sig
type t
type dim = int
val pp :
(Format.formatter -> int -> unit) ->
Format.formatter -> Polynomial.Monomial.t -> unit
val mul :
Polynomial.Monomial.t -> Polynomial.Monomial.t -> Polynomial.Monomial.t
val one : Polynomial.Monomial.t
val mul_term :
Polynomial.Monomial.dim ->
int -> Polynomial.Monomial.t -> Polynomial.Monomial.t
val singleton : Polynomial.Monomial.dim -> int -> Polynomial.Monomial.t
val power : Polynomial.Monomial.dim -> Polynomial.Monomial.t -> int
val enum :
Polynomial.Monomial.t -> (Polynomial.Monomial.dim * int) BatEnum.t
val of_enum :
(Polynomial.Monomial.dim * int) BatEnum.t -> Polynomial.Monomial.t
val equal : Polynomial.Monomial.t -> Polynomial.Monomial.t -> bool
val compare : Polynomial.Monomial.t -> Polynomial.Monomial.t -> int
val pivot :
Polynomial.Monomial.dim ->
Polynomial.Monomial.t -> int * Polynomial.Monomial.t
val div :
Polynomial.Monomial.t ->
Polynomial.Monomial.t -> Polynomial.Monomial.t option
val lcm :
Polynomial.Monomial.t -> Polynomial.Monomial.t -> Polynomial.Monomial.t
val lex :
Polynomial.Monomial.t -> Polynomial.Monomial.t -> [ `Eq | `Gt | `Lt ]
val deglex :
Polynomial.Monomial.t -> Polynomial.Monomial.t -> [ `Eq | `Gt | `Lt ]
val degrevlex :
Polynomial.Monomial.t -> Polynomial.Monomial.t -> [ `Eq | `Gt | `Lt ]
val block :
(Polynomial.Monomial.dim -> bool) list ->
(Polynomial.Monomial.t -> Polynomial.Monomial.t -> [ `Eq | `Gt | `Lt ]) ->
Polynomial.Monomial.t -> Polynomial.Monomial.t -> [ `Eq | `Gt | `Lt ]
val term_of :
'a Syntax.context ->
(Polynomial.Monomial.dim -> 'a Syntax.term) ->
Polynomial.Monomial.t -> 'a Syntax.term
end