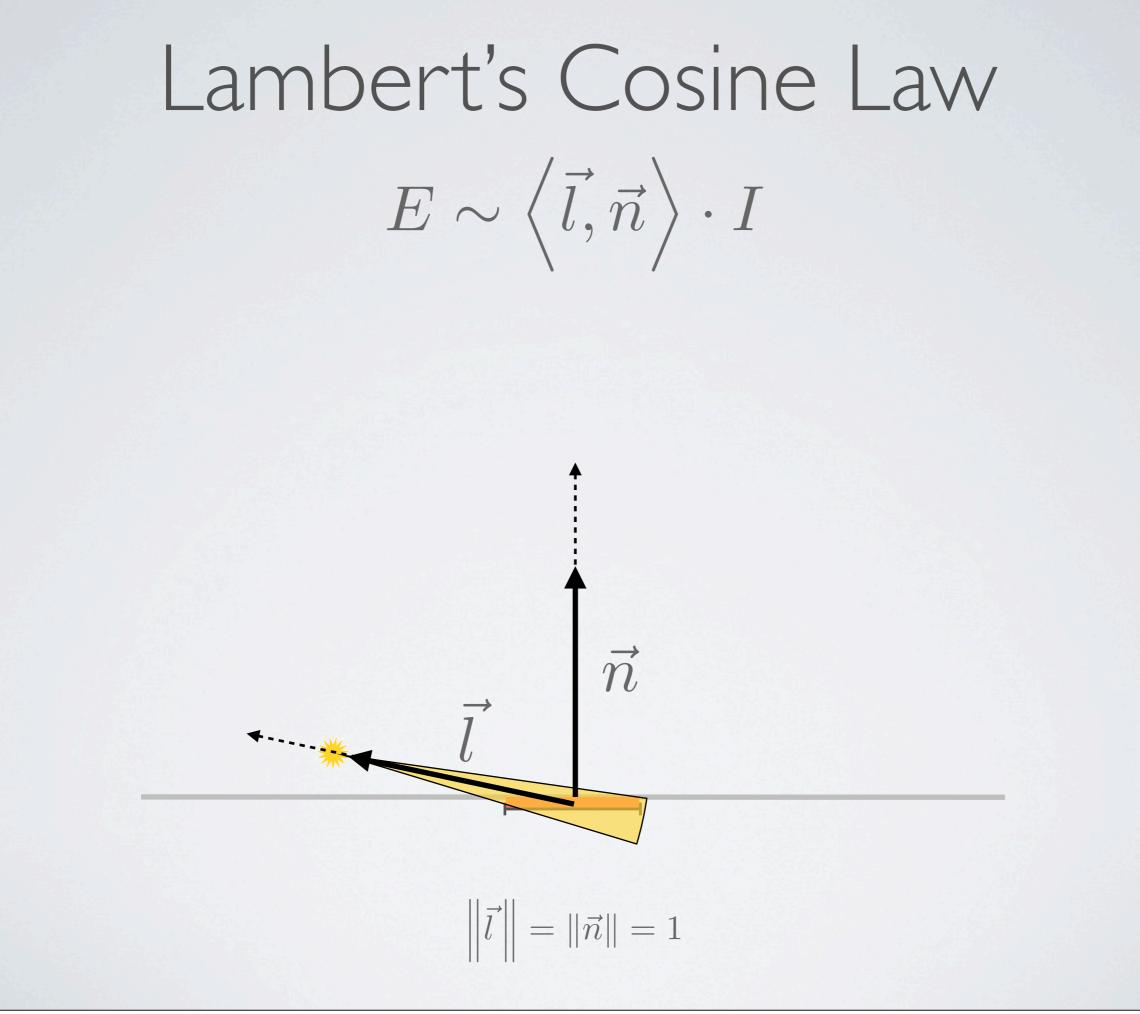


24

Lambert's Cosine Law

 $E \sim \cos \theta \cdot I$



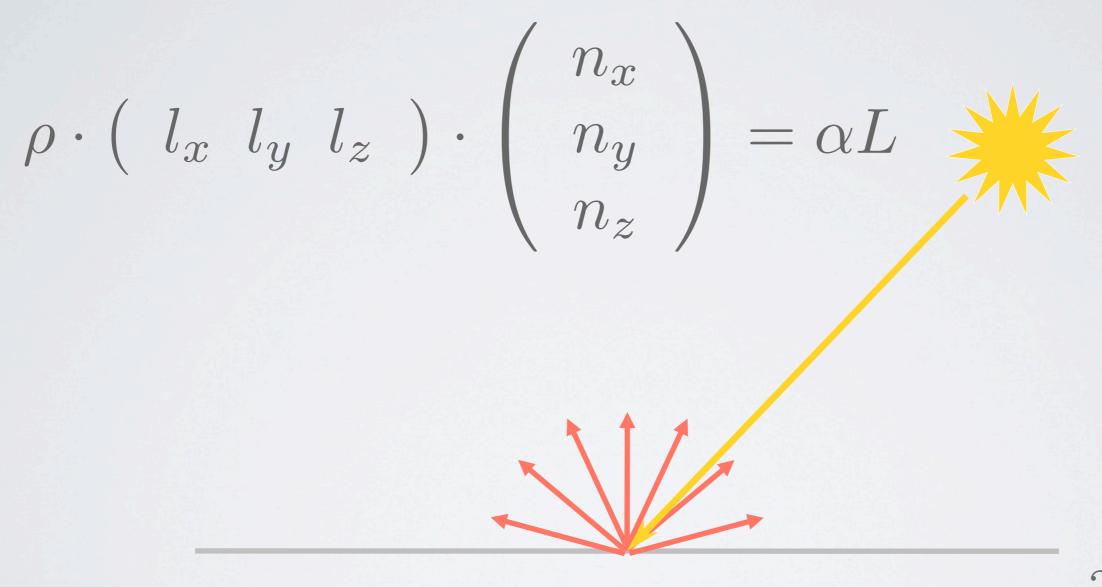


Lambertian Surfaces

 $L = \frac{\rho}{\pi} E$ $L = \frac{\rho}{\pi} \cdot \left\langle \vec{l}, \vec{n} \right\rangle \cdot \frac{I}{r^2}$

Lambertian Surfaces

 $L \sim \rho \cdot \left\langle \vec{l}, \vec{n} \right\rangle$

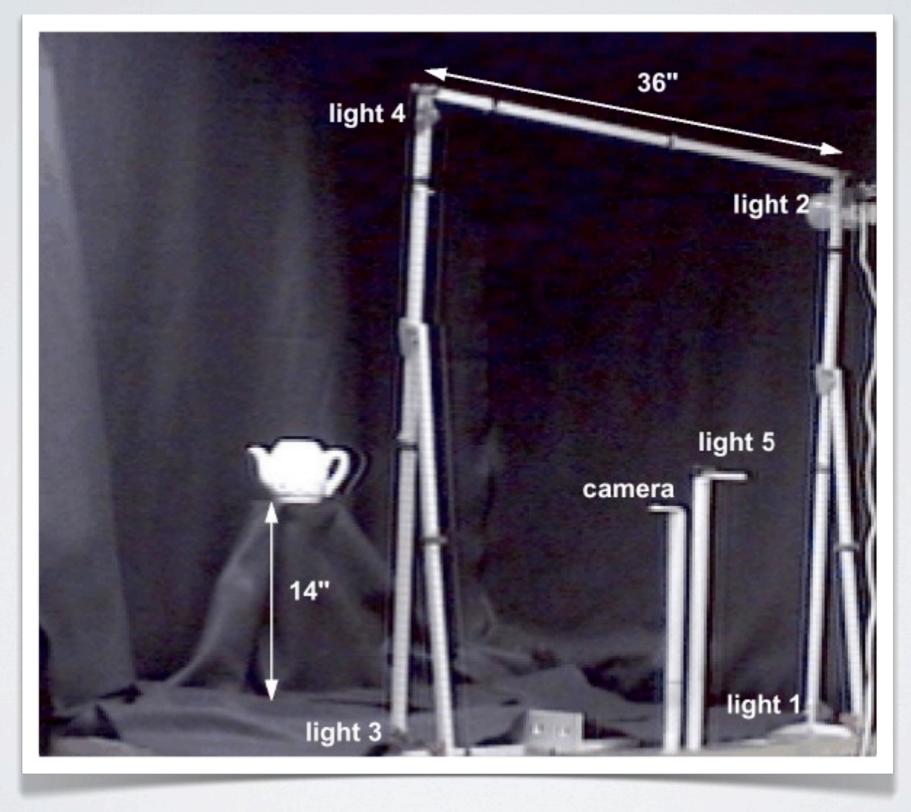


 α subsumes camera properties, light source brightness, r^2 ρ and \vec{n} are unknown

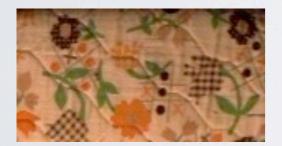
$$\left(\begin{array}{cc}l_{x} \ l_{y} \ l_{z}\end{array}\right) \cdot \left(\begin{array}{c}\rho \cdot n_{x}\\\rho \cdot n_{y}\\\rho \cdot n_{z}\end{array}\right) = \alpha L$$

 $\begin{pmatrix} l_{1,x} & l_{1,y} & l_{1,z} \\ l_{2,x} & l_{2,y} & l_{2,z} \\ l_{3,x} & l_{3,y} & l_{3,z} \end{pmatrix} \cdot \begin{pmatrix} \rho \cdot n_x \\ \rho \cdot n_y \\ \rho \cdot n_z \end{pmatrix} = \alpha \begin{pmatrix} L_1 \\ L_2 \\ L_3 \end{pmatrix}$

- In practice, use more light sources
 - discard darkest observations: shadowed
 - discard brightest observations: not Lambertian
 - use least-squares solution for over-determined system

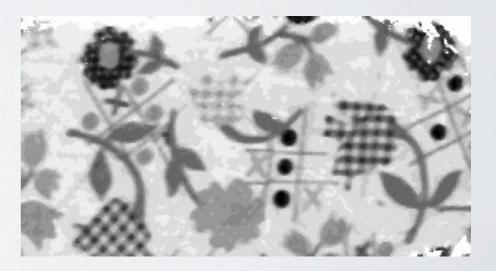


Input images



Estimated normals (lit)

Estimated albedo



[Rushmeier et al., 1997]

Monday, December 14, 2009

Practical considerations:

- illumination: flashes vs. steady light sources
 - subtract dark frame
- calibrate: light source positions
 - either build or measure (mirror balls)
- calibrate: light source intensities
 - move same light source: very precise
 - observe on known reflectance target: more flexible
- some pre-computation possible

- good:
 - fast (real-time)
 - high resolution (one normal vector per pixel!)

- bad:
 - normals only
 - active light only

- like photometric stereo, but with one image and one light source only!
- useful for astronomy etc.
- underconstrained problem. Assume:
 - uniform, known albedo
 - known illumination
 - smooth variation in surface normal

- Further simplifications:
 - Camera far from object: (x, y) in image = (x, y) in world

• z(x, y) denotes the depth in pixel

Definitions:
Let
$$p := \frac{\partial}{\partial x} z$$
, $q := \frac{\partial}{\partial y} z$

Then, $\begin{pmatrix} 1 \\ 0 \\ p \end{pmatrix}$ and $\begin{pmatrix} 0 \\ 1 \\ q \end{pmatrix}$ are tangents, and the normal is

$$\vec{n} = \frac{1}{\sqrt{1+p^2+q^2}} \begin{pmatrix} 1\\0\\p \end{pmatrix} \times \begin{pmatrix} 0\\1\\q \end{pmatrix}$$

Definitions:
Let
$$p := \frac{\partial}{\partial x} z$$
, $q := \frac{\partial}{\partial y} z$

Then, $\begin{pmatrix} 1 \\ 0 \\ p \end{pmatrix}$ and $\begin{pmatrix} 0 \\ 1 \\ q \end{pmatrix}$ are tangents, and the normal is

$$\vec{n} = \frac{1}{\sqrt{1+p^2+q^2}} \begin{pmatrix} -p \\ -q \\ 1 \end{pmatrix}$$

Definitions:

Let

$$R(p,q) := \rho \cdot \left\langle \vec{l}, \frac{1}{\sqrt{1+p^2+q^2}} \begin{pmatrix} -p \\ -q \\ 1 \end{pmatrix} \right\rangle \cdot \frac{1}{\alpha}$$

be the radiance for a hypothesis of p and q, and

L

be the radiance in the captured picture.

Minimize the functional:

$$\int_{A} \left(L - R(p,q) \right)^{2} + \lambda (|\nabla p|^{2} + |\nabla q|^{2}) \, dx \, dy$$

Data term Smoothness Term

for a control parameter λ

Shape from Shading $\int_{A} (L - R(p,q))^{2} + \lambda (|\nabla p|^{2} + |\nabla q|^{2}) dx dy$

Solve by iteration:

- $\mbox{ \ \ }$ initialize with an estimate for p and q
- after step k, set

$$p_{k+1} = \overline{p}_k + \frac{1}{4\lambda} \left(L - R(p_k, q_k) \right) \frac{\partial R(p_k, q_k)}{\partial p}$$
$$q_{k+1} = \overline{q}_k + \frac{1}{4\lambda} \left(L - R(p_k, q_k) \right) \frac{\partial R(p_k, q_k)}{\partial q}$$

for local averages $\,\overline{p}\,$ and $\,\overline{q}\,$

• iterate

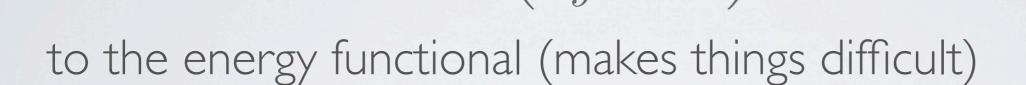
- Problems:
 - end of computation not necessarily a global optimum
 - boundary conditions need to be chosen (enforce after each iteration)
- for a consistent surface,

$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x} \quad \Rightarrow \quad \frac{\partial p}{\partial y} = \frac{\partial q}{\partial x}$$

but this is not necessarily the case

 $\left(\frac{\partial p}{\partial u} - \frac{\partial q}{\partial x}\right)^2$

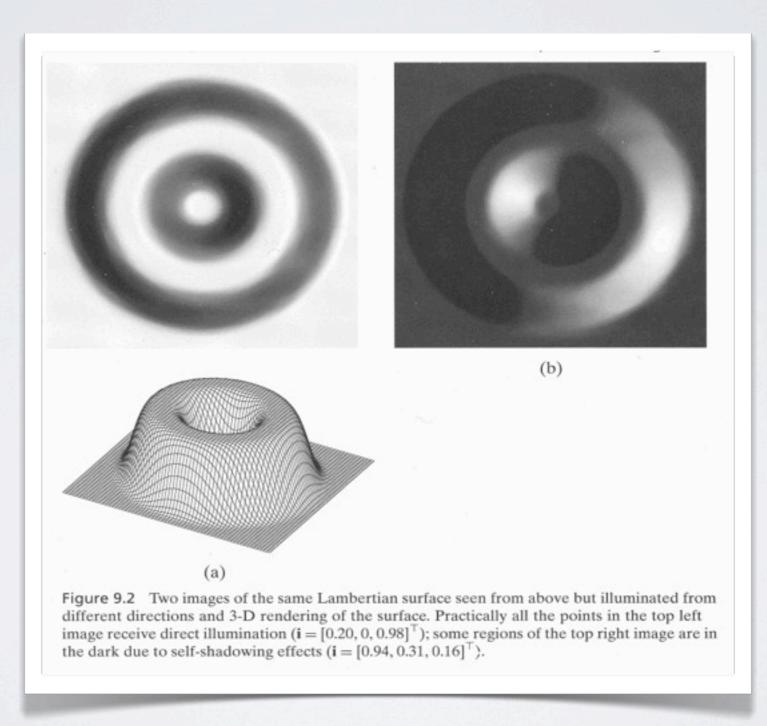
• Enforce constraint in functional: add



- Maintain constraint throughout optimization
 - after each iteration, project p and q to closest integrable function pair (in Fourier space)

Shape form shading

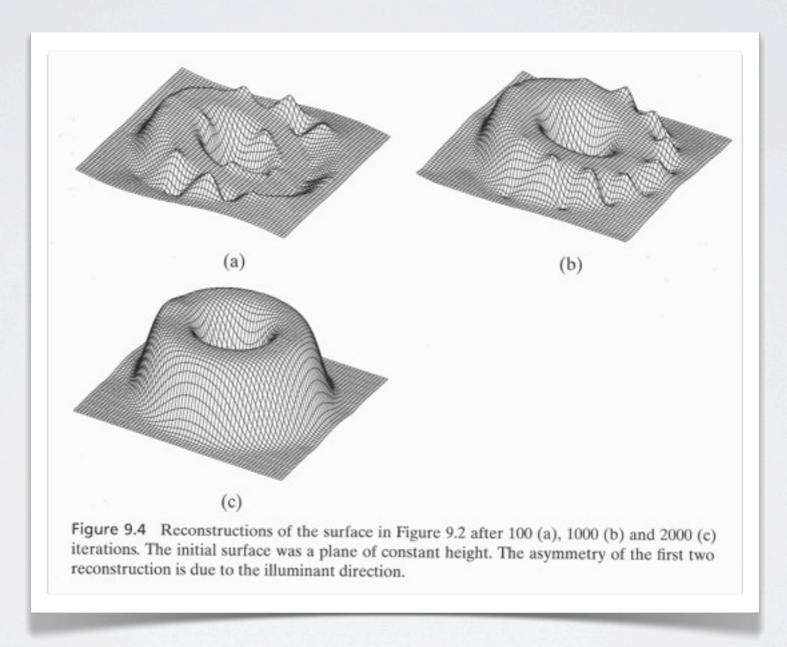
When consistent, p and q can be integrated to yield z:



[Trucco and Verri, 1998]

Shape form shading

When consistent, p and q can be integrated to yield z:



[Trucco and Verri, 1998]

Limitations

- material properties
- occlusions (shadows)
- how to know albedo and light intensity?
 - further assumptions needed

Conclusions

- appearance can be used to estimate shape
 - assumptions required, Lambertian common

• photometric stereo is precise, but active light required

• shape from shading can be useful where stereo is impossible

Knowing more ...

• with more assumptions, you can know more about the shape

- a statistical model + a single image can give you
 - shape
 - texture + colors
 - additional semantics ...

[Blanz and Vetter, 1999]

Knowing more ...

Video source: http://mi.informatik.uni-siegen.de/movies/siggraph99.mpg

Questions ?