Proofs That Count

Zachary Kincaid¹

Azadeh Farzan¹ Andreas Podelski²

¹University of Toronto ²University of Freiburg

January 22, 2014

Software verification

Goal

Given a program P and a specification $\varphi_{pre}/\varphi_{post}$, prove

$$\{\varphi_{\mathbf{pre}}\}P\{\varphi_{\mathbf{post}}\}$$

Software verification

Concurrent

Goai

Given a program P and a specification $\varphi_{pre}/\varphi_{post}$, prove

$$\{\varphi_{\mathbf{pre}}\}P\{\varphi_{\mathbf{post}}\}$$

Unboundedly many threads

Goai

Given a program P and a specification $\varphi_{pre}/\varphi_{post}$, prove

$$\{\varphi_{\mathbf{pre}}\}P\{\varphi_{\mathbf{post}}\}$$

January 22, 2014

Unboundedly many threads

Goai

Given a program P and a specification $\varphi_{pre}/\varphi_{post}$, prove

$$\{\varphi_{\mathbf{pre}}\}P\{\varphi_{\mathbf{post}}\}$$

 Proofs for concurrent programs sometimes make use of counting arguments.

Goar

Unboundedly many threads

Given a program P and a specification $\varphi_{pre}/\varphi_{post}$, prove

$$\{\varphi_{\mathbf{pre}}\}P\{\varphi_{\mathbf{post}}\}$$

- Proofs for concurrent programs sometimes make use of counting arguments.
 - · Readers/Writers protocol: "the number of active readers"

Goar

Unboundedly many threads

Given a program P and a specification $\varphi_{pre}/\varphi_{post}$, prove

$$\{\varphi_{\mathbf{pre}}\}P\{\varphi_{\mathbf{post}}\}$$

- Proofs for concurrent programs sometimes make use of counting arguments.
 - · Readers/Writers protocol: "the number of active readers"
 - Ticket protocol: "the number of processes with a smaller ticket"

Z. Kincaid (U. Toronto) Proofs That Count January 22, 2014

What is a counting argument?

A counting argument is a proof that a program satisfies its specification which uses auxiliary *counters*:

- · Can be used in assertions.
- Auxiliary (or ghost) variables: do not appear in the program.
 Think: Owicki-Gries.

```
Precondition: \{s=t=0\}
1: t++
2: assert(t > s)
3: s++
```

```
Precondition: \{s = t = 0\}
1: t++
2: assert(t > s) | 1: t++
2: assert(t > s) | 2: assert(t > s)
3: s++
```

There is *no* Owicki-Gries proof that does not use auxiliary variables.

```
Precondition: \{s=t=0\}
1: t++
2: assert(t > s) | 1: t++
2: assert(t > s) | ... | 1: t++
3: s++ | 3: s++
```

```
Precondition: \{s=t=0\}
1: t++
2: assert(t > s) | 1: t++
2: assert(t > s) | ... | 1: t++
3: s++ | 3: s++
```

Inductive invariant:

$$\#2 + \#3 = t - s$$

```
Precondition: \{s=t=0\}
1: t++
2: assert(t > s) | 1: t++
2: assert(t > s) | ... | 1: t++
3: s++ | 3: s++
```

Inductive invariant:

$$\#2 + \#3 = t - s$$

$$\# \text{ of threads at line 2}$$

$$\# \text{ of threads at line 3}$$

Challenges

How do we formalize counting arguments?

Challenges

How do we formalize counting arguments?

How do we synthesize counting arguments automatically?

```
Precondition: \{s = t = 0\}
1: t++
2: assert(t > s) | 1: t++
3: s++ | 2: assert(t > s) | ... | 1: t++
3: s++
```

Error traces

6/15

```
Precondition: \{s=t=0\}
```


Z. Kincaid (U. Toronto) Proofs That Count January 22, 2014

Precondition: $\{s = t = 0\}$

 $\forall \tau \in \mathcal{L}(\mathsf{Proof}).\{\varphi_{\mathsf{pre}}\}\tau\{\varphi_{\mathsf{post}}\}$

Precondition: $\{s = t = 0\}$

 $\forall \tau \in \mathcal{L}(\mathsf{Proof}).\{\varphi_{\mathsf{pre}}\}\tau\{\varphi_{\mathsf{post}}\}\$

Precondition: $\{s = t = 0\}$

Proof rule

If there exists a *Proof* such that $\mathcal{L}(Program) \subseteq \mathcal{L}(Proof)$, then $\{\varphi_{\mathbf{pre}}\}Program\{\varphi_{\mathbf{post}}\}$

Counting proof = counting automaton + inductive annotation

Counting proof = counting automaton + inductive annotation

• Counting automaton = DFA with additional N-valued counter variables.

Assume one counter variable for this talk.

Transitions are labeled by a counter action $\in \{inc, dec, tst, nop\}$

Z. Kincaid (U. Toronto) Proofs That Count January 22, 2014 7 / 15

Counting proof = counting automaton + inductive annotation

• Counting automaton = DFA with additional N-valued counter variables.

Assume one counter variable for this talk.

Transitions are labeled by a counter action $\in \{inc, dec, tst, nop\}$

k = 0

Counting proof = counting automaton + inductive annotation

• Counting automaton = DFA with additional \mathbb{N} -valued counter variables. Assume one counter variable for this talk.

Transitions are labeled by a counter action $\in \{inc, dec, tst, nop\}$

Counting proof = counting automaton + inductive annotation

• Counting automaton = DFA with additional \mathbb{N} -valued counter variables. Assume one counter variable for this talk.

Transitions are labeled by a counter action $\in \{inc, dec, tst, nop\}$

Counting proof = counting automaton + inductive annotation

• Counting automaton = DFA with additional N-valued counter variables.

Assume one counter variable for this talk.

Transitions are labeled by a counter action $\in \{inc, dec, tst, nop\}$

Counting proof = counting automaton + inductive annotation

Counting automaton = DFA with additional N-valued counter variables.
 Assume one counter variable for this talk.
 Transitions are labeled by a counter action ∈ {inc, dec, tst, nop}

Counting proof = counting automaton + inductive annotation

Counting automaton = DFA with additional N-valued counter variables.
 Assume one counter variable for this talk.

Transitions are labeled by a counter action $\in \{inc, dec, tst, nop\}$

Counting proof = counting automaton + inductive annotation

Counting automaton = DFA with additional N-valued counter variables.
 Assume one counter variable for this talk.
 Transitions are labeled by a counter action ∈ {inc, dec, tst, nop}

Counting proof = counting automaton + inductive annotation

- Counting automaton = DFA with additional N-valued counter variables.
 Assume one counter variable for this talk.
 Transitions are labeled by a counter action ∈ {inc, dec, tst, nop}
- Inductive annotation = assignment of assertions to counting automaton states (think: Floyd/Hoare annotation)

Counting proof = counting automaton + inductive annotation

- Counting automaton = DFA with additional N-valued counter variables.
 Assume one counter variable for this talk.
 Transitions are labeled by a counter action ∈ {inc, dec, tst, nop}
- Inductive annotation = assignment of assertions to counting automaton states (think: Floyd/Hoare annotation)

Counting proof = counting automaton + inductive annotation

- Counting automaton = DFA with additional N-valued counter variables.
 Assume one counter variable for this talk.
 Transitions are labeled by a counter action ∈ {inc, dec, tst, nop}
- Inductive annotation = assignment of assertions to counting automaton states (think: Floyd/Hoare annotation)

Counting proof = counting automaton + inductive annotation

- Counting automaton = DFA with additional N-valued counter variables.
 Assume one counter variable for this talk.
 Transitions are labeled by a counter action ∈ {inc, dec, tst, nop}
- Inductive annotation = assignment of assertions to counting automaton states (think: Floyd/Hoare annotation)

Counting proof = counting automaton + inductive annotation

- Counting automaton = DFA with additional N-valued counter variables.
 Assume one counter variable for this talk.
 Transitions are labeled by a counter action ∈ {inc, dec, tst, nop}
- Inductive annotation = assignment of assertions to counting automaton states (think: Floyd/Hoare annotation)

Counting proof = counting automaton + inductive annotation

- Counting automaton = DFA with additional N-valued counter variables.
 Assume one counter variable for this talk.
 Transitions are labeled by a counter action ∈ {inc, dec, tst, nop}
- Inductive annotation = assignment of assertions to counting automaton states (think: Floyd/Hoare annotation)

Counting proofs

Counting proof = counting automaton + inductive annotation

- Counting automaton = DFA with additional N-valued counter variables.
 Assume one counter variable for this talk.
 Transitions are labeled by a counter action ∈ {inc, dec, tst, nop}
- Inductive annotation = assignment of assertions to counting automaton states (think: Floyd/Hoare annotation)

Challenges

How do we formalize counting arguments?

How do we synthesize counting arguments automatically?

Goal

Given a finite set of traces Tr and a spec $\varphi_{\mathsf{pre}}/\varphi_{\mathsf{post}}$, construct a counting proof $\langle A, \varphi \rangle$ such that $\mathit{Tr} \subseteq \mathcal{L}(A)$.

Constructing a counting proof requires us to find a counting automaton and an inductive annotation *simultaneously*.

- · Insight #1: Bounded synthesis is decidable
 - Bound the size of the counting proof (think: # of states)
 - Encode bounded proof synthesis as a formula in a decidable theory (QF UFNRA)
 - Use uninterpreted function symbols to encode the transition relation.
 - Use Farkas' lemma to generate constraints searching for an inductive annotation (á la Colón et al.^a)

^aLinear Invariant Generation using Non-linear Constraint Solving, CAV'03

Goal

Given a finite set of traces Tr and a spec $\varphi_{\mathsf{pre}}/\varphi_{\mathsf{post}}$, construct a counting proof $\langle A, \varphi \rangle$ such that $\mathit{Tr} \subseteq \mathcal{L}(A)$.

Constructing a counting proof requires us to find a counting automaton and an inductive annotation *simultaneously*.

 Insight #2: Occam's Razor – search for a "small" proof. More likely to generalize & use counters!

$$\tau = t++; s++; t++; [t < s]$$

Goal

Given a finite set of traces Tr and a spec $\varphi_{\mathsf{pre}}/\varphi_{\mathsf{post}}$, construct a counting proof $\langle A, \varphi \rangle$ such that $\mathit{Tr} \subseteq \mathcal{L}(A)$.

Constructing a counting proof requires us to find a counting automaton and an inductive annotation *simultaneously*.

 Insight #2: Occam's Razor – search for a "small" proof. More likely to generalize & use counters!

$$\tau = t++; s++; t++; [t \le s]$$

Goal

Given a finite set of traces Tr and a spec $\varphi_{\mathsf{pre}}/\varphi_{\mathsf{post}}$, construct a counting proof $\langle A, \varphi \rangle$ such that $\mathit{Tr} \subseteq \mathcal{L}(A)$.

Constructing a counting proof requires us to find a counting automaton and an inductive annotation *simultaneously*.

 Insight #2: Occam's Razor – search for a "small" proof. More likely to generalize & use counters!

$$\tau = t++; s++; t++; [t \le s]$$

Control flow nets

Control flow net = Petri net + program commands

Control flow net = Petri net + program commands

Represents the set of error traces for the program.

Proof checking

Theorem

Let P be a control flow net, and let A be a counting automaton. The problem of determining whether $\mathcal{L}(P) \subseteq \mathcal{L}(A)$ is decidable.

Proof checking

Theorem

Let P be a control flow net, and let A be a counting automaton. The problem of determining whether $\mathcal{L}(P) \subseteq \mathcal{L}(A)$ is decidable.

· Reduction to Petri net language inclusion.

Summary

We can automate synthesis of a class of auxiliary variables!

What's next?

- · Implementation & Evaluation
 - Practical algorithm for inclusion?
 - Ultimately, inclusion relies on a reduction to Petri net reachability.
 - Practical nonlinear constraint solving?
- · Synthesize other classes of auxiliary variables?