Proofs That Count
Zachary Kincaid'
Azadeh Farzan'! Andreas Podelski?

LUniversity of Toronto
2University of Freiburg

January 22, 2014

Z. Kincaid (U. Toronto) Proofs That Count January 22, 2014 1/15



Software verification

Given a program P and a specification ./ p0st, pProve

{Ppre} P{ppost}
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Software verification

Concurrent . Jnboundedly many threads

Goal

Given a program P and a specification ../ p0st, prove

{Ppre} P{ppost}

* Proofs for concurrent programs sometimes make use of counting
arguments.

» Readers/Writers protocol: “the number of active readers”
« Ticket protocol: “the number of processes with a smaller ticket”
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What is a counting argument?

A counting argument is a proof that a program satisfies its specification
which uses auxiliary counters:

« Can be used in assertions.

* Auxiliary (or ghost) variables: do not appear in the program.
Think: Owicki-Gries.

Z. Kincaid (U. Toronto) Proofs That Count January 22, 2014 3/15



Example

Precondition: {s =t =0}

1: t++
2: assert(t > s)
3: s++
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Example

Precondition: {s =t = 0}

1: t++ ottt
2: assert(t > s) 2: assert(t > s)
3: s++ 3: s++

There is no Owicki-Gries proof that
does not use auxiliary variables.
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Example

Precondition: {s—-t—-O}
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Example

Precondition: {s =t = 0}

1: t++ t++ 1: t++
2: assert(t > s) 2: assert(t > s) 2: assert(t > s)
3: s++ 3: s++ 3: s++

Inductive invariant:

H2+#3=t—s

# of threads at line 2 p— .
# of threads at line 3
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Challenges

How do we formalize counting arguments?
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How do we synthesize counting arguments automatically?
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Language-theoretic approach

Precondition: {s=t= 0}
1: t++ t++

1: t++
2: assert(t > s) 2: assert(t > s) co- || 2: assert(t > s)
3: s++ 3: s++ 3: s++
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Language-theoretic approach
Precondition: {s = ¢t =0}

t++; [t < s]

(eIl —— t++; t++; s++; [t < s]

t++; s++; t++; [t < sl
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Language-theoretic approach
Precondition: {s =t =0}

t++; [t < s]

MOGEIll—— t++; t++; s++; [t < s] C

t++; s++; t++; [t < s)

b

VT < E(Proof){gppre}'r{@post}

Proof rule

If there exists a Proof such that £(Program) C L(Proof), then
{Ppre}Program{‘\Ppost}
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Counting proofs

Counting proof = counting automaton + inductive annotation
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Counting proofs

Counting proof = counting automaton + inductive annotation
* Counting automaton = DFA with additional N-valued counter variables.

Assume one counter variable for this talk.
Transitions are labeled by a counter action € {inc, dec, tst, nop}

s++/dec t++/inc s++/nop t++/nop

[t < sl/tst [t < sl/nop
start —{ q1
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Challenges

How do we formalize counting arguments?

How do we synthesize counting arguments automatically?

Z. Kincaid (U. Toronto) Proofs That Count January 22, 2014 8/15



“Learning” a counting argument

Program P
Spec wpre/Ppost

—>| Choose a trace 7

Does 7 satisfy Yes

‘Ppre/ Ppost ?

X
(—

Add rto Tr.

No
Let 7 be a cex

Does the proof
accept all traces?

4—[ Construct a counting proof for Tr. ]
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Constructing a counting proof

Given a finite set of traces Tr and a spec pre/ppost, CONSstruct a counting
proof (A, ) such that Tr C L(A).

Constructing a counting proof requires us to find a counting automaton
and an inductive annotation simulianeously.

+ Insight #1: Bounded synthesis is decidable

+ Bound the size of the counting proof (think: # of states)

+ Encode bounded proof synthesis as a formula in a decidable theory
(QF_UFNRA)

+ Use uninterpreted function symbols to encode the transition relation.

+ Use Farkas’ lemma to generate constraints searching for an inductive
annotation (& /a Col6n et al.?)

Linear Invariant Generation using Non-linear Constraint Solving, CAV’03
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Constructing a counting proof

Given a finite set of traces Tr and a spec pre/ppost, CONSstruct a counting
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Constructing a counting proof requires us to find a counting automaton
and an inductive annotation simultaneously.

* Insight #2: Occam’s Razor - search for a “small” proof. More likely
to generalize & use counters!

T = t++;s++ t++; [t < s]
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s++/nop t++/nop

SodPo
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{0=1t—s} s++/nop {1=t—s} {false}
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Control flow nets

Control flow net = Petri net 4+ program commands
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Control flow nets

Control flow net = Petri net 4+ program commands

1: t++ 1: t++ 1: t++
2: assert(t > s) 2: assert(t > s) -+ || 2: assert(t > s)
3: s++ 3: s++ 3: s++

% T+ ( —[s++] O
h b

[s < t] O

I3

Represents the set of error traces for the program.
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Proof checking

Theorem

Let P be a control flow net, and let A be a counting automaton. The
problem of determining whether L(P) C L(A) is decidable.
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Proof checking

Theorem

Let P be a control flow net, and let A be a counting automaton. The
problem of determining whether L(P) C L(A) is decidable.

 Reduction to Petri net language inclusion.
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Summary

We can automate synthesis of a class of auxiliary variables!

Choose a trace T

Program P
Spec gpre/Ppost

No Does T satisfy Yes
X — wpre/Ppost? Add 7 to Tr.
No
Let 7 be a cex
Yes Does the proof :
\/ — accept all traces? 4—[ Construct a counting proof for Tr. ]

Bounded synthesis
Reduce to Petri net lan- +
guage inclusion Search for small proof
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What's next?

* Implementation & Evaluation
+ Practical algorithm for inclusion?
* Ultimately, inclusion relies on a reduction to Petri net reachability.
+ Practical nonlinear constraint solving?

+ Synthesize other classes of auxiliary variables?
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