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Multi-threaded program verification

• Unbounded/unknown number of threads
• E.g., webservers, computations parallelized over N processors, ...

• Single template T executed by every thread

TN = T ∥ T ∥· · · ∥ T︸ ︷︷ ︸
N times

• Goal: prove that a given program is free of (certain types of) errors.
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global t : int // ticket counter
global s : int // service counter
local m : int // my ticket
init s≤ t

m := t++ // acquire ticket
do {

// busy wait
} until (m <= s)
// critical section
s++ // bump service counter



Proving correctness of a multi-threaded program is hard.

∀i, j ∈ Thread.pc(i) ̸= init ∧ pc(j) ̸= init ∧ m(i) = m(j) ⇒ i = j

Proving correctness of a trace of a multi-threaded program is easy.
• Re-use sequential verification!

Program is correct ⇐⇒ each of its traces are correct.
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wait

crit

exit

m := t++

[m <= s]

[m > s]

s++
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init

wait

crit

exit

m := t++

[m <= s]

[m > s]

s++

m := t++ : 1

m := t++ : 2

[m <= s] : 1

[m <= s] : 2

Error trace∈ (Σ×N)∗

Commands

Thread IDs
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init

wait

crit

exit

m := t++

[m <= s]

[m > s]

s++

{s ≤ t}
m := t++ : 1

{s ≤ m(1) ∧ m(1) < t}

m := t++ : 2

{s ≤ m(1)∧m(1) < m(2)}

[m <= s] : 1

{s ≤ m(1)∧m(1) < m(2)}

[m <= s] : 2
{false}

Intermediate assertions
Craig interpolation,1

Abstract post,2

Dual narrowing,3

...
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“Small theorems” from sequential verifiers

{s ≤ t}
m := t++ : 1
{s ≤ m(1)}

{true}
m := t++ : 1
{m(1) < t}

{m(1) < t}
m := t++ : 2
{m(1) < m(2)}

{s ≤ m(1) ∧ m(1) < m(2)}
[m <= s] : 2

{false}

{s ≤ m(1) ∧ m(1) < m(2)}
s++ : 1

{s ≤ m(2)}
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Sequencing

{s ≤ t}
m := t++ : 1
{m(1) < t}
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TN = T ∥ T ∥· · · ∥ T︸ ︷︷ ︸
N times
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[m <= s] : 2
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[2 7→ 1]

[1 7→ 2]
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Symmetry

TN = T ∥ T ∥· · · ∥ T︸ ︷︷ ︸
N times

{s ≤ m(1)∧m(1) < m(2)}
[m <= s] : 2

{false}

{s ≤ m(2)∧m(2) < m(3)}
[m <= s] : 3

{false}

[1 7→ 2]

[2 7→ 1]

[1 7→ 2]

[2 7→ 3]



Conjunction

{m(1) < t}
m := t++ : 3
{m(1) < m(3)}

{m(2) < t}
m := t++ : 3
{m(2) < m(3)}

{m(1) < t ∧ m(2) < t}
m := t++ : 3

{m(1) < m(3) ∧ m(2) < m(3)}
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A Proof space is a set of valid Hoare triples which is closed under
sequencing, symmetry, and conjunction.

• Finitely generated: there is a finite “basis” which generates the space
Proof rule: if there exists a proof space H such that for all error traces τ

{pre}τ{false} ∈ H,

then the program is correct.
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Relative completeness

Theorem

Every inductive invariant (with control variables & universal
thread quantification) corresponds to a proof space.
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Predicate automata (PA)

Vocabulary (Q, ar) is a finite relational first-order vocabulary

Q = {p, q}, ar(p) = 2, ar(q) = 1

p(1, 2)

p(1, 2) ∧ p(2, 3) ∧ q(1)true

Configurations
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Proof checking

• For any H, {τ : {pre}τ{false} ∈ H} is recognized by a PA A(H)

• For any program, set of error traces is recognized by a PA Err
• PA languages are closed under intersection and complement
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Proof checking

• For any H, {τ : {pre}τ{false} ∈ H} is recognized by a PA A(H)

• For any program, set of error traces is recognized by a PA Err
• PA languages are closed under intersection and complement

Proof space inclusion reduces to PA emptiness

∀τ ∈ Error trace.{pre}τ{false} ∈ H
⇐⇒

Err ∩ A(H) = ∅



Theorem

The emptiness problem for predicate automata is undecidable.
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The emptiness problem for monadic predicate automata (∀q ∈ Q, ar(q) ≤ 1)
is decidable.
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Proof spaces: a theoretical foundation for verifying multi-threaded
programs

• Prove traces, not programs
• Sample - generalize - check loop

• Proof generalization via a simple deductive system
• Complete relative to inductive invariants

• Reduce “proof checking” to an automata-theoretic problem
• Interesting decidable sub-problem
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