
Numerical Invariants via Abstract Machines⍟

Zachary Kincaid

Princeton University

Abstract. This paper presents an overview of a line of recent work
on generating non-linear numerical invariants for loops and recursive
procedures. The method is compositional in the sense that it operates
by breaking the program into parts, analyzing each part independently,
and then combining the results. The fundamental challenge is to devise
an effective method for analyzing the behavior of a loop given the results
of analyzing its body. The key idea is to separate the problem into two:
first we approximate the loop dynamics by an abstract machine, and then
symbolically compute the reachability relation of the abstract machine.

1 Introduction

Compositional recurrence analysis (CRA) is a method for generating numeri-
cal invariant for loops [17, 25, 26]. The goal of CRA is to compute a transition
formula that over-approximates the behavior of the program. CRA analyzes pro-
grams bottom-up, in the style of an effective denotational semantics: we syntac-
tically decompose the program into parts, compute a transition formula for each
part independently, and then compose the results. The composition operators
for transition formulas correspond to the familiar regular expression operations
of sequencing, choice, and iteration.

The essence of the analysis is the iteration operator. Given a transition for-
mula that over-approximates the body of a loop, the iteration operator com-
putes a transition formula that over-approximates any number of iterations of
the loop. CRA accomplishes this by extracting recurrence relations from a transi-
tion formula using an SMT solver, and then computing the closed form of those
recurrences. Using this strategy, CRA can compute rich numerical invariants,
including polynomial and exponential equations and inequations.

This paper gives an alternate account for this strategy, which is based on
extracting an abstract machine that simulates the loop body, and then comput-
ing a closed form for the reachability relation of that abstract machine (thus we
replace “recurrence relations” with the broader notion of “abstract machine”).
Seen in this light, CRA is an answer to the question given some simple model of
computation that admits a closed representation of the reachability relation, how
can we make use of it in program analysis?

Secondly, this paper describes how the compositional approach to program
analysis can be used to analyze recursive procedures [25]. A key idea is to exploit

⍟ This version corrects some errors that appeared in the SAS’18 paper.

2 Z. Kincaid

the two-phase structure of the iteration operator: we can detect and enforce
convergence of procedure summaries using widening and equivalence operations
on abstract machines.

The remainder of the paper is organized as follows. §2 gives a short introduc-
tion to compositional program analysis. The technical core of the paper is §3,
which gives a recipe for analyzing loops by computing the reachability relation
of an abstract machine that simulates its body. §4 illustrates how abstract ma-
chines can be used to analyze programs with (recursive) procedures. §5 surveys
related work, and §6 concludes.

2 Outline

We begin by defining a simple structured programming language:

x ∈ Var

e ∈ Expr ::= x | n ∈ Z | e1 + e2 | e1e2

c ∈ Cond ::= e1 ≤ e2 | e1 = e2 | c1 ∧ c2 | c1 ∨ c2 | ¬c
P ∈ Program ::= x := e | P1;P2 | if c then P1 else P2 | while c do P

Our goal is to compute, for any given program P , a transition formula TFJP K
that over-approximates its behavior. A transition formula is a logical formula
over the program variables Var and a set of primed copies Var′, representing the
values of the program variables before and after executing a program. In the
following, we will make use of several different languages for expressing transi-
tion formulas. For the sake of concreteness, we give a definition of polynomial
arithmetic transition formulas, PolyTF, below:

s, t ∈ PolyTerm ::= x ∈ Var | x′ ∈ Var′ | y ∈ BoundVar | λ ∈ Q | s+ t | st
F,G ∈ PolyTF ::= s ≤ t | s = t | s < t | c1 ∧ c2 | c1 ∨ c2 | ∃y ∈ N.F | ∃y ∈ Z.F

For any given program P , a transition formula TFJP K can be computed by
recursion on syntax:

TFJx := eK , x′ = e ∧
∧

y6=x∈X

y′ = y

TFJif c then P1 else P2K , (c ∧TFJP1K) ∨ (¬c ∧TFJP2K)

TFJP1;P2K , ∃X ∈ Z.TFJP1K[Var′ 7→ X] ∧TFJP2K[Var 7→ X]

TFJwhile c do P K , (c ∧TFJP K)⍟ ∧ (¬c[Var 7→ Var′])

where (−)⍟ is an iteration operator: a function that computes an approximation
of the transitive closure of a transition formula. Thus, the essential problem
involved in designing a program analysis in this style is to define the iteration
operator.

Numerical Invariants via Abstract Machines 3

3 Approximating Loops with Abstract Machines

This section outlines a general strategy for loop summarization which is based on
decomposing the problem into two: (1) find an abstract machine that simulates
the action of the transition formula, and (2) express the reachability relation of
the abstract machine as a transition formula. We then describe compositional
recurrence analysis as an instance of this strategy. We begin with an example.

Example 3.1 Consider the program P given below

while (i < n) do

Body

i := i + 1

if (y < z)

y := y + i - 1

else

z := z + i - 1

Recall that TFJP K = (i < n ∧TFJBodyK)⍟ ∧ n ≤ i, where (−)⍟ is an iteration
operator (yet to be defined) and

TFJBodyK ≡ i < n ∧ i′ = i + 1 ∧
(

(y < z ∧ y′ = i + 1 ∧ z′ = z)
∨ (z ≤ y ∧ y′ = y ∧ z′ = z + 1)

)
.

The formula F , i < n∧TFJBodyK defines a transition relation R ⊆ Z4×Z4

on the state space Z4, where each vector u =
[
i y z n

]T
corresponds to an

assignment of values to the program variables i, y, z, and n. The behavior of
F is difficult to analyze directly, so instead we will approximate by a simpler
system that is more amenable to analysis. We observe that F is simulated by
the affine transformation

f(x) =

1 0 0
1 1 0
0 0 1

x +

1
0
0

where the correspondence between the state space of F (i.e., Z4) and the state
space of f (i.e., Q3) is given by the linear transformation

S =

1 0 0 0
0 1 1 0
0 0 0 1

 1st dimension corresponds to i

2nd dimension corresponds to y + z

3rd dimension corresponds to n

That is, we have that for every u and u′ in Z4 such that u may transition to u′

via F , we have Su′ = f(Su). Phrased differently, we have

F |=

1 0 0 0
0 1 1 0
0 0 0 1

i′

y′

z′

n′

 =

1 0 0
1 1 0
0 0 1

1 0 0 0
0 1 1 0
0 0 0 1

i

y

z

n

+

1
0
0

 or,

4 Z. Kincaid

F |= i′ = i + 1 ∧ (y′ + z′) = (y′ + z′) + i ∧ n′ = n . (1)

The analysis of affine systems is classical. We can compute the following
symbolic representation of the transitive closure of the transition relation defined
by f :

c`(f) = ∃k ∈ N.x′1 = x1 + kx2 +
k(k + 1)

2
∧ x′2 = x2 + k ∧ x′3 = x3

Since f simulates the behavior of F , then c`(f) simulates the behavior of any
number of iterations of F . Thus, if we define

F⍟ = ∃k ∈ N.y′ + z′ = y + z + ki +
k(k + 1)

2
∧ i′ = i + k ∧ n′ = n (2)

then we may take TFJP K = F⍟∧i′ ≥ n′ to be a conservative over-approximation
the behavior of P . ⌟

3.1 Approximating formulas by machines

Definition 1. An (m×n)-formula is a formula whose free variables range over
m + n free variables x1, ..., xm and x′1, ..., x

′
n. For any (m × n)-formula F , we

use RJF K to denote the relation that F represents:

RJF K , {(u,v) ∈ Qm×Qn : {x1 7→ u1, ..., xn 7→ un, x
′
1 7→ v1, ..., x

′
n 7→ vn} |= F}

We call an (n × n)-formula an n-transition formula. We use TF to denote
the set of all transition formulas (for any n).

If F is an (m × n)-formula and y = y1, ..., ym and z = z1, ..., zn are vectors
of variables of lengths m and n, we use F (y, z) to denote the result of replacing
each xi with yi and each x′i with zi. If F is an (` × m)-formula and G is an
(m × n)-formula, we use F � G to denote the relational composition of F and
G:

F �G , ∃y.F (x,y) ∧G(y,x′) .

We use F̆ to denote the reversal of F , the (m× `)-formula defined by

F̆ , F [x1 7→ x′1, ..., xm 7→ x′m, x
′
1 7→ x1, ..., , x

′
n 7→ xn]

Abstract machines Fix some class of abstract machines M, which can be
understood as some kind of discrete dynamical system with a numerical state
space. We suppose that we are given two functions that related abstract machines
to transition formulas:

– γ : M → TF, which maps each machine M to its concretization γ(M), a
transition formula that represents the action of one step of M .

– c` : M→ TF, which maps each machine M it its closure c`(M), a transition
formula that represents the action of any number of steps of M .

Numerical Invariants via Abstract Machines 5

We assume that for any machine M in M, we have RJγ(M)K∗ = RJc`(M)K.1

Example 3.2 Let 1-LT denote the set of affine transformations of the form
f(x) = Ax + b, where A is a lower triangular matrix with 1’s on the diagonal
(e.g., the function f in Example 1). For any f(x) = Ax + b in 1-LT, define
the concretization of f simply as γ(f) , x′ = Ax + b. The readability relation
of an affine transformation in 1-LT can be expressed in polynomial arithmetic
(i.e, PolyTF) and computed in polytime. The procedure is a specialization of the
classical one for computing the reachability relation of an affine transformation
(which in general does not have a closed form in PolyTF)—see [17, §III.B] for
details. ⌟

Simulation Simulation relations are a standard approach to relating the be-
havior of dynamical systems [31]. Below we specialize the theory to our setting.

Definition 2. Let F be an m-transition formula and let G be an n-transition
formula. A simulation formula is an (m × n)-formula S such that for all
(u,v) ∈ RJSK, for every u′ such that (u,u′) ∈ RJF K, there exists some v′ such
that (v,v′) ∈ RJGK and (u′,v′) ∈ RJSK. Diagrammatically,

u v

u′ v′

F

G

S S

∀

∃

We use S : F G to denote that S is simulation formula from F to G.

Example 3.3 Consider Example 1. For ease of reading, we will refer to original
variables i, y, z, n of the system rather than their canonical names x1, x2, x3, x4.
The simulation between relation between the transition formula F and the affine
map f is

S , x′1 = y + z ∧ x′2 = i ∧ x′3 = n .

This is a special simulation in that it is functional (each state of the program
is related to exactly one state of the affine system), but this need not be the
case. For example, suppose that we know (perhaps by running a sign analysis
on the program P) that i is non-negative. Let G = F ∧ i ≥ 0. While we cannot
understand the effect of the loop on y and z as an affine transformation, we can
so understand lower and upper bounds on them: y and z are incremented by at
least 0 and at most i. This abstraction can be realized by the function g ∈ 1-LT

1 For our purposes, the weaker hypothesis RJγ(M)K∗ ⊆ RJc`(M)K is sufficient. We
use equality to emphasize that M is expected to be a class of machines that is easy
to analyze.

6 Z. Kincaid

and simulation T defined by

g(x) =

1 0 0 0 0 0 0
1 1 0 0 0 0 0
0 0 1 0 0 0 0
0 1 0 1 0 0 0
0 1 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

x +

1
0
0
0
0
0
0

T =

x1 = i

∧ x2 = y + z

∧ x3 = n

∧ x4 ≥ y

∧ x5 ≥ z

∧ x6 ≥ −y
∧ x7 ≥ −z

⌟

The last ingredient we need to be able to define (although not yet compute)
an approximate transitive closure operator is a way of understanding an (n×m)
simulation formula and a m-transition formula as an n-transition formula. This
is given by conjugation:

Definition 3. Let F be an (m×m)-formula and let S be an (n×m)-formula.
The conjugation of F by S, S . F , is the (n× n)-formula defined by

S . F , ∀y.∃y′.S(x,y)⇒ (F (y,y′) ∧ S(x′,y′))

Example 3.4 In Example 1, conjugation of f by S yields the formula in Eq (1),
and conjugation of c`(f) by S yields the formula in Eq (2). ⌟

Observe that S . F is the strongest among all n-transition formulas G such
that S is a simulation from G to F . That is, we have

1. S : (S . F) F
2. For all n-transition formulas G, we have S : G F if and only if G |= S .F .

Moreover, note that R . (S . F) |= (R ◦ S) . F and id . F ≡ F , where id denotes
an identity relation of appropriate dimension.

Finally, we arrive at the central observation underlying our approach:

Observation 1. Let F be a transition formula, let M be an abstract machine,
and let S be a simulation formula such that S : F M . Let F⍟ = S . c`(M).
Then RJF K∗ ⊆ RJF⍟K.

That is: provided we can compute for any transition formula F an abstract
machine M and a simulation S such that S : F M , we can over-approximate
the transitive closure of F with the transition formula S . c`(M).

3.2 Computing (best) abstractions

We now turn to the question of what it means for an abstract machine to be a
best abstraction of a transition formula. Consider again Example 1: the function
f is an affine transformation in 1-LT that simulates the given loop, but might
there be a better one, whose closure yields more precise information about the
loop?

Numerical Invariants via Abstract Machines 7

To investigate this problem, it is convenient to use the language of category
theory. Fix some class of simulation formulas S, which is quotiented by logical
equivalence, contains all identity relations, and is closed under composition (e.g.,
S might be the class of simulation formulas that correspond to linear transfor-
mations as in Example 1). We construct a category TFS where the objects are
transition formulas (or perhaps transition formulas of a certain kind, e.g., for-
mulas expressed in Presburger arithmetic), and the morphisms S : F → G are
simulations belonging to S such that S : F G. Similarly, we may construct
a category of abstract machines MS similarly where the objects are machines
and the morphisms are S-simulations. The concretization function γ can now
be extended to a functor γ : MS → TFS , which maps each machine M in M
to its concretization γ(M), and maps each simulation S : M → M ′ between
M-machines to the same simulation S : γ(M) → γ(M ′) between their associ-
ated transition formulas. The closure function c` can likewise be extended to a
functor. The question of whether the transition formulas in TF have best ab-
stractions in M with respect to simulations in S can now be phrased as: does
the functor γ have a left-adjoint?

Recall that a functor α : TFS →MS is left-adjoint to γ if there is a pair of
natural transformations

– η : 1TFS ⇒ γ ◦ α (the unit of the adjunction)
– ε : α ◦ γ ⇒ 1MS (the counit of the adjunction)

such that (1) for all transition formulas F , we have 1α(F) = εα(F)◦α(ηF) and (2)
for all abstract machinesM , we have 1γ(M) = γ(εM)◦ηγ(M). The best abstraction
of a transition formula F can be conceived of as the pair (α(F), ηF) consisting of
an abstract machine α(F) (which machine best captures the behavior of F) and
a simulation ηF : F → γ(α(F)) (how the machine α(F) captures the behavior
of F). The sense in which (α(F), ηF) is best abstraction is that for any other
machine M and simulation S, there is a unique simulation S : α(F)→ M such
that S = γ(S) ◦ ηF ; that is, the following diagram commutes:

γ(M)

F γ(α(F))
ηF

S
γ(S)

As a consequence, we have that there is no other machine and simulation that
yields a better approximation of the transitive closure of a formula F than
(α, ηF). This is summarized in the following:

Proposition 1. Let F be a transition formula, let M be a machine, and let
S : F → γ(M) be a simulation. Then ηF . c`(α(F)) |= S . c`(M).

Proof. Let S be the unique simulation S : α(F)→M such that S = γ(S) ◦ ηF .
Since c` is a functor, we have a simulation c`(S) : c`(α(F))→ c`(M). It follows

8 Z. Kincaid

that

c`(α(F)) |= c`(S) . c`(M) = S . c`(M) .

Conjugating by ηF yields

ηF . c`(α(F)) |= ηF .
(
S . c`(M)

)
|=
(
ηF ◦ S

)
. c`(M)

= S . c`(M) .

Summing up, we have the following recipe for summarizing loops:

Let S be a class of simulation relations, TFS be a category
of transition formulas, MS be a category of abstract machines,
α : TFS →MS , γ : MS → TFS , and c` : MS → TFS be functors, and
let η : 1TFS ⇒ γ ◦ α be a natural transformation such that
1. RJc`(F)K = RJγ(F)K∗
2. α is left adjoint to γ, with unit η.

Then the function F⍟ , ηF . c`(α(F)) is an iteration operator.

If we derive an iteration operator (−)⍟ by following this recipe, then it is
an easy consequence of Proposition 1 that (−)⍟ is monotone: if F |= G, then
F⍟ |= G⍟. This property makes it easier to reason about the behavior of program
analyses.

3.3 Compositional recurrence analysis

We will now present compositional recurrence analysis as a sequence of examples
of this recipe.

Example 3.5 The main content of [17, §III, A, B, C] is an algorithm for finding
an affine transformation in 1-LT that simulates a transition formula. We can
give a more fine-grained description of the algorithm by describing the sense in
which it is best.

The input to the algorithm is a linear arithmetic transition formula F . The
algorithm operates in two steps. The first is to compute a best abstraction of
F as an affine transformation in 1-LT with respect to simulations of the form
x′ = Sx where each row of S is a standard basis vector. The fact that the rows of
S are required to be standard basis vectors is due to the fact that they correspond
to variables that satisfy a recurrence relation. In the light of the perspective of
abstract machines, we see an opportunity for improving the analysis by allowing
S to be an arbitrary linear transformation—computing best abstractions in this
setting is an easy extension of the existing algorithm, and yields a strictly more
precise analysis.

Numerical Invariants via Abstract Machines 9

Having fixed a 1-LT affine transformation f(x) = Ax+b (of some dimension,
say n) and a simulation S with S : F f , the second step of the algorithm is
to compute a best abstraction of F as a 1-LT affine transformation of the form

g(x) =

[
A 0
B I

]
x +

[
b
c

]
with respect to linear simulations of the form x′1 = Sx ∧ x′2 ≥ S′x, where x′1
denotes the vector of variables x′1...x

′
n and x′2 denotes the vector of variables

x′n+1...x
′
m. That is, we allow the affine transformation f to be extended with

additional dimensions (n + 1 through m), which act as upper bounds on linear
terms over the variables of F (as illustrated in Example 3). This allows CRA
to infer invariant polynomial inequations as well as equations. The fact that the
lower right corner of the transformation matrix g is restricted to be the identity
is a non-trivial restriction: new abstraction techniques are required to lift the
assumption while retaining the property of being a best abstraction. ⌟

Example 3.6 Affine transformations can be used to capture the relationship
between the pre-state and post-state of a loop body, but information about
the guard of the loop (i.e., relationships between pre-state variables) is lost.
This information can be recovered via a pre-state formula, which is a transition
formula in which only the pre-state variables x1, x2, ... appear [17, §III, D]. The
concretization of a pre-state formula G is G itself, the closure is defined by

c`(G) = ∃k ∈ N.(k = 0 ∧
∧
x∈X

x′ = x) ∨ (k > 0 ∧G) .

The abstraction function is α(F) = ∃x′.F , which is best with respect to identity
simulations. Post-state formulas can be defined dually.

Given a formula F , we can combine the pre-state, post-state, and affine
transformation abstractions of F , by separately computing the closure of each
abstraction and then conjoining the results. Better still, we can take a kind of
reduced product [14] of the abstractions by synchronizing on the existentially
quantified iteration variable k. This combination yields the compositional recur-
rence analysis described in [17]. ⌟

Note that although compositional recurrence analysis computes (best) ab-
stractions of linear formulas, the closure operator produces polynomial formu-
las. Before applying the abstraction functions, we first linearize the loop body
formula [17, §IV]. The abstraction function of CRA is not best for polynomial
arithmetic transition formulas (and no non-trivial abstraction function can be,
since integer polynomial arithmetic is undecidable), but the fact that the ab-
straction function is best for linear arithmetic suggests that information is lost
only because of incomplete reasoning about non-linear arithmetic.

Example 3.7 Affine maps capture non-linear behavior where non-linearity is a
function of time, but some systems exhibit non-linear behavior even in a single
step. Solvable polynomial maps are a class of abstract machines that can capture
some such behavior while still being relatively easy to reason about.

10 Z. Kincaid

Definition 4 ([35]). A function f : Qn → Qn is a solvable polynomial map
if there exists a partition of {1, ..., n}, x1 ∪· · · ∪ xm with xi ∩ yj = ∅ for i 6= j
such that for all 1 ≤ i ≤ m we have

fyi
(x) = Aiy

t
i + pi(y1, ...,yi−1)

where fxi
(x) denotes f(x) projected onto the coordinates, xi, Ai ∈ Q|xi|×|xi|

and pi ∈ Q[x1, ...,xi−1].

The concretization of a solvable polynomial is γ(f) , x′ = f(x). The closure
c`(f) of f is defined to be the reachability relation of f—[26] gives an algo-
rithm for computing a closed form representation of the reachability relation of
a solvable polynomial map in a logic involving polynomials, exponenentials, and
also operators in the Berg’s operational calculus [5], which can be treated as
uninterpreted function symbols by an SMT solver.

The abstraction algorithm presented in [26] begins by computing a conjunc-
tion of polynomial equations and inequalities that are entailed by the formula.
Since the logic is undecidable, we can make no guarantees about the quality
of this approximation (however, it is best in the sense that, if the formula is
expressed in linear arithmetic, then we compute the convex hull of the formula).
A simulating solvable polynomial map is then extracted from this system of
equations and inequalities in two steps, just as in [17]. The first step computes
the best abstraction of a transition formula as a solvable polynomial map with
respect to simulations of the form x′ = Sx. The abstraction is best under the
assumption that the input transition formula is of the form

∧n
i=1 pi(x,x

′) = 0,
where each pi is a polynomial and such that

1. For every polynomial p(x,x′) such that F |= p(x,x′) = 0, we have p in the
ideal generated by {p1, ..., pn}.

2. F is total—for every u there exists some v such that F (u,v) holds.

Similarly to [17], we then extend this solvable polynomial map with additional
dimensions to capture inequalities. However, the algorithm for computing in-
equalities makes use of polyhedral widening, so it need not be a best abstrac-
tion. ⌟

4 Control flow and Recursive Procedures

This section explains how the style of analysis in §2 can be extended to a more
realistic program model that has unstructured control flow and recursive pro-
cedures. The foundation is the algebraic view of program analysis pioneered by
Tarjan, who developed an efficient algorithm for computing solutions to intrapro-
cedural program analysis problems [39, 40]. The extension to the interprocedural
setting is based on [25], which exploits abstract machines to compute approxi-
mations of recursive procedures.

We begin by formulating a new program model on top of the simple program-
ming language defined in §2. Let Proc denote a finite set of procedure names.
Define a syntactic category of instructions:

Numerical Invariants via Abstract Machines 11

x ∈ Var e ∈ Expr c ∈ Cond p ∈ Proc
Instr ::= x := t | assume(c) | assert(c) | call p

A control flow graph G = (V,∆, en, ex) consists of a finite set of nodes V , a finite
set of instruction-labeled edges ∆ ⊆ V × Instr× V , a distinguished entry vertex
en, and a distinguished exit vertex ex. A program P = {Gp}p∈Proc consists of a
collection of control flow graphs indexed by procedure names.

The link from the effective denotational semantics of §2 to this program
model is through the medium of path expressions: regular expressions that
represent paths through a program. For our purposes, we may define a path
expression to be a regular expression over the alphabet of instructions:

E ∈ PathExp ::= instr ∈ Instr | E1 + E2 | E1E2 | E∗ | 0 | 1

Suppose that we fix an iteration operator (−)⍟ : TF → TF that over-
approximates the transitive closure of a transition formula. Then given a path
expression E and a summary map S : Proc → TF that maps each procedure
to a transition formula, we can define a transition formula TFJEK(S) that over-
approximates the paths in the path expression:

TFJx := eK(S) , x′ = e ∧
∧

y6=x∈Var

y′ = y

TFJassume(c)K(S) , c ∧
∧

x∈Var

x′ = x

TFJassert(c)K(S) , TFJassume(c)K(S)

TFJcall pK(S) , S(p)

TFJE1 + E2K(S) = TFJE1K(S) ∨TFJE2K(S)

TFJE1E2K(S) = TFJE1K(S)�TFJE2K(S)

TFJE∗K(S) = TFJEK(S)⍟

TFJ1K(S) = TFJassume(0 = 0)K(S)

TFJ0K(S) = false

Tarjan gave an efficient algorithm for the single-source path expression prob-
lem: given a control flow graph Gp = (Vp, ∆p, enp, exp), compute for each vertex
v ∈ V a path expression PGp

[enp, v] representing the set of all paths from enp
to v in Gp. A summary for the procedure p may be computed by evaluating
TFJPGp [enp, exp]K(S), or we prove that an assertion (u, assert(c), v) never fails
by checking that TFJPGp

[enp, u]K(S)∧¬(c[X 7→ X ′]) is unsatisfiable. The näıve
definition of TFJ−K given above may use exponentially many transition formula
operations due to repeated sub-path expressions. By using memoization or path
compression, only linearly many operations are needed [39].

4.1 Interprocedural analysis

Tarjan’s algorithm assumes that we know how to compute a transition formula
for each instruction in the programming language. For a language with procedure

12 Z. Kincaid

calls, this means that we require as input a summary map S : Proc → TF.
For programs without recursive procedures, we can use Tarjan’s algorithm to
compute the summary map: first place the procedures in reverse topological
order p1, ..., pn (so that if pi calls pj then j < i), and then compute

S0 = λp.false

Si = Si−1{pi 7→ TFJPGpi
[enpi , expi]K(Si−1)}

The summary map Sn maps each procedure to a transition formula that over-
approximates its behavior.

For programs with recursive procedures, however, this process does not work.
For recursive procedures we can always fall back on iterative techniques for re-
solving fixed point equations [13] (as we did in [17]), but this is not a very
satisfying solution: we have a methodology for designing powerful invariant gen-
erators for loops (§3), and we would like to be able use this same methodology
to analyze recursion.

The first important development in this direction was the work of Reps et
al. [34], which showed that Tarjan’s algorithm could be used to compute sum-
maries for programs with linear recursion (i.e., in each path through each pro-
cedure, there is at most call instruction). The intuition behind their approach
is illustrated in Figure 1. Any path that contains a single function call, say
a(call bar)b, can be thought of as a pair consisting of a prefix a—a path from
entry to the call, and a continuation κ—a path from the call to exit. Call the
pair consisting of a and b a tensored path, and write it as a⊗ b. We can construct
a call graph CG where the vertices are the procedure foo and bar and there is an
edge from foo to bar labeled with the tensored path a⊗ b (corresponding to the
path in foo that calls bar) and similarly an edge from bar to foo labeled d⊗ e.
We also add a base vertex to the graph, and draw an edge from each procedure to
base representing the path on which there is no recursive call. Tarjan’s algorithm
can be used to compute for each procedure a regular expression over an alphabet
of tensored paths that represents the tensored paths from that procedure to exit.

PCG[foo, base] = ((a⊗ b)(d⊗ e))∗ (c⊗ 1) + ((a⊗ b)(d⊗ e))∗ (a⊗ b)(f ⊗ 1)

PCG[bar, base] = ((a⊗ b)(d⊗ e))∗ (c⊗ 1) + ((a⊗ b)(d⊗ e))∗ (a⊗ b)(f ⊗ 1)

These regular expressions represent the language of interprocedural paths through
their respective procedures, where each tensored path (for instance, the path
(a⊗ b)(d⊗ e)(a⊗ b)(d⊗ e)(c⊗ 1) which belongs to PCG[foo, base]), can be un-
derstood as an interprocedural path by reading the prefix of each tensor left-to-
right followed by the continuation of each tensor right-to-left (that is, the path
adadcebeb).

We can use transition formulas to represent the behavior of a program along
a path; we can also use them to represent the behavior of a program along a
tensored path, by using twice as many variables: one set of variables for the
prefix, and one set for the continuation. That is:

Numerical Invariants via Abstract Machines 13

enfoo

u1

u2

exfoo

a

call bar

b

c

Prefix

Continuation

(a) Procedure foo

enbar

v1

v2

exbar

d

call foo

e

f

(b) Procedure bar

base

foo bar

a
b

d
e

1c 1f

(c) Call graph CG

Fig. 1: A schematic recursive program with two procedures foo and bar, along
with its call graph labeled with tensored paths. Instructions labeling non-call
edges are abstracted away by letters.

Definition 5. Given two n-transition formulas F and G, their tensor product
F ⊗G is defined to be the (2n)-transition formula

F ⊗G , F ∧ (G[xi 7→ x′n+i, xi 7→ xn+i]
n
i=1)

Observe that we have (F1 ⊗G1)� (F2 ⊗G2) ≡ (F1 � F2)⊗ (G2 �G1), so that
composition of transition relations respects the left-to-right prefix, right-to-left
continuation interpretation of tensored paths.

Summaries for the procedures foo and bar may thus be obtained by recursion
on the regular expression of tensored paths, using the tensor product of tran-
sition formulas to interpret tensored paths, and finally converting the tensored
transition formula back into a transition formula using the following detensor
operator, which connects the prefix and continuation into a transition formula
representing an ordinary path:

D(T) ,

(
∃x′.

(
F ∧

n∧
i=1

x′i = x′i+n

))
[xn+i 7→ x′i]

n
i=1 .

That is, we have

S(foo) , D(TFJPCG[foo, base]K)

S(bar) , D(TFJPCG[bar, base]K)

(omitting the S argument to TFJ−K since call graph path expressions are free
of calls).

Unfortunately, this idea does not extend to non-linear recursive procedures,
so in the general case we must fall back on iterative methods for solving se-
mantic equations. Näıve application of the iterative method requires designing
an equivalence relation and widening operator for transition formulas. However,
this is at odds with our goal of generating invariants in expressive logics, for
which such operations are not readily available.

14 Z. Kincaid

[25] gives an alternate approach, which again exploits abstract machines.
The idea is that we can use widening and equivalence operators at the level
of abstract machines rather than transition formulas. Abstract machines have
simpler structure than general transition formulas and are more amenable to
this kind of operation.

Example 4.8 In [17], the iteration operator extracts an affine transformation f
and a linear simulation S. S . γ(f) is a formula of a particular kind: a convex
polyhedron. Widening operators for convex polyhedra are well known [15]. ⌟

Example 4.9 In [26], the iteration operator extracts a solvable polynomial map
f and a linear simulation S. The formula S .γ(f) is a conjunction of polynomial
equations and inequations. Such formulas can be represented precisely by the
wedge abstract domain, presented (along with its widening operator) in [26]. ⌟

The idea behind [25] is simple: each time we apply the iteration operator ⍟ to
a transition formula F , we will compute an abstract machine that simulates F .
Rather than using widening to ensure the convergence of the sequence of proce-
dures summaries for each procedure, we use widening to ensure the convergence
of the sequence of abstract machines for each loop. Soundness and termination of
this approach relies on the property that every recursive call is contained inside
some loop. Obviously, this need not be the case for the original program, but [25]
gives an alternative algorithm to Tarjan’s path expression algorithm that can be
used to obtain tensored path expressions for each procedure that do satisfy this
property.

5 Related work

5.1 Abstract machines with closure

This section surveys a selection of work that, seen through the lens of §3, com-
putes closure operators for some class of abstract machines.

Linear machines (Discrete) linear dynamical systems are a well-studied class
of machines, in which the state space is a vector space and the state evolves
by applying a linear transformation—i.e., the transition formula of a linear dy-
namical system is of the form x′ = Ax. A formula representing the reachability
relation of such a machine can be computed via symbolic matrix exponentiation:
c`(A) = ∃k ∈ N.x′ = Akx. A symbolic representation Ak can be expressed in
terms of exponential-polynomials, where the base of each exponential term is
drawn from the eigenvalues of A. However, since the eigenvalues of A may be
complex, it is desirable to consider simpler closed forms.

The question of when the reachability relation of an affine dynamical system
can be expressed in Presburger arithmetic was answered by Boigelot [8]. Boigelot
gave a procedure for computing Ak under the assumption that the multiplicative
monoid generated by A, {Ai : i ∈ N}, is finite. Boigelot gives necessary and

Numerical Invariants via Abstract Machines 15

sufficient conditions for an iterated affine map to be definable in Presburger
arithmetic, and also Presburger arithmetic extended with a single function Vr
mapping each integer z to the greatest power of r that divides z. Boigelot also
considers the case that the linear map is equipped with a polyhedral guard
(which can restrict the number of times the linear map is iterated), in which case
his conditions are necessary but not sufficient. Finkel and Leroux [18] extends
further to guards defined in Presburger arithmetic.

Jeannet et al. developed a technique for over-approximating the behavior of
linear dynamical systems, which is based on approximating the exponential of
the real Jordan form of the transition matrix by an abstract domain of template
polyhedron matrices [24].

An affine program consists of a finite graph where each edge is labeled by an
affine transformation. A special case of interest for our purposes is with only one
vertex: such an affine program corresponds to a transition formula of the form

x′ = A1x + b1 ∨· · · ∨ x′ = Amx + bm (3)

Haase and Halfon gave a polytime procedure for computing a Presburger for-
mula defining the reachability relation of affine programs for which each tran-
sition matrix is diagonal and has either 0 or 1 on the diagonal (i.e., an integer
vector addition system with states and resets) [20]. Müller-Olm and Seidl give
a procedure for computing the smallest affine space that contains the reachabil-
ity relation of affine programs [32]. Hrushovski et al. [21] gives a procedure to
compute the smallest algebraic variety that contains the reachability relation.

Ultimately periodic relations The transitive closure of difference-bound relations
[12, 11] and octagon relations [9] has been shown to be definable in Presburger
arithmetic, and computable in polytime [27]. The theory of ultimately periodic
relations unifies work on linear systems and difference-bound/octagon relations
[10].

Polynomial machines A solvable polynomial machine is a dynamical system
with a transition formula of the form

x′ = p1(x) ∨· · · ∨ x′ = pm(x) (4)

where each pi is a solvable polynomial map. Rodŕıguez-Carbonell and Kapur
[35] showed how to compute an algebraic variety that contains the reachability
relation of a solvable polynomial machine with a real spectrum. Kovács improves
upon this result, giving an algorithm for computing the smallest algebraic va-
riety that contains the reachability relation of a solvable polynomial machine
(without spectral assumptions), and further extends the technique to a broader
class of machines with non-polynomial assignments [28]. The class of machines
is extended even further in subsequent work by Humenberger et al. [22, 23].

5.2 Symbolic abstraction and abstract machines

Approximating programs by finite state machines using predicate abstraction is
a classical technique in software model checking [19, 4]. Kroening et al. [29] and

16 Z. Kincaid

Biallas et al. [6] present techniques for approximating the transitive closure of
loops using predicate abstraction.

Sinn et al. have considered the problem of computing approximations of
programs using vector addition systems [37] and difference-bound constraints
[38] in the context of resource bound analysis. The technique is based on guessing
a set of norms (integer-valued functions of the program state), which amounts
to finding a linear simulation.

Recurrence analysis Recurrence analysis is a family of program analysis tech-
niques initiated by Wegbreit, which approximate the behavior of loops by ex-
tracting recurrence relations from the program and computing their closed forms
[43]. It is closely related to the approach presented in this paper, with recurrence
relations serving an analogous role to abstract machines. Recurrence analysis is
a particularly prevalent technique in resource bound analysis, where the ability
to compute non-linear expressions representing resource usage (e.g., time com-
plexity) is crucial [16, 3, 1, 7].

Symbolic Abstraction There has been a body of work on computing best approx-
imations of a logical formulas within abstract domains. For a thorough overview
of symbolic abstraction in program analysis, see [41, 33]. Here we highlight a few
instances in which symbolic abstraction yields a complete instance of the recipe
from § 3:

– Difference bound / octagonal relations: the best abstraction of a transition
formula as a difference bound or octagonal relation with respect to identity
simulations can be computed using optimization modulo theories [36, 30].
Transitive closure can be computed using the methods of [12, 11, 9, 27].

– Lossy sums: the best abstraction of a transition formula in the form x′ ≤
x + b with respect to linear simulations can be computed using symbolic
abstraction in the domain of convex polyhedra [17, 42], and the method of
Ancourt et al. for finding linear recurrence inequations from polyhedra [2].

6 Conclusion

Abstract machines give a mechanism for developing compositional program anal-
yses that generate precise numerical invariants. There are two categories of work
that are directly related to advancing this paradigm:

– Inventing new classes of abstract machines that admit effective closure op-
erators, and which model interesting phenomena in dynamical systems.

– Developing techniques for computing best abstractions of transition formulas
by abstract machines. E.g., there are a number of models (some of which
referenced in §5) for which the best abstraction problem has not yet been
investigated.

Numerical Invariants via Abstract Machines 17

References

1. Albert, E., Arenas, P., Genaim, S., Puebla, G.: Automatic inference of upper
bounds for recurrence relations in cost analysis. In: SAS. pp. 221–237 (2008)

2. Ancourt, C., Coelho, F., Irigoin, F.: A modular static analysis approach to affine
loop invariants detection. Electron. Notes Theor. Comput. Sci. 267(1), 3–16 (Oct
2010)

3. Bagnara, R., Pescetti, A., Zaccagnini, A., Zaffanella, E.: PURRS: Towards com-
puter algebra support for fully automatic worst-case complexity analysis. CoRR
abs/cs/0512056 (2005)

4. Ball, T., Majumdar, R., Millstein, T., Rajamani, S.K.: Automatic predicate ab-
straction of c programs. In: PLDI. pp. 203–213 (2001)

5. Berg, L.: Introduction to the Operational Calculus. North-Holland Publishing Co.,
Amsterdam (1967)

6. Biallas, S., Brauer, J., King, A., Kowalewski, S.: Loop leaping with closures. In:
SAS. pp. 214–230 (2012)

7. Blanc, R., Henzinger, T.A., Hottelier, T., Kovács, L.: ABC: Algebraic bound com-
putation for loops. In: Int. Conf. on Logic for Programming, Art. Intell., and Rea-
soning. pp. 103–118 (2010)

8. Boigelot, B.: On iterating linear transformations over recognizable sets of integers.
Theor. Comp. Sci. 309(1), 413–468 (2003)

9. Bozga, M., Gı̂rlea, C., Iosif, R.: Iterating octagons. In: TACAS. pp. 337–351 (2009)
10. Bozga, M., Iosif, R., Konečný, F.: Fast acceleration of ultimately periodic relations.

In: CAV. pp. 227–242 (2010)
11. Bozga, M., Iosif, R., Lakhnech, Y.: Flat parametric counter automata. In: Au-

tomata, Languages and Programming. pp. 577–588 (2006)
12. Comon, H., Jurski, Y.: Multiple counters automata, safety analysis and presburger

arithmetic. In: CAV. pp. 268–279 (1998)
13. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static

analysis of programs by construction or approximation of fixpoints. In: POPL
(1977)

14. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
POPL. pp. 269–282 (1979)

15. Cousot, P., Halbwachs, N.: Automatic discovery of linear constraints among vari-
ables of a program. In: POPL (1978)

16. Debray, S.K., Lin, N., Hermenegildo, M.V.: Task granularity analysis in logic pro-
grams. In: PLDI. pp. 174–188 (1990)

17. Farzan, A., Kincaid, Z.: Compositional recurrence analysis. In: FMCAD (2015)
18. Finkel, A., Leroux, J.: How to compose Presburger-accelerations: Applications to

broadcast protocols. In: FST TCS. pp. 145–156 (2002)
19. Graf, S., Saidi, H.: Construction of abstract state graphs with pvs. In: CAV. pp.

72–83 (1997)
20. Haase, C., Halfon, S.: Integer vector addition systems with states. In: Reachability

Problems. pp. 112–124 (2014)
21. Hrushovski, E., Ouaknine, J., Pouly, A., Worrell, J.: Polynomial invariants for

affine programs. In: Logic in Computer Science. pp. 530–539 (2018)
22. Humenberger, A., Jaroschek, M., Kovács, L.: Automated generation of non-linear

loop invariants utilizing hypergeometric sequences. In: ISSAC (2017)
23. Humenberger, A., Jaroschek, M., Kovács, L.: Invariant generation for multi-path

loops with polynomial assignments. In: VMCAI. pp. 226–246 (2018)

18 Z. Kincaid

24. Jeannet, B., Schrammel, P., Sankaranarayanan, S.: Abstract acceleration of general
linear loops. In: POPL. pp. 529–540 (2014)

25. Kincaid, Z., Breck, J., Forouhi Boroujeni, A., Reps, T.: Compositional recurrence
analysis revisited. In: PLDI (2017)

26. Kincaid, Z., Cyphert, J., Breck, J., Reps, T.: Non-linear reasoning for invariant
synthesis. PACMPL 2(POPL), 54:1–54:33 (2018)

27. Konečný, F.: Ptime computation of transitive closures of octagonal relations. In:
Tools and Algorithms for the Construction and Analysis of Systems. pp. 645–661
(2016)

28. Kovács, L.: Reasoning algebraically about P-solvable loops. In: TACAS (2008)
29. Kroening, D., Sharygina, N., Tonetta, S., Tsitovich, A., Wintersteiger, C.: Loop

summarization using abstract transformers. In: ATVA. pp. 111–125 (2008)
30. Li, Y., Albarghouthi, A., Kincaid, Z., Gurfinkel, A., Chechik, M.: Symbolic opti-

mization with smt solvers. In: POPL. pp. 607–618 (2014)
31. Milner, R.: Communication and Concurrency. Prentice-Hall, Inc., Upper Saddle

River, NJ, USA (1989)
32. Müller-Olm, M., Seidl, H.: Precise interprocedural analysis through linear algebra.

In: POPL (2004)
33. Reps, T., Thakur, A.: Automating abstract interpretation. In: VMCAI (2016)
34. Reps, T., Turetsky, E., Prabhu, P.: Newtonian program analysis via tensor product.

In: POPL (2016)
35. Rodŕıguez-Carbonell, E., Kapur, D.: Automatic generation of polynomial loop in-

variants: Algebraic foundations. In: ISSAC. pp. 266–273 (2004)
36. Sebastiani, R., Tomasi, S.: Optimization in smt with LA(Q) cost functions. In:

IJCAR. pp. 484–498 (2012)
37. Sinn, M., Zuleger, F., Veith, H.: A simple and scalable static analysis for bound

analysis and amortized complexity analysis. In: CAV. pp. 745–761 (2014)
38. Sinn, M., Zuleger, F., Veith, H.: Difference constraints: An adequate abstraction

for complexity analysis of imperative programs. In: FMCAD. pp. 144–151 (2015)
39. Tarjan, R.E.: Fast algorithms for solving path problems. J. ACM 28(3), 594–614

(Jul 1981)
40. Tarjan, R.E.: A unified approach to path problems. J. ACM 28(3), 577–593 (Jul

1981)
41. Thakur, A.: Symbolic Abstraction: Algorithms and Applications. Ph.D. thesis,

Comp. Sci. Dept., Univ. of Wisconsin, Madison, WI (Aug 2014), tech. Rep. 1812
42. Thakur, A., Reps, T.: A method for symbolic computation of abstract operations.

In: CAV (2012)
43. Wegbreit, B.: Mechanical program analysis. Commun. ACM 18(9), 528–539 (Sep

1975)

