Proofs That Count
Zachary Kincaid'
Azadeh Farzan'! Andreas Podelski?

LUniversity of Toronto
2University of Freiburg

January 22, 2014

Z. Kincaid (U. Toronto) Proofs That Count January 22, 2014 1/15

Software verification

Given a program P and a specification ./ p0st, pProve

{Ppre} P{ppost}

Z. Kincaid (U. Toronto) Proofs That Count January 22, 2014 2/15

Software verification

Concurrent

Goal

Given a program P and a specification ./ p0st, prove

{Ppre} P{ppost}

Z. Kincaid (U. Toronto) Proofs That Count

January 22, 2014 2/15

Software verification

Concurrent Unboundedly many threads

Goal

Given a program P and a specification ../ p0st, prove

{Ppre} P{ppost}

Z. Kincaid (U. Toronto) Proofs That Count

January 22, 2014 2/15

Software verification

Concurrent Unboundedly many threads

Goal

Given a program P and a specification ../ p0st, prove

{Ppre} P{ppost}

* Proofs for concurrent programs sometimes make use of counting
arguments.

Z. Kincaid (U. Toronto) Proofs That Count

January 22, 2014 2/15

Software verification

Concurrent Unboundedly many threads

Goal

Given a program P and a specification ../ p0st, prove

{Ppre} P{ppost}

* Proofs for concurrent programs sometimes make use of counting
arguments.

» Readers/Writers protocol: “the number of active readers”

Z. Kincaid (U. Toronto) Proofs That Count

January 22, 2014

2/15

Software verification

Concurrent . Jnboundedly many threads

Goal

Given a program P and a specification ../ p0st, prove

{Ppre} P{ppost}

* Proofs for concurrent programs sometimes make use of counting
arguments.

» Readers/Writers protocol: “the number of active readers”
« Ticket protocol: “the number of processes with a smaller ticket”

Z. Kincaid (U. Toronto) Proofs That Count

January 22, 2014

2/15

What is a counting argument?

A counting argument is a proof that a program satisfies its specification
which uses auxiliary counters:

« Can be used in assertions.

* Auxiliary (or ghost) variables: do not appear in the program.
Think: Owicki-Gries.

Z. Kincaid (U. Toronto) Proofs That Count January 22, 2014 3/15

Example

Precondition: {s =t =0}

1: t++
2: assert(t > s)
3: s++

Z. Kincaid (U. Toronto) Proofs That Count January 22, 2014 4/15

Example

Precondition: {s =t =0}
1:

1 t++ T+
2: assert(t > s) 2: assert(t > s)
3: s++ 3: s++

Z. Kincaid (U. Toronto) Proofs That Count January 22, 2014 4/15

Example

Precondition: {s =t = 0}

1: t++ ottt
2: assert(t > s) 2: assert(t > s)
3: s++ 3: s++

There is no Owicki-Gries proof that
does not use auxiliary variables.

Z. Kincaid (U. Toronto) Proofs That Count January 22, 2014 4/15

Example

Precondition: {s =t =0}
1:

1: t++ t++ 1: t++
2: assert(t > s) 2: assert(t > s) co- || 2: assert(t > s)
3: s++ 3: s++ 3: s++

Z. Kincaid (U. Toronto) Proofs That Count January 22, 2014 4/15

Example

Precondition: {s—-t—-O}

1: t++ Tttt 1: t++
2: assert(t > s) 2: assert(t > s) <o || 2: assert(t > s8)
3: s++ 3: s++ 3: s++

Inductive invariant:

Z. Kincaid (U. Toronto) Proofs That Count January 22, 2014 4/15

Example

Precondition: {s =t = 0}

1: t++ t++ 1: t++
2: assert(t > s) 2: assert(t > s) 2: assert(t > s)
3: s++ 3: s++ 3: s++

Inductive invariant:

H2+#3=t—s

of threads at line 2 p— .
of threads at line 3

Z. Kincaid (U. Toronto) Proofs That Count January 22, 2014 4/15

Challenges

How do we formalize counting arguments?

Z. Kincaid (U. Toronto) Proofs That Count January 22, 2014 /1

Challenges

How do we formalize counting arguments?

How do we synthesize counting arguments automatically?

Z. Kincaid (U. Toronto) Proofs That Count January 22, 2014 /1

Language-theoretic approach

Precondition: {s=t= 0}
1: t++ t++

1: t++
2: assert(t > s) 2: assert(t > s) co- || 2: assert(t > s)
3: s++ 3: s++ 3: s++

Z. Kincaid (U. Toronto)

Proofs That Count

January 22, 2014 6/15

Language-theoretic approach
Precondition: {s = ¢t =0}

t++; [t < s]

(eIl —— t++; t++; s++; [t < s]

t++; s++; t++; [t < sl

Z. Kincaid (U. Toronto) Proofs That Count January 22, 2014

Language-theoretic approach
Precondition: {s = ¢t =0}

t++; [t < s]

(eIl —— t++; t++; s++; [t < s]

t++; s++; t++; [t < sl

VT € E(PI’OOf){(ppre}T{cppost}

Z. Kincaid (U. Toronto) Proofs That Count January 22, 2014 6/15

Language-theoretic approach
Precondition: {s = ¢t =0}

t++; [t < s]

Mllelll—— t++; t++; s++; [t < s] C

t++; s++; t++; [t < s]

’

VT € E(PI’OOf){(ppre}T{cppost}

Z. Kincaid (U. Toronto) Proofs That Count January 22, 2014 6/15

Language-theoretic approach
Precondition: {s =t =0}

t++; [t < s]

MOGEIll—— t++; t++; s++; [t < s] C

t++; s++; t++; [t < s)

b

VT < E(Proof){gppre}'r{@post}

Proof rule

If there exists a Proof such that £(Program) C L(Proof), then
{Ppre}Program{‘\Ppost}

Z. Kincaid (U. Toronto) Proofs That Count January 22, 2014 6/15

Counting proofs

Counting proof = counting automaton + inductive annotation

Z. Kincaid (U. Toronto) Proofs That Count January 22, 2014 7115

Counting proofs

Counting proof = counting automaton + inductive annotation
* Counting automaton = DFA with additional N-valued counter variables.

Assume one counter variable for this talk.
Transitions are labeled by a counter action € {inc, dec, tst, nop}

s++/dec t++/inc s++/nop t++/nop

[t < sl/tst [t < sl/nop
start —{ q1

Z. Kincaid (U. Toronto) Proofs That Count January 22, 2014

Counting proofs

Counting proof = counting automaton + inductive annotation
* Counting automaton = DFA with additional N-valued counter variables.

Assume one counter variable for this talk.
Transitions are labeled by a counter action € {inc, dec, tst, nop}

s++/dec t++/inc s++/nop t++/nop

[t < sl/tst [t < sl/nop
start —{ q1

q0
k=0

Z. Kincaid (U. Toronto) Proofs That Count January 22, 2014

Counting proofs

Counting proof = counting automaton + inductive annotation

* Counting automaton = DFA with additional N-valued counter variables.
Assume one counter variable for this talk.
Transitions are labeled by a counter action € {inc, dec, tst, nop}

s++/dec t++/inc s++/nop t++/nop
[t < sl/tst [t < sl/nop
start —(@
Qo T+ 9o

k=0 inc k=1

Z. Kincaid (U. Toronto) Proofs That Count January 22, 2014 7115

Counting proofs

Counting proof = counting automaton + inductive annotation

* Counting automaton = DFA with additional N-valued counter variables.
Assume one counter variable for this talk.
Transitions are labeled by a counter action € {inc, dec, tst, nop}

s++/dec t++/inc s++/nop t++/nop
[t < sl/tst [t < sl/nop
start —(Q
++ ++
qo t q0 s Qo

k=0 inc k=1 dec k=0

Z. Kincaid (U. Toronto) Proofs That Count January 22, 2014

7/15

Counting proofs

Counting proof = counting automaton + inductive annotation

* Counting automaton = DFA with additional N-valued counter variables.
Assume one counter variable for this talk.
Transitions are labeled by a counter action € {inc, dec, tst, nop}

s++/dec t++/inc s++/nop t++/nop
[t < sl/tst [t < sl/nop
start —{ @
q t++ qo s++ Qo t++ Qo

Z. Kincaid (U. Toronto) Proofs That Count January 22, 2014

7/15

Counting proofs

Counting proof = counting automaton + inductive annotation

* Counting automaton = DFA with additional N-valued counter variables.
Assume one counter variable for this talk.
Transitions are labeled by a counter action € {inc, dec, tst, nop}

s++/dec t++/inc s++/nop t++/nop
[t < sl/tst [t < sl/nop
start —{ >(«
q0 t++ qo s++ qo t++ @0 [t < s] a

k=0 inc k=1 dec k=0 inc k=1 tst k=1

Z. Kincaid (U. Toronto) Proofs That Count January 22, 2014

7/15

Counting proofs

Counting proof = counting automaton + inductive annotation

* Counting automaton = DFA with additional N-valued counter variables.
Assume one counter variable for this talk.
Transitions are labeled by a counter action € {inc, dec, tst, nop}

s++/dec t++/inc s++/nop t++/nop
[t < sl/tst [t < sl/nop
start —>(Q
q0 t++ Qo s++ 9 [t < s]
k=0 inc k=1 dec k=0 tst

Z. Kincaid (U. Toronto) Proofs That Count January 22, 2014

7/15

Counting proofs

Counting proof = counting automaton + inductive annotation

* Counting automaton = DFA with additional N-valued counter variables.
Assume one counter variable for this talk.
Transitions are labeled by a counter action € {inc, dec, tst, nop}

s++/dec t++/inc s++/nop t++/nop
[t < sl/tst [t < sl/nop
start —{ o @
qo t++ qo s++ Qo s++ X
k=20 inc k=1 dec k=0 dec

Z. Kincaid (U. Toronto) Proofs That Count January 22, 2014

7/15

Counting proofs

Counting proof = counting automaton + inductive annotation

* Counting automaton = DFA with additional N-valued counter variables.
Assume one counter variable for this talk.
Transitions are labeled by a counter action € {inc, dec, tst, nop}

* Inductive annotation = assignment of assertions to counting
automaton states (think: Floyd/Hoare annotation)

s++/dec t++/inc s++/nop t++/nop

[t < sl/tst [t < sl/nop
start —{ q1

Z. Kincaid (U. Toronto) Proofs That Count January 22, 2014

Counting proofs

Counting proof = counting automaton + inductive annotation

* Counting automaton = DFA with additional N-valued counter variables.
Assume one counter variable for this talk.
Transitions are labeled by a counter action € {inc, dec, tst, nop}

* Inductive annotation = assignment of assertions to counting
automaton states (think: Floyd/Hoare annotation)

s++/dec t++/inc s++/nop t++/nop

[t < sl/tst O [t < sl/nop
start —{ G
{k=t—s} {false}

Z. Kincaid (U. Toronto) Proofs That Count January 22, 2014

Counting proofs

Counting proof = counting automaton + inductive annotation

* Counting automaton = DFA with additional N-valued counter variables.
Assume one counter variable for this talk.
Transitions are labeled by a counter action € {inc, dec, tst, nop}

* Inductive annotation = assignment of assertions to counting
automaton states (think: Floyd/Hoare annotation)

s++/dec t++/inc s++/nop t++/nop

[t < sl/tst [t < sl/nop
start —{ @
{k=1t—s} {false}
9 T+ 0 S++ o tH+ o [<s1 ¢
k=0 inc k=1 dec k=0 inc k=1 tst k=1
{k=1t—s} {k=t—s} {k=t—s} {k=t— s} {false}

7/15

Z. Kincaid (U. Toronto) Proofs That Count January 22, 2014

Counting proofs

Counting proof = counting automaton + inductive annotation

* Counting automaton = DFA with additional N-valued counter variables.
Assume one counter variable for this talk.
Transitions are labeled by a counter action € {inc, dec, tst, nop}

* Inductive annotation = assignment of assertions to counting
automaton states (think: Floyd/Hoare annotation)

s++/dec t++/inc s++/nop t++/nop

[t < sl/tst [t < sl/nop
start —{ @
{k=1t—s} {false}
9 T+ 0 S++ o tH+ o [<s1 ¢
k=0 inc k=1 dec k=0 inc k=1 tst k=1
{0=1t—s} {k=1t—s} {k=1t—s} {k=1t—s} {false}

7/15

Z. Kincaid (U. Toronto) Proofs That Count January 22, 2014

Counting proofs

Counting proof = counting automaton + inductive annotation

* Counting automaton = DFA with additional N-valued counter variables.
Assume one counter variable for this talk.
Transitions are labeled by a counter action € {inc, dec, tst, nop}

* Inductive annotation = assignment of assertions to counting
automaton states (think: Floyd/Hoare annotation)

s++/dec t++/inc s++/nop t++/nop

[t < sl/tst [t < sl/nop
start —{ @
{k=1t—s} {false}
9 T+ 0 S++ o tH+ o [<s1 ¢
k=0 inc k=1 dec k=0 inc k=1 tst k=1
{0=1t—s} {1=1t—s} {k=1t—s} {k=1t—s} {false}

7/15

Z. Kincaid (U. Toronto) Proofs That Count January 22, 2014

Counting proofs

Counting proof = counting automaton + inductive annotation

* Counting automaton = DFA with additional N-valued counter variables.
Assume one counter variable for this talk.
Transitions are labeled by a counter action € {inc, dec, tst, nop}

* Inductive annotation = assignment of assertions to counting
automaton states (think: Floyd/Hoare annotation)

s++/dec t++/inc s++/nop t++/nop

[t < sl/tst [t < sl/nop
start —{ @
{k=1t—s} {false}
9 T+ 0 S++ o tH+ o [<s1 ¢
k=0 inc k=1 dec k=0 inc k=1 tst k=1
{0=1t—s} {1=1t—s} {0=1t—s} {k=1t—s} {false}

7/15

Z. Kincaid (U. Toronto) Proofs That Count January 22, 2014

Counting proofs

Counting proof = counting automaton + inductive annotation

* Counting automaton = DFA with additional N-valued counter variables.
Assume one counter variable for this talk.
Transitions are labeled by a counter action € {inc, dec, tst, nop}

* Inductive annotation = assignment of assertions to counting
automaton states (think: Floyd/Hoare annotation)

s++/dec t++/inc s++/nop t++/nop

[t < sl/tst [t < sl/nop
start —{ @
{k=1t—s} {false}
9 T+ 0 S++ o tH+ o [<s1 ¢
k=0 inc k=1 dec k=0 inc k=1 tst k=1
{0=1t—s} {1=1t—s} {0=1t—s} {1=1t—s} {false}

7/15

Z. Kincaid (U. Toronto) Proofs That Count January 22, 2014

Challenges

How do we formalize counting arguments?

How do we synthesize counting arguments automatically?

Z. Kincaid (U. Toronto) Proofs That Count January 22, 2014 8/15

“Learning” a counting argument

Program P
Spec wpre/Ppost

—>| Choose a trace 7

Does 7 satisfy Yes

‘Ppre/ Ppost ?

X
(—

Add rto Tr.

No
Let 7 be a cex

Does the proof
accept all traces?

4—[Construct a counting proof for Tr.]

Z. Kincaid Proofs That Count January 22, 2014 9/15

“Learning” a counting argument

Program P

—
Spec wpre/Ppost Choose a trace T

Does 7 satisfy Yes

‘Ppre/ Ppost ?

X
(—

Add rto Tr.

No
Let 7 be a cex

Does the proof
accept all traces?

4—[Construct a counting proof for Tr.]

Z. Kincaid Proofs That Count January 22, 2014 9/15

“Learning” a counting argument

Program P
Spec wpre/Ppost

Choose a trace T

No Does 7 satisfy Yes
X D @pre/@post? (Add 710 Tr.

No
Let 7 be a cex

Does the proof
accept all traces?

4—[Construct a counting proof for Tr.]

Z. Kincaid Proofs That Count January 22, 2014 9/15

“Learning” a counting argument

Program P
Spec wpre/Ppost

Choose a trace T

Does 7 satisfy Yes

‘Ppre/ Ppost ?

Add 7 to Tr.

X
(—

No
Let 7 be a cex

Does the proof
accept all traces?

4—[Construct a counting proof for Tr.]

Z. Kincaid Proofs That Count January 22, 2014 9/15

“Learning” a counting argument

Program P
Spec wpre /Ppost

Choose a trace T

Does 7 satisfy
‘Ppre/ ‘Ppost?

Add rto Tr.

X
(—

No
Let 7 be a cex

Does the proof
accept all traces?

Construct a counting proof for Tr.

Z. Kincaid Proofs That Count January 22, 2014 9/15

“Learning” a counting argument

Program P
Spec wpre/Ppost

Choose a trace T

Does 7 satisfy Yes

‘Ppre/ Ppost ?

X
(—

Add rto Tr.

No
Let 7 be a cex

DI) ST Construct a counting proof for Tr.
accept all traces?

Z. Kincaid Proofs That Count January 22, 2014 9/15

Constructing a counting proof

Given a finite set of traces Tr and a spec pre/ppost, CONSstruct a counting
proof (A,) such that Tr C L(A).

Constructing a counting proof requires us to find a counting automaton
and an inductive annotation simulianeously.

+ Insight #1: Bounded synthesis is decidable

+ Bound the size of the counting proof (think: # of states)

+ Encode bounded proof synthesis as a formula in a decidable theory
(QF_UFNRA)

+ Use uninterpreted function symbols to encode the transition relation.

+ Use Farkas’ lemma to generate constraints searching for an inductive
annotation (& /a Col6n et al.?)

Linear Invariant Generation using Non-linear Constraint Solving, CAV’03

Z. Kincaid (U. Toronto) Proofs That Count January 22, 2014 10/15

Constructing a counting proof

Given a finite set of traces Tr and a spec pre/ppost, CONSstruct a counting
proof (A,) such that Tr C L(A).

Constructing a counting proof requires us to find a counting automaton
and an inductive annotation simultaneously.

* Insight #2: Occam’s Razor - search for a “small” proof. More likely
to generalize & use counters!

T = t++;s++ t++; [t < s]

Z. Kincaid (U. Toronto) Proofs That Count January 22, 2014 10/15

Constructing a counting proof

Given a finite set of traces Tr and a spec pre/ppost, CONSstruct a counting
proof (A,) such that Tr C L(A).

Constructing a counting proof requires us to find a counting automaton
and an inductive annotation simultaneously.

* Insight #2: Occam’s Razor - search for a “small” proof. More likely
to generalize & use counters!

T = t++;s++ t++; [t < s]

s++/nop t++/nop

SodPo
Start —>

{0=1t—s} s++/nop {1=t—s} {false}

t++/nop

[t < sl/nop

Z. Kincaid (U. Toronto) Proofs That Count January 22, 2014 10/15

Constructing a counting proof

Given a finite set of traces Tr and a spec pre/ppost, CONSstruct a counting
proof (A,) such that Tr C L(A).

Constructing a counting proof requires us to find a counting automaton
and an inductive annotation simultaneously.

* Insight #2: Occam’s Razor - search for a “small” proof. More likely
to generalize & use counters!

T = t++;s++ t++; [t < s]

s++/dec t++/inc s++/nop t++/nop

art ‘@' [t < sl/nop
start —>

Z. Kincaid (U. Toronto) Proofs That Count January 22, 2014 10/15

“Learning” a counting argument

Program P
Spec wpre/Ppost

—>| Choose a trace 7

Does 7 satisfy Yes

‘Ppre/ Ppost ?

X
(—

Add rto Tr.

No
Let 7 be a cex

Does the proof
accept all traces?

4—[Construct a counting proof for Tr.]

Z. Kincaid Proofs That Count January 22, 2014 11/15

Control flow nets

Control flow net = Petri net 4+ program commands

Z. Kincaid (U. Toronto) Proofs That Count January 22, 2014 12/15

Control flow nets

Control flow net = Petri net 4+ program commands

1: t++ 1: t++ 1: t++
2: assert(t > s) 2: assert(t > s) -+ || 2: assert(t > s)
3: s++ 3: s++ 3: s++

% T+ (—[s++] O
h b

[s < t] O

I3

Represents the set of error traces for the program.

Z. Kincaid (U. Toronto) Proofs That Count

January 22, 2014 12/15

Proof checking

Theorem

Let P be a control flow net, and let A be a counting automaton. The
problem of determining whether L(P) C L(A) is decidable.

Z. Kincaid (U. Toronto) Proofs That Count

January 22, 2014 13/15

Proof checking

Theorem

Let P be a control flow net, and let A be a counting automaton. The
problem of determining whether L(P) C L(A) is decidable.

 Reduction to Petri net language inclusion.

Z. Kincaid (U. Toronto) Proofs That Count

January 22, 2014 13/15

Summary

We can automate synthesis of a class of auxiliary variables!

Choose a trace T

Program P
Spec gpre/Ppost

No Does T satisfy Yes
X — wpre/Ppost? Add 7 to Tr.
No
Let 7 be a cex
Yes Does the proof :
\/ — accept all traces? 4—[Construct a counting proof for Tr.]

Bounded synthesis
Reduce to Petri net lan- +
guage inclusion Search for small proof

Z. Kincaid Proofs That Count January 22, 2014 14

What's next?

* Implementation & Evaluation
+ Practical algorithm for inclusion?
* Ultimately, inclusion relies on a reduction to Petri net reachability.
+ Practical nonlinear constraint solving?

+ Synthesize other classes of auxiliary variables?

Z. Kincaid (U. Toronto) Proofs That Count January 22, 2014

