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Abstract

Determining whether a given program terminates is the
quintessential undecidable problem. Algorithms for termi-
nation analysis may be classified into two groups: (1) algo-
rithms with strong behavioral guarantees that work in lim-
ited circumstances (e.g., complete synthesis of linear ranking
functions for polyhedral loops), and (2) algorithms that are
widely applicable, but have weak behavioral guarantees (e.g.,
Terminator). This paper investigates the space in between:
how can we design practical termination analyzers with useful

behavioral guarantees?

This paper presents a termination analysis that is both
compositional (the result of analyzing a composite program
is a function of the analysis results of its components) and
monotone (łmore information into the analysis yields more
information outž). The paper has two key contributions. The
first is an extension of Tarjan’s method for solving path
problems in graphs to solve infinite path problems. This
provides a foundation upon which to build compositional
termination analyses. The second is a collection of monotone
conditional termination analyses based on this framework.
We demonstrate that our tool ComPACT (Compositional
and Predictable Analysis for Conditional Termination) is
competitive with state-of-the-art termination tools while
providing stronger behavioral guarantees.

CCS Concepts: · Theory of computation → Program

analysis; Regular languages; · Software and its engi-

neering→ Automated static analysis.

Keywords: Algebraic program analysis, termination analy-
sis, loop summarization, algebraic path problems
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1 Introduction

Termination is an important correctness property in itself,
and is a sub-problem of proving total correctness, liveness
properties [12, 15, 17ś19], and bounds on resource usage
[1, 13, 32, 33, 43]. Determining whether a program termi-
nates is undecidable, and so progress on automated tools for
termination analysis is driven by heuristic reasoning tech-
niques. While these heuristics are often effective in practice,
they can be brittle and unpredictable. For example, termi-
nation analyzers may themselves fail to terminate on some
input programs, or report false alarms, or return different
results for the same input, or suffer from łbutterfly effectsž,
in which a small changes to the program’s source code dras-
tically changes the analysis.
This paper is motivated by the principle that changes to

a program should have a predictable impact on its analysis.
We develop a style of termination analysis that achieves two
particular desiderata:

• Compositionality: composite programs are analyzed by
analyzing their sub-components and then combining
the results. Compositionality implies that changing
part of a program only changes the analysis of that part.
It enables prompt user interaction, since an analysis
need not reanalyze the whole program to respond to a
program change.
• Monotonicity: more information into the analysis yields
more information out. Monotonicity implies that cer-
tain actions, e.g., a user annotating a procedure with
additional pre-conditions, or an abstract interpreter
instrumenting loop invariants into a program, cannot
degrade analysis results.

Our approach is based on the paradigm of algebraic pro-
gram analysis [26, 45, 46]. An algebraic program analysis is
described by an algebraic structure in which the elements
represent properties of finite program executions and the
operations compose those properties via sequencing, choice,
and iteration (mirroring the structure of regular expressions).
To verify a safety property, an algebraic program analyzer
computes a regular expression recognizing all paths through
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a program to a point of interest, interprets the regular ex-
pression within the given structure, and checks whether the
resulting property entails the property of interest.

In this paper, we extend the algebraic approach to reason
about infinite program paths, and thereby provide a con-
ceptual and algorithmic basis for compositional analysis of
liveness properties such as termination. Conceptually, our
method proves that a program terminates by computing a
transition formula for each loop that over-approximates the
behavior of its body, and then proving that the corresponding
relation admits no infinite sequences. (Our approach is not
unique in this regard (see Section 8)Ðwe provide a unifying
foundation for such analyses).
A drawback of using summaries to prove termination is

that the loop body summary over-approximates its behavior,
and so the summary may not terminate even if the origi-
nal loop does. The advantage is that we can reason about
the summary effectively, whereas any non-trivial question
about behavior of the original loop is undecidable. This is
the key idea that enables the design ofmonotone termination
analyses.

A particular challenge of compositional termination anal-
ysis is that termination arguments must be synthesized in-
dependently of the surrounding context of the loop (that is,
without supporting invariants). We meet this challenge with
a set of methods that exploit loop summarization to generate
monotone conditional termination arguments. These meth-
ods synthesize both a termination argument and an initial
condition under which that argument holds, with the latter
acting as a surrogate for a supporting invariant.

Contributions. The contributions of this paper are:

• A framework for designing compositional analyses
of infinite program paths. This framework extends
Tarjan’s method for solving path problems [45, 46]
from finite to infinite paths.
• An efficient algorithm for computing an 𝜔-regular
expression that recognizes the infinite paths through
a control flow graph, which forms the algorithmic
foundation of our program analysis framework.
• The first termination analysis that is compositional,
monotone, and applies to a general program model.
We present a set of combinators for constructing a fam-
ily of such (conditional) termination analyses based
on our framework. In particular, we introduce phase
analysis, which improves the precision of a given con-
ditional termination analysis by partitioning the space
of transitions in a loop into phases.

2 Overview

In Section 5, we define an algebraic framework for analyzing
liveness properties of programs. An analysis proceeds in two
steps: (1) compute an 𝜔-regular expression that recognizes
the paths through a program, and (2) interpret that𝜔-regular

expression with an algebraic structure corresponding to a
program analysis of interest.

We illustrate this process in Figure 1. Consider the example
program given by its control flow graph (CFG) in Figure 1b
(concrete syntax for the CFG is given in Figure 1a). Note that
conditional control flow is encoded as assumptions, which do
not change the program variables but can only be executed if
the assumed condition holds (e.g., if the program is in a state
wherem is less than step then it may execute the assumption
[m < step], otherwise it is blocked).

Step 1: Compute an 𝜔-path expression. Using the algo-
rithm described in Section 4, we can compute an 𝜔-regular
expression that represents all infinite paths in the CFG that
begin at the entry vertex 𝑟 (Figure 1d). The expression can
be represented efficiently as a directed acyclic graph (DAG),
where each leaf is labeled by a control flow edge, each inter-
nal node with an operator (one of: choice (+), concatenation
(·), iteration (∗), or infinite repetition (𝜔)Ðsee Section 3.1),
and edges are drawn from operators to operands (Figure 1c).
Observe that each node in the DAG corresponds to either a
regular expression (white nodes) or an 𝜔-regular expression
(gray nodes).

Step 2: Interpretation. The result of a particular anal-
ysis is computed by interpreting a path expression for a
program within some abstract domain. The domain con-
sists of (1) a regular algebra, which is equipped with choice,
concatenation, and iteration operators and which can be
used to interpret regular expressions, and (2) an 𝜔-regular

algebra, which is equipped with choice, concatenation, and
𝜔-iteration operators, and which can be used to interpret
𝜔-regular expressions.

Our main interest in this paper is in a family of termina-
tion analyses. In this family, the regular algebra is the algebra
of transition formulas, which we denote by TF. A transition

formula is a logical formula over the variables of the program
(in Figure 1:𝑚,𝑛, step) along with primed copies (𝑚′, 𝑛′, step′)
representing the program variables before and after execut-
ing a computation, respectively. The choice operation for TF
is disjunction, concatenation is relational composition, and
iteration over-approximates reflexive transitive closure (a
particular iteration operator is defined in Section 3). The 𝜔-
regular algebra is an algebra of mortal preconditions, which
we denote byMP; in fact, wewill define several such algebras
in this paper, but they share a common structure. A mortal
precondition is a state formula (over the program variables
(𝑚,𝑛, step)) that is satisfied only bymortal states, from which
the program must terminate. The choice operation forMP

is conjunction (a mortal state must be mortal on all paths),
concatenation is weakest precondition (a state is mortal only
if it can reach only mortal states), and 𝜔-iteration computes
a mortal precondition for a transition formula (we will de-
fine several mortal precondition operators in Section 6). We
compute a mortal precondition for a program by traversing
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1 step = 8

2 while (true) do

3 m := 0

4 while (m < step) do

5 if (n < 0) then

6 halt

7 else

8 m := m + 1

9 n := n - 1

(a) An example program

𝑟

𝑎

𝑏

𝑐

𝑑 𝑒

𝑓

step := 8

m := 0[m ≥ step]

[m < step]

[n < 0]

[n ≥ 0]

m := m + 1

n := n - 1

(b) Control flow graph
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⟨𝑏, 𝑐⟩ ·

⟨𝑐, 𝑑⟩ ⟨𝑑, 𝑒⟩

(c) 𝜔-path expression DAG

⟨𝑟, 𝑎⟩

©«

outer loop︷                                               ︸︸                                               ︷(
⟨𝑎, 𝑏⟩ (⟨𝑏, 𝑐⟩ ⟨𝑐, 𝑑⟩ ⟨𝑑, 𝑒⟩ ⟨𝑒, 𝑏⟩)∗ ⟨𝑏, 𝑎⟩

)𝜔
+
(
⟨𝑎, 𝑏⟩ (⟨𝑏, 𝑐⟩ ⟨𝑐, 𝑑⟩ ⟨𝑑, 𝑒⟩ ⟨𝑒, 𝑏⟩)∗ ⟨𝑏, 𝑎⟩

)∗
(⟨𝑏, 𝑐⟩ ⟨𝑐, 𝑑⟩ ⟨𝑑, 𝑒⟩ ⟨𝑒, 𝑏⟩)𝜔︸                           ︷︷                           ︸

inner loop

ª®®®®®¬
(d) 𝜔-path expression

Figure 1. An example program, its control flow graph, and a corresponding 𝜔-path expression

its 𝜔-path expression DAG from the bottom up, using TF to
interpret regular expression operators andMP to interpret
𝜔-regular expression operators.

We illustrate a selection of the interpretation steps. We
use T J−K and T𝜔J−K to denote the interpretation of a regu-
lar and 𝜔-regular expression, respectively. For the leaves of
the path expression DAG, we may simply encode the mean-
ing of the corresponding program command into logic; e.g.,
the transition formulas for the edges ⟨𝑐, 𝑑⟩ and ⟨𝑑, 𝑒⟩ (cor-
responding to the commands [n ≥ 0] and m := m + 1,
resp.) are:

T J⟨𝑐, 𝑑⟩K = 𝑛 ≥ 0 ∧𝑚′ =𝑚 ∧ 𝑛′ = 𝑛 ∧ step′ = step

T J⟨𝑑, 𝑒⟩K =𝑚′ =𝑚 + 1 ∧ 𝑛′ = 𝑛 ∧ step′ = step

Proceeding up the DAG, we compute a transition formula
for the regular expression ⟨𝑐, 𝑑⟩ ⟨𝑑, 𝑒⟩ by taking the relational
composition of T J⟨𝑐, 𝑑⟩K and T J⟨𝑑, 𝑒⟩K

T J⟨𝑐, 𝑑⟩ ⟨𝑑, 𝑒⟩K = T J⟨𝑐, 𝑑⟩K ◦ T J⟨𝑑, 𝑒⟩K

≡
𝑛 ≥ 0

∧𝑚′ =𝑚 + 1 ∧ 𝑛′ = 𝑛 ∧ step′ = step

Similarly, we sequence T J⟨𝑐, 𝑑⟩ ⟨𝑑, 𝑒⟩K with T J⟨𝑏, 𝑐⟩K on the
left and T J⟨𝑒, 𝑏⟩K on the right to get a summary for the body
of the inner loop inner ≜ ⟨𝑏, 𝑐⟩ ⟨𝑐, 𝑑⟩ ⟨𝑑, 𝑒⟩ ⟨𝑒, 𝑏⟩:

T JinnerK ≡ 𝑚 < step ∧ 𝑛 ≥ 0

∧𝑚′ =𝑚 + 1 ∧ 𝑛′ = 𝑛 − 1 ∧ step′ = step

The inner node has two parents, corresponding to inner∗

and inner𝜔 . For the first, we over-approximate the transitive
closure of the formula T JinnerK:

T Jinner∗K ≡ ∃𝑘.
©«

©«
𝑘 = 0

∨

(
𝑘 ≥ 1 ∧𝑚 < step ∧ 𝑛 ≥ 0

∧𝑚′ ≤ step ∧ 𝑛′ ≥ −1

) ª®¬
∧𝑚′ =𝑚 + 𝑘 ∧ 𝑛′ = 𝑛 − 𝑘 ∧ step′ = step

ª®®®¬
(In the above formula, the existentially quantified variable 𝑘
represents the number of times the loop is taken. The first
conjunct encodes that if the loop is taken at least once, then
its guard must hold in the initial state, and the post-image of
its guard must hold in the final state. The second conjunct
encodes that𝑚 increases by 1 at each iteration, 𝑛 decreases
by 1, and step is constant. See Section 3.3 for details on how
we compute the transitive closure of any transition formula.)

For the second parent, inner𝜔 , we compute a mortal pre-
condition for the formulaT JinnerK. Observing that (step−𝑚)
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is a ranking function for this loop (i.e., the difference between
step and m is non-negative and decreasing), we may simply
take T𝜔Jinner𝜔K = true: the inner loop terminates starting
from any state.

Now consider the𝜔-node corresponding to the outer loop,
outer = ⟨𝑎, 𝑏⟩ inner∗ ⟨𝑏, 𝑎⟩. This loop illustrates a trade-off
of compositionality. On one hand, compositionality makes
proving termination easier: by the time that we reach the
𝜔-node, we have already built a transition formula that sum-
marizes the body of the outer loop. Despite the fact that the
body contains an inner loop, we can use a theorem prover to
answer questions about its behavior (conservatively, since
the summary is an over-approximation). On the other hand,
compositionality makes termination proving more difficult: a
compositional analysis cannot prove that 𝑛 decreases at each
iteration, since it does not have access to the surrounding
context of the loop that initializes step to 8. In Section 6.2 we
provide a method that (for this particular loop) effectively
performs a case split on whether 𝑛 increases, decreases, or
remains constant, and generates a mortal precondition that
is sufficient for all three cases: T𝜔Jouter𝜔K = step > 0. Thus,
we have a conditional termination argument: the outer loop
terminates as long as it begins in a state where step is posi-
tive.
Continuing up the DAG, we combine the mortal precon-

ditions of the inner and outer loops to get

T𝜔Jouter𝜔 + outer∗inner𝜔K ≡ step > 0 .

Finally, we compute a mortal precondition for the root of
the DAG (and thus the whole program) by taking the weak-
est precondition of step > 0 under the transition formula
T J⟨𝑟, 𝑎⟩K = step′ = 8 ∧𝑚′ = 𝑚 ∧ 𝑛′ = 𝑛, yielding the for-
mula true. Thus, by propagating the conditional termination
argument for the outer loop backwards through its context,
the analysis discharges the assumption of the conditional
termination argument, and verifies that the program always
terminates.

3 Background

3.1 Flow Graphs and Path Expressions

A control flow graph 𝐺 = ⟨𝑉 , 𝐸, 𝑟 ⟩ consists of a set of
vertices 𝑉 , a set of directed edges 𝐸 ⊆ 𝑉 × 𝑉 , and a root
vertex 𝑟 ∈ 𝑉 with no incoming edges. A path in𝐺 is a finite
sequence 𝑒1𝑒2 . . . 𝑒𝑛 ∈ 𝐸

∗ such that for each 𝑖 , the destination
of 𝑒𝑖 matches the source of 𝑒𝑖+1; an 𝜔-path is an infinite
sequence 𝑒1𝑒2 · · · ∈ 𝐸

𝜔 such that any finite prefix is a path.
For any vertices 𝑢, 𝑣 ∈ 𝑉 , we use Paths𝐺 (𝑢, 𝑣) to denote the
(regular) set of paths in𝐺 from 𝑢 to 𝑣 , and we use Paths𝜔𝐺 (𝑢)
to denote the (regular) set of 𝜔-paths in 𝐺 starting from 𝑢.

We say that a vertex 𝑢 dominates a vertex 𝑣 if every path
from 𝑟 to 𝑣 includes 𝑢. Every vertex dominates itself; we say
𝑢 strictly dominates 𝑣 if 𝑢 dominates 𝑣 and 𝑢 ≠ 𝑣 . We say
that 𝑢 is the immediate dominator of 𝑣 if it is the unique

vertex that strictly dominates 𝑣 and is dominated by every
vertex that strictly dominates 𝑣 . The immediate dominance
relation forms a tree structure with 𝑟 as the root; we use
children(𝑣) to denote the set of vertices whose immediate
dominator is 𝑣 . We say that 𝐺 is reducible if every cycle
contains an edge ⟨𝑢, 𝑣⟩ such that 𝑣 dominates 𝑢.
Taking the alphabet Σ to be the set of edges in a given

control flow graph𝐺 , a regular set of (finite) paths in 𝐺 can
be represented by a regular expression, and a regular set of
𝜔-paths in 𝐺 can be recognized by an 𝜔-regular expression;
we call such regular expressions (𝜔-)path expressions. The
syntax of regular (RegExp(Σ)) and 𝜔-regular (𝜔-RegExp(Σ))
expressions over an alphabet Σ is given by (see e.g. [5], Ch.
4):

𝑎 ∈ Σ

𝑒 ∈ RegExp(Σ) ::= 𝑎 | 0 | 1 | 𝑒1 + 𝑒2 | 𝑒1𝑒2 | 𝑒
∗

𝑓 ∈ 𝜔-RegExp(Σ) ::= 𝑒𝜔 | 𝑒 𝑓 | 𝑓1 + 𝑓2

where 0 recognizes the empty language, 1 recognizes the
empty word, + corresponds to union, juxtaposition (or ·) to
concatenation, ∗ to unbounded repetition, and 𝜔 to infinite
repetition.

3.2 Logic and Geometry

The syntax of linear integer arithmetic (LIA) is given as
follows:

𝑥 ∈ Variable

𝑛 ∈ Z

𝑡 ∈ Term ::= 𝑥 | 𝑛 | 𝑛 · 𝑡 | 𝑡1 + 𝑡2

𝐹 ∈ Formula ::= 𝑡1 ≤ 𝑡2 | 𝑡1 = 𝑡2 | 𝐹1 ∧ 𝐹2 | 𝐹1 ∨ 𝐹2 | ¬𝐹

| ∃𝑥 .𝐹 | ∀𝑥 .𝐹

Let 𝑋 ⊆ Variable be a set of variables. A valuation over
𝑋 is a map 𝑣 : 𝑋 → Z. If 𝐹 is a formula whose free variables
range over 𝑋 and 𝑣 is a valuation over 𝑋 , then we say that
𝑣 satisfies 𝐹 (written 𝑣 |= 𝐹 ) if the formula 𝐹 is true when
interpreted over the standard model of the integers, using
𝑣 to interpret the free variables. We write 𝐹 |= 𝐺 if every
valuation that satisfies 𝐹 also satisfies 𝐺 .

For a formula 𝐹 , we use 𝐹 [𝑥 ↦→ 𝑡] to denote the formula
obtained by substituting each free occurrence of the variable
𝑥 with the term 𝑡 . We use the same notation to represent
parallel substitution of multiple variables by multiple terms;
e.g., if 𝑋 is a set of variables and 𝑋 ′ = {𝑥 ′ : 𝑥 ∈ 𝑋 } is a
set of łprimedž versions of those variables, then 𝐹 [𝑋 ↦→
𝑋 ′] denotes the result of replacing each variable in 𝑥 with
its corresponding 𝑥 ′. Substitution binds more tightly than
logical connectives, so e.g., in the formula 𝐹 ∧𝐺 [𝑥 ↦→ 𝑦], 𝑥
is replaced with 𝑦 within 𝐺 , but not within 𝐹 .

Let 𝐹 be an LIA formula with free variables x = 𝑥1, . . . , 𝑥𝑛 .
The convex hull of 𝐹 , denoted conv(𝐹 ), is the strongest
(unique up to equivalence) formula of the form 𝐴x ≥ b that
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is entailed by 𝐹 , where 𝐴 is an integer matrix and b is an
integer vector. Farzan and Kincaid [26] give an algorithm for
computing conv(𝐹 ).

3.3 Transition Formulas

Fix a finite set Var of variables, and let Var′ = {𝑥 ′ : 𝑥 ∈ Var}
denote a set of łprimed copiesž, presumed to be disjoint from
Var. A state formula is an LIA formula whose free variables
range over Var. A transition formula is an LIA formula
whose free variables range over Var∪Var′. We use SF andTF
to denote sets of state and transition formulas, respectively.
Define a state to be a valuation over Var (the set of which
we denote State) and a transition to be a valuation over
Var ∪ Var′. Any pair of states 𝑠, 𝑠 ′ defines a transition [𝑠, 𝑠 ′]
which interprets each 𝑥 ∈ Var as 𝑠 (𝑥) and each 𝑥 ′ ∈ Var′ as
𝑠 ′(𝑥). A transition formula 𝐹 defines a relation→𝐹 on states,
with 𝑠 →𝐹 𝑠 ′ ⇐⇒ [𝑠, 𝑠 ′] |= 𝐹 .

Define the relational composition of two transition formu-
las to be the formula

𝐹1 ◦ 𝐹2 ≜ ∃Var
′′.𝐹1 [Var

′ ↦→ Var′′] ∧ 𝐹2 [Var ↦→ Var′′] .

For any 𝑘 ∈ N, we use 𝐹𝑘 to denote the 𝑘-fold relational
composition of 𝐹 with itself. For a transition formula 𝐹 and a
state formula 𝑆 , define the weakest precondition of 𝑆 under
𝐹 to be the formula

wp(𝐹, 𝑆) ≜ ∀Var′.𝐹 ⇒ 𝑆 [Var ↦→ Var′] .

We suppose the existence of an operation (−)★ that over-
approximates the reflexive transitive closure of a transi-
tion formula (i.e., for any transition formula 𝐹 , we have
→∗𝐹⊆→𝐹★). Several such operators exist [23, 26, 34, 35, 42];
here we will describe one such method, based on techniques
from [4, 26].
Let x′ and x be vectors containing the variables Var′ and

Var, respectively; let 𝑛 = |Var| be the dimension of these vec-
tors. In general, the transitive closure of a transition formula
cannot be expressed in first-order logic. Two special cases
where the transitive closure can be expressed are:

1. If 𝐹 takes the form pre ∧ post, where the free variables
of pre range over Var and the free variables of post
range over Var′, then 𝐹 is already transitively closed,
so we need only to take its reflexive closure: (pre ∧
post) ∨ (

∧
𝑥 ∈Var 𝑥

′
= 𝑥)

2. If 𝐹 takes the form 𝐴x′ ≥ 𝐴x + b, then for any 𝑘 ∈ N,
we have that 𝐹𝑘 is equivalent to 𝐴x′ ≥ 𝐴x + 𝑘b, and
so the formula ∃𝑘.𝑘 ≥ 0 ∧𝐴x′ ≥ 𝐴x + 𝑘b represents
the reflexive transitive closure of 𝐹 .

Let 𝐹 be a transition formula. We cannot expect 𝐹 to take
one of the above forms, but we can always over-approximate
𝐹 by a formula that does:

1. Let Pre(𝐹 ) ≜ ∃Var′.𝐹 and let Post(𝐹 ) ≜ ∃Var.𝐹 . We
have that 𝐹 |= Pre(𝐹 ) ∧ Post(𝐹 ), and Pre(𝐹 ) ∧ Post(𝐹 )
takes form (1) above.

2. For each variable 𝑥 , let 𝛿𝑥 denote a fresh variable which
we use to represent the difference between 𝑥 ′ and 𝑥 ;
we use 𝛿 to denote a vector containing the 𝛿𝑥 variables.
The convex hull

conv

(
∃Var,Var′.𝐹 ∧

∧
𝑥 ∈Var

𝛿𝑥 = 𝑥 ′ − 𝑥

)

takes the form𝐴𝛿 ≥ b. Thenwe have 𝐹 |= 𝐴x′ ≥ 𝐴x+b,
and 𝐴x′ ≥ 𝐴x + b takes form (2) above.

Combining (1) and (2), we define an operation exp by

exp(𝐹, 𝑘) ≜

(( ∧
𝑥 ∈Var

𝑥 ′ = 𝑥

)
∨ (Pre(𝐹 ) ∧ Post(𝐹 ))

)

∧𝐴x′ ≥ 𝐴x + 𝑘b

and observe that for any 𝑘 ∈ N, we have that 𝐹𝑘 |= exp(𝐹, 𝑘).
Finally, we over-approximate transitive closure by existen-
tially quantifying over the number of loop iterations:

𝐹★ ≜ ∃𝑘.𝑘 ≥ 0 ∧ exp(𝐹, 𝑘) .

Lemma 3.1. The (−)★ and exp operators are monotone in the

sense that if 𝐹 |= 𝐺 , then 𝐹★ |= 𝐺★ and exp(𝐹, 𝑘) |= exp(𝐺,𝑘)
(where 𝑘 is a variable symbol).

3.4 Transition Systems

A transition system 𝑇 is a pair 𝑇 = ⟨𝑆𝑇 , 𝑅𝑇 ⟩ where 𝑆𝑇
is a set of states and 𝑅𝑇 ⊆ 𝑆𝑇 × 𝑆𝑇 is a transition relation.
We write 𝑠 →𝑇 𝑠 ′ to denote that the pair ⟨𝑠, 𝑠 ′⟩ belongs
to 𝑅𝑇 . We say that a state 𝑠 ∈ 𝑆𝑇 is mortal if there exists
no infinite sequence 𝑠 →𝑇 𝑠1 →𝑇 𝑠2 →𝑇 𝑠3 . . . . A mortal

precondition for 𝑇 is a state formula such that any state
that satisfies the formula is mortal.
Each transition formula 𝐹 defines a transition system,

where the state space is State, and where the transition rela-
tion is→𝐹 . Define amortal precondition operator to be a
function mp : TF→ SF, which given a transition formula 𝐹 ,
computes a state formula mp(𝐹 ) that is a mortal precondi-
tion for 𝐹 . We say thatmp ismonotone if for any transition
formulas 𝐹1, 𝐹2 with 𝐹1 |= 𝐹2, we have mp(𝐹2) |= mp(𝐹1)
(Note that this definition is antitone with respect to the en-
tailment ordering, but since weaker mortal preconditions are
more desirable it is natural to order mortal preconditions by
reverse entailment.)

Example 3.2 Gonnord et al. [30] give a complete method
for synthesizing linear lexicographic ranking functions (LL-
RFs) for transition formulas. We may define a monotone
mortal precondition operator mpLLRF as follows:

mpLLRF (𝐹 ) ≜

{
true if there is an LLRF for 𝐹

¬Pre(𝐹 ) otherwise

The fact that mpLLRF is monotone follows from the fact that
if 𝐹1 |= 𝐹2 then Pre(𝐹1) |= Pre(𝐹2) and any LLRF for 𝐹2 is
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also an LLRF for 𝐹1, and the completeness of Gonnord et al.
[30]’s LLRF synthesis procedure. ⌟

Within this paper, a program is represented as a labeled
control flow graph 𝑃 = ⟨𝐺, 𝐿⟩, where 𝐺 = ⟨𝑉 , 𝐸, 𝑟 ⟩ is a
control flow graph, and 𝐿 : 𝐸 → TF is a function that labels
each edge with a transition formula. 𝑃 defines a transition
system TS(𝑃) where the state space is 𝑉 × State, and where
⟨𝑣1, 𝑠1⟩ →𝑃 ⟨𝑣2, 𝑠2⟩ iff ⟨𝑣1, 𝑣2⟩ ∈ 𝐸 and [𝑠1, 𝑠2] |= 𝐿(𝑣1, 𝑣2).

4 An Efficient 𝜔-Path Expression
Algorithm

This section describes an algorithm for computing an 𝜔-
regular expression that recognizes all infinite paths in a graph
that start at a designated vertex. The algorithm is based on
Tarjan’s path expression algorithm, which computes path
expressions that recognize finite paths that start at a desig-
nated vertex [45]. Our algorithm operates in𝑂 ( |𝐸 |𝛼 ( |𝐸 |) +𝑡)
time, where 𝛼 is the inverse Ackermann function and 𝑡 is
technical parameter that is 𝑂 ( |𝑉 |) for reducible flow graphs
and is at most 𝑂 ( |𝑉 |3), matching the complexity of Tarjan’s
algorithm.

It is technically convenient to formulate our algorithms on
path graphs rather than control flow graphs. A path graph

for a flow graph𝐺 = ⟨𝑉 , 𝐸, 𝑟 ⟩ is a graph 𝐻 = ⟨𝑈 ,𝑊 ⟩ where
𝑈 ⊆ 𝑉 and𝑊 ⊆ 𝑈 × RegExp(𝐸) × 𝑈 is a set of directed
edges labeled by regular expressions over 𝐸, and such that
for every ⟨𝑢, 𝑒, 𝑣⟩ ∈𝑊 , 𝑒 recognizes a subset of Paths𝐺 (𝑢, 𝑣).
We say that 𝐻 represents a path 𝑝 from 𝑢 to 𝑣 (in 𝐺 , with
𝑢, 𝑣 ∈ 𝑈 ) if there is a path

(𝑤1, 𝑒1,𝑤2) (𝑤2, 𝑒2,𝑤3) . . . (𝑤𝑛, 𝑒𝑛,𝑤𝑛+1)

in 𝐻 with 𝑤1 = 𝑢 and 𝑤𝑛+1 = 𝑣 and 𝑝 is recognized by
the regular expression 𝑒1𝑒2 . . . 𝑒𝑛 . Similarly, 𝐻 represents an
𝜔-path 𝑝 if there is a decomposition 𝑝 = 𝑝1𝑝2𝑝3 . . . and an
𝜔-path (𝑤1, 𝑒1,𝑤2) (𝑤2, 𝑒2,𝑤3) . . . in𝐻 with 𝑝𝑖 recognized by
𝑒𝑖 for all 𝑖 . We use PathRep𝐻 (𝑢, 𝑣) to denote the set of paths
from 𝑢 to 𝑣 that are represented by 𝐻 , and PathRep𝜔𝐻 (𝑣) to
denote the set of 𝜔-paths starting at 𝑣 that are represented
by 𝐻 . We say that 𝐻 is complete for a set of edges 𝐸 ′ ⊆ 𝐸 if

1. For each 𝑢, 𝑣 ∈ 𝑈 , PathRep𝐻 (𝑢, 𝑣) is the set of paths
from 𝑢 to 𝑣 in 𝐺 consisting only of edges from 𝐸 ′.

2. For each 𝑣 ∈ 𝑈 , PathRep𝜔𝐻 (𝑣) is the set of𝜔-paths from
𝑣 in𝐺 consisting only of edges from 𝐸 ′, and which visit
some vertex of𝑈 infinitely often.

4.1 A Naïve Algorithm

Algorithm 1 is a naïve algorithm for computing path expres-
sions, which is used as a sub-procedure in themain algorithm.
It is a variation of the classic state elimination algorithm for
converting finite automata to regular expressions. The input
to Algorithm 1 is a path graph 𝐻 = ⟨𝑈 ,𝑊 ⟩ (for some flow
graph 𝐺) and a root vertex 𝑟 (not necessarily the root of 𝐺);
its output is a pair consisting of an 𝜔-path expression that

recognizes PathRep𝜔𝐻 (𝑟 ) and a function that maps each vertex
𝑣 ∈ 𝑈 to a path expression that recognizes PathRep𝐻 (𝑟, 𝑣).
The idea is to successively eliminate the outgoing edges of
every vertex in the graph except the root, while preserving
the set of paths (and𝜔-paths) emanating from vertices whose
outgoing edges have not yet been removed. The algorithm
operates in 𝑂 ( |𝑈 |3) time.

1 Subroutine solve-dense(𝐻, 𝑟 ) begin
Input :Path graph 𝐻 = ⟨𝑈 ,𝑊 ⟩, vertex 𝑟 ∈ 𝑈

with no incoming edges
Output :Pair ⟨pe𝜔 , pe⟩ where

pe𝜔 ∈ 𝜔-RegExp(𝐸) recognizes
PathRep𝜔𝐻 (𝑟 ) and pe : 𝑈 → RegExp(𝐸)
maps each 𝑣 ∈ 𝑈 to a path expression
that recognizes PathRep𝐻 (𝑟, 𝑣).

/* pe(𝑢, 𝑣) recognizes paths from 𝑢 to 𝑣 represented by 𝐻 */

2 pe← 𝜆 ⟨𝑢, 𝑣⟩ .0;

3 foreach ⟨𝑢, 𝑒, 𝑣⟩ ∈𝑊 do

4 pe(𝑢, 𝑣) ← pe(𝑢, 𝑣) + 𝑒;
/* Suppose𝑉 is ordered as𝑉 = {𝑟 = 𝑣0, 𝑣1, . . . , 𝑣𝑛 } */

5 for 𝑖 = 𝑛 downto 1 do

6 for 𝑗 = 𝑖 − 1 downto 0 do
7 𝑒 𝑗𝑖 ← pe(𝑣 𝑗 , 𝑣𝑖 ) · pe(𝑣𝑖 , 𝑣𝑖 )

∗;

8 for 𝑘 = 𝑛 downto 1, 𝑘 ≠ 𝑖 do

9 pe(𝑣 𝑗 , 𝑣𝑘 ) ← pe(𝑣 𝑗 , 𝑣𝑘 ) + 𝑒 𝑗𝑖 · pe(𝑣𝑖 , 𝑣𝑘 )

10 return

〈 ∑𝑛
𝑖=1 pe(𝑟, 𝑣𝑖 ) · pe(𝑣𝑖 , 𝑣𝑖 )

𝜔 ,

𝜆𝑣 .pe(𝑟, 𝑣) · pe(𝑣, 𝑣)∗

〉
Algorithm 1: Naïve path expression algorithm

4.2 𝜔-Path Expressions in Nearly Linear Time

Algorithm 2 is an efficient 𝜔-path expression algorithm that
exploits sparsity of control flow graphs. Following Tarjan
[45], the algorithm uses the dominator tree of the graph
to break it into single-entry components, and uses a com-
pressed weighted forest data structure to combine paths from
different components.
A compressed weighted forest is a data structure that

represents a forest of vertices with edges weighted by regu-
lar expressions. The data structure supports the following
operations:

• link(𝑢, 𝑒, 𝑣): set 𝑣 to be the parent of 𝑢 by adding an
edge from 𝑣 to 𝑢 labeled 𝑒 (𝑢 must be a root)
• find(𝑣): return the (unique) vertex 𝑢 such that 𝑢 →∗ 𝑣
and 𝑢 is a root
• eval(𝑣): return the regular expression 𝑒1· · · 𝑒𝑛 , where

𝑢1
𝑒1
−→ 𝑢2

𝑒2
−→· · ·

𝑒𝑛
−−→ 𝑣 is the path from a root to 𝑣 .

This data structure can be implemented so that each opera-
tion takes 𝑂 (𝛼 (𝑛)) amortized time, where 𝑛 is the number
of vertices in the forest [44].
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Figure 2. Operation of solve-sparse on an example control flow graph.

The subroutine solve-sparse(𝑣) returns an 𝜔-path expres-
sion that recognizes the set of𝜔-paths Paths𝜔𝐺 (𝑣)∩𝐸 |

𝜔
𝑣 , where

𝐸 |𝑣 ≜ {⟨𝑢1, 𝑢2⟩ ∈ 𝐸 : 𝑢2 is strictly dominated by 𝑣} .

Moreover, it maintains the invariant that after completing a
call to solve-sparse(𝑣), we have that for every vertex𝑢 that is
dominated by 𝑣 , find(𝑢) = 𝑣 and eval(𝑢) is a path expression
that recognizes Paths𝐺 (𝑣,𝑢) ∩ 𝐸 |

∗
𝑣 .

The solve-sparse(𝑣) subroutine is structured as a recursive
traversal of the dominator tree (see Example 4.1). First, it calls
solve-sparse(𝑐) for each child 𝑐 of 𝑣 in the dominator tree.
Next, it computes a directed graph 𝐺𝑣 = SiblingGraph(𝑣)
whose vertices are children(𝑣), and such that there is an
edge ⟨𝑐1, 𝑐2⟩ iff there is a path from 𝑐1 to 𝑐2 in 𝐺 such that
each edge (except the last) belongs to 𝐸 |𝑐1 . The edges of
SiblingGraph(𝑣) can be computed efficiently as

{⟨find(𝑢), 𝑐⟩ : 𝑐, find(𝑢) ∈ children(𝑣), ⟨𝑢, 𝑐⟩ ∈ 𝐸} .

The correctness argument for the edge computation is as
follows. If there is a path from 𝑐1 to 𝑐2 consisting of 𝐸 |𝑐1 edges,
it takes the form 𝜋 ⟨𝑢, 𝑐2⟩ for some ⟨𝑢, 𝑐2⟩ in 𝐸, with 𝜋 ⊆ 𝐸 |∗𝑐1
a path from 𝑐1 to 𝑢. Since 𝜋 ends at 𝑢 and consists only of
𝐸 |𝑐1-edges, 𝑢 is dominated by 𝑐1. Since solve-sparse(𝑣) calls
solve-sparse(𝑐1) before constructing SiblingGraph, we must
have find(𝑢) = 𝑐1 by the invariants of solve-sparse.

Next, solve-sparse computes the strongly connected com-
ponents of 𝐺𝑣 and processes them in topological order. The
loop (lines 9-16) maintains the invariant that when process-
ing a component 𝐶 , for every sibling node 𝑢 that is topolog-
ically ordered before 𝐶 , we have that find(𝑢) = 𝑣 and that
eval(𝑢) recognizes Paths𝐺 (𝑣,𝑢) ∩ 𝐸 |

∗
𝑣 . To process a compo-

nent 𝐶 , we form a path graph 𝐺𝐶 = ComponentGraph(𝐶)
whose vertices are 𝐶 ∪ {𝑣} and that is complete for 𝐸 |𝑣 ,
computing a path expression C-pe(𝑢) for each 𝑢 ∈ 𝐶 that
recognizes Paths𝐺 (𝑣,𝑢) ∩ 𝐸 |∗𝑣 using solve-dense, and then
linking 𝑢 to 𝑣 with the path expression C-pe(𝑢) in the com-
pressed weighted forest. The edges of ComponentGraph(𝐶)
are obtained by collecting all weighted edges of the form
⟨find(𝑤), eval(𝑤), 𝑢⟩ such that𝑢 ∈ 𝐶 and ⟨𝑤,𝑢⟩ ∈ 𝐸; the fact

that 𝐺𝐶 is complete for 𝐸 |𝑣 follows from the loop invariant,
using an argument analogous to the correctness argument
for the SiblingGraph construction above. Finally, we return
an 𝜔-path expression which is the sum of (line 13) the 𝜔-
path expressions for each component and (line 16) an𝜔-path
expression for each child 𝑐 , pre-concatenated with a path
expression recognizing Paths𝐺 (𝑣, 𝑐) ∩ 𝐸 |

∗
𝑣 .

Example 4.1 Figure 2 illustrates the solve-sparse proce-
dure. Figure 2a depicts a control flow graph, whose domina-
tor tree appears in Figure 2b (for legibility, we refer to edges
by label rather than by their endpoints). Consider the op-
eration of solve-sparse(1). The compressed weighted forest
after calling solve-sparse on 1’s children 2, 3, 4 is depicted
in Figure 2c (the single solid link from 3 to 4 labeled 𝑓 ; the
other links are added later). The sibling graph for 1 is given
in Figure 2d ś observe that it has two strongly connected
components: {2} and {3, 4}, with {2} ordered topologically
before {3, 4}.
The loop (lines 9-16) processes {2} first, producing the

component graph in Figure 2e. Then 2 is linked to 1 in the
compressed weighted forest (dashed edge of Figure 2c) with
the regular expression 𝑎𝑐∗ (the paths from 1 to 2 represented
by ComponentGraph({2})).

Next, the loop processes the {3, 4} component, producing
the component graph in Figure 2f; note that the edge from 2
to 3 in 𝐺 produces the edge from 1 to 3 (since find(2) = 1)
and the edge from 5 to 4 produces the edge from 3 to 4
(since find(5) = 3). Then 3 and 4 are both linked to 1 in the
compressed weighted forest (dotted edges of Figure 2c).

Finally, solve-sparse returns the sum solve-dense(𝐺 {2}, 1)
and solve-dense(𝐺 {3,4}, 1), which is the 𝜔-path expression

(𝑎𝑐∗𝑑 + 𝑏𝑒) (𝑓 𝑔𝑒)𝜔 + 𝑎𝑐𝜔 ⌟

Algorithm 2 operates in 𝑂 ( |𝐸 |𝛼 ( |𝐸 |) + 𝑡) time, where 𝑡 is
the time taken by the calls to solve-dense. For reducible flow
graphs, each sibling graph is a singleton (see [45]), so the
complexity simplifies to 𝑂 ( |𝐸 |𝛼 ( |𝐸 |)).
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1 Algorithm PathExp𝜔𝐺 (𝑟 ) begin
Input :Graph 𝐺 = ⟨𝑉 , 𝐸⟩ and root vertex 𝑟
Output :An 𝜔-path expression recognizing

Paths𝜔𝐺 (𝑟 )
2 children← dominator tree for 𝐺 ;

3 Init compressed weighted forest with vertices 𝑉 ;

4 return solve-sparse(𝑟 )

5 Subroutine solve-sparse(𝑣) begin
Input :Vertex 𝑣 ∈ 𝑉
Output :An 𝜔-path expression recognizing

Paths𝜔𝐺 (𝑣) ∩ 𝐸 |
𝜔
𝑣

6 foreach child 𝑐 ∈ children(v) do
7 child-pe𝜔 (𝑐) ← solve-sparse(𝑐);

8 𝐺𝑣 ← SiblingGraph(𝑣);

9 pe𝜔 ← 0 /* accumulating 𝜔-path expression */

10 foreach s.c.c. 𝐶 of 𝐺𝑣 in topological order do

11 𝐺𝐶 ← ComponentGraph(𝐶);

12
〈
C-pe𝜔 ,C-pe

〉
← solve-dense(𝐺𝐶 , 𝑣);

13 pe𝜔 ← pe𝜔 + C-pe𝜔 ;

14 foreach 𝑢 ∈ 𝐶 do

15 link(𝑢,C-pe(𝑢), 𝑣);

16 pe𝜔 ← pe𝜔 + C-pe(𝑢) · child-pe𝜔 (𝑢);

17 return pe𝜔
Algorithm 2: An 𝜔-path expression algorithm

5 Algebraic Termination Analysis

This section describes the process of interpreting an (𝜔-)regular
expression within a suitable algebraic structure. As a par-
ticular case of interest, we show how to apply the algebraic
framework to termination analysis.

An interpretation over an alphabet Σ consists of a triple
I = ⟨A,B, 𝐿⟩, where A is a regular algebra, B is a 𝜔-regular
algebra over A, and 𝐿 : Σ → A is a semantic function. A

regular algebra A =

〈
𝐴, 0𝐴, 1𝐴, +𝐴, ·𝐴, ∗

𝐴

〉
is an algebraic

structure equipped with two distinguished elements 0𝐴, 1𝐴 ∈
𝐴, two binary operations +𝐴 and ·𝐴, and a unary operation

(−)∗
𝐴

. An 𝜔-algebra over A is 4-tuple B =

〈
𝐵, ·𝐵, +𝐵,𝜔

𝐵

〉
consisting of a universe 𝐵, an operation ·𝐵 : 𝐴 × 𝐵 → 𝐵, an

operation +𝐵 : 𝐵 × 𝐵 → 𝐵, and an operation (−)𝜔
𝐵

: 𝐴→ 𝐵.
A semantic function 𝐿 : Σ→ 𝐴 maps the letters of Σ into
the regular algebra A.
Given an interpretation I = ⟨A,B, 𝐿⟩ over an alphabet

Σ, we can evaluate any regular expression 𝑒 over Σ to an
element IJ𝑒K of A and any 𝜔-regular expression 𝑓 over Σ to
an element I𝜔J𝑓 K of B by interpreting each letter according
to the semantic function and each (𝜔-)regular operator using

its corresponding operator in A or B:
IJ𝑎K ≜ 𝐿(𝑎) for 𝑎 ∈ Σ

IJ0K ≜ 0𝐴

IJ1K ≜ 1𝐴

IJ𝑒1𝑒2K ≜ IJ𝑒1K ·
𝐴 IJ𝑒2K

IJ𝑒1 + 𝑒2K ≜ IJ𝑒1K +
𝐴 IJ𝑒2K

IJ𝑒∗K ≜ IJ𝑒K∗
𝐴

I𝜔J𝑒𝜔K ≜ IJ𝑒K𝜔
𝐵

I𝜔J𝑒 𝑓 K ≜ IJ𝑒K ·𝐵 I𝜔J𝑓 K

I𝜔J𝑓1 + 𝑓2K ≜ I
𝜔J𝑓1K +

𝐵 I𝜔J𝑓2K

If an 𝜔-path expression 𝑓 is represented by a DAG with 𝑛
nodes, we can process the DAG bottom-up (as in Section 2)
to compute I𝜔J𝑓 K in 𝑂 (𝑛) operations of A and B.

5.1 Termination Analysis

This paper is primarily concerned with applying the above al-
gebraic framework to termination analysis. The fundamental
operation of interest is this setting the 𝜔-iteration operator.
Fix a mortal precondition operator mp : TF → SF. We

define a regular algebra of transition formulas, TF, and an
𝜔-regular algebra of mortal preconditions,MP. The universe
of TF is the set of transition formulas, and the universe of
MP is the set of state formulas. The operations are given
below:

0TF ≜ false

1TF ≜
∧
𝑥 ∈Var

𝑥 ′ = 𝑥

𝐹1 +
TF 𝐹2 ≜ 𝐹1 ∨ 𝐹2

𝐹1 ·
TF 𝐹2 ≜ 𝐹1 ◦ 𝐹2

𝐹 ∗
TF

≜ 𝐹★

𝐹𝜔
MP

≜ mp(𝐹 )

𝐹 ·MP 𝑆 ≜ wp(𝐹, 𝑆)

𝑆1 +
MP 𝑆2 ≜ 𝑆1 ∧ 𝑆2

Let 𝑃 = ⟨𝐺, 𝐿⟩ be a labeled control flow graph, which de-
fines a transition system TS(𝑃). Let 𝑟 be the root of𝐺 . Using
the algorithm in Section 4, we can compute an 𝜔-regular
expression that recognizes all 𝜔-paths in 𝐺 beginning at 𝑟 .
By interpreting this regular expression (as above) under the
interpretation T ≜ ⟨TF,MP, 𝐿⟩, we can under-approximate
the mortal initial states of TS(𝑃). The correctness of this
strategy is formalized below.

Proposition 5.1 (Soundness). Let 𝑃 = ⟨𝐺, 𝐿⟩ be a labeled

CFG, let 𝑟 be the root of 𝐺 , and let PathExp𝜔𝐺 (𝑟 ) be an 𝜔-path

expression recognizing Paths𝜔𝐺 (𝑟 ). Then T
𝜔
q
PathExp𝜔𝐺 (𝑟 )

y

is a mortal precondition for TS(𝑃), in the sense that for any

𝑠 |= T𝜔
q
PathExp𝜔𝐺 (𝑟 )

y
, we have that ⟨𝑟, 𝑠⟩ is a mortal state

of TS(𝑃). In particular, if T𝜔
q
PathExp𝜔𝐺 (𝑟 )

y
is valid, then the

program 𝑃 has no infinite executions.

Proposition 5.2 (Monotonicity). Suppose that mp is a mono-

tone mortal precondition operator, andMP and TF are defined

as above. Let 𝑓 ∈ 𝜔-RegExp(𝐸), and let 𝐿1, 𝐿2 : 𝐸 → TF be se-

mantic functions such that for all 𝑒 ∈ 𝐸, 𝐿1 (𝑒) |= 𝐿2 (𝑒). Define
T1 ≜ ⟨TF,MP, 𝐿1⟩ and T2 ≜ ⟨TF,MP, 𝐿2⟩. Then T

𝜔
2

J𝑓 K |=
T𝜔
1

J𝑓 K.
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5.2 Inter-procedural Analysis

Our algebraic framework extends to the inter-procedural
case using the method of Cook et al. [21]. The essential idea
is to merge the control flow graphs of all procedures of a
program into an inter-procedural control flow graph (ICFG)
so that infinite paths through the programÐincluding paths
that are infinite due to the presence of recursionÐcorrespond
to infinite paths its ICFG. We may then compute 𝜔-path
expressions for the ICFG and interpret them, just as in the
intra-procedural case. That is, the same analysis that is used
to prove conditional termination for loops also can be applied
to recursive functions. In the following we sketch the inter-
procedural extension; see [51] for details.
We represent a multi-procedure program as a tuple

𝑃 = ⟨𝑉 , 𝐸, Proc,Λ, entry, exit⟩ ,

where ⟨𝑉 , 𝐸⟩ is a finite directed graph, Proc is a finite set of
procedure names, Λ : 𝐸 → (TF ∪ Proc) labels each edge by
either a transition formula or a procedure call, and entry, exit :
Proc → 𝑉 are functions associating each procedure name
with an entry and an exit vertex. We presume that the set of
variables Var is divided into a set of local variables LVar and
a set of global variables GVar. Note that procedures do not
have parameters or return values, but these can be modeled
using global variables (see Figure 3 for an example)
Fix a program 𝑃 . Define its inter-procedural control flow

graph ICFG ≜ (𝑉 , 𝐸ICFG). as follows. The vertices 𝑉 are the
same as the vertices of 𝑃 . The edges 𝐸ICFG ≜ 𝐸∪ Interproc are
the edges of 𝑃 plus an additional set of inter-procedural edges,
which represent transfer of control between procedures by
connecting the source of a call to the entry of the called
procedure:

Interproc ≜ {⟨𝑢, entry(𝑝)⟩ : ∃ ⟨𝑢, 𝑣⟩ ∈ 𝐸.Λ(𝑢, 𝑣) = 𝑝} .

An example ICFG appears in Figure 3; dashed edges corre-
spond to inter-procedural edges.
Finally, we define a semantic function that can be used

to interpret the edges of ICFG. A summary assignment is
a function 𝑆 : Proc → TF that maps each procedure to a
transition formula that over-approximates its behavior. For
example, one possible summary assignment for Figure 3 is
𝑆 (fib) = 𝑔 ≤ 𝑟 ′, indicating that the output of fib is no less
than its input. Summary assignments can be computed using
standard iterative techniques (some care needs to be taken to
ensure monotonicity; see [51] for details). With a summary
assignment 𝑆 in hand, we can define a semantic function
𝐿𝑆 : 𝐸ICFG → TF by

𝐿𝑆 (𝑢, 𝑣) ≜




Λ(𝑢, 𝑣) if ⟨𝑢, 𝑣⟩ ∈ 𝐸 and Λ(𝑢, 𝑣) ∈ TF

𝑆 (𝑝) if ⟨𝑢, 𝑣⟩ ∈ 𝐸 and Λ(𝑢, 𝑣) = 𝑝∧
𝑥 ∈GVar

𝑥 ′ = 𝑥 if ⟨𝑢, 𝑣⟩ ∈ Interproc

Theorem 5.3 (Inter-Procedural Soundness). Let 𝑃 be a pro-

gram. For any procedure 𝑝 ∈ 𝑃 , T𝜔
q
PathExp𝜔ICFG (entry(𝑝))

y

1 fib(n):

2 if (n ≤ 1):

3 return 1

4 else

5 return fib(n - 1) + fib(n - 2)

𝑟

𝑎

𝑥

𝑏

𝑐

𝑑 𝑒

𝑛′ = 𝑔

𝑛 ≤ 1

∧𝑟 ′ = 1
𝑛 ≥ 2

∧𝑛′ = 𝑛

∧𝑔′ = 𝑛 − 1

call fib

𝑡 ′ = 𝑟

∧𝑔′ = 𝑛 − 2
∧𝑛′ = 𝑛

call fib

𝑟 ′ = 𝑟 + 𝑡

Figure 3. The recursive Fibonacci function (top), and rep-
resentation as an inter-procedural control flow graph (bot-
tom). The parameter and return are represented by the global
variables 𝑔 and 𝑟 (respectively); 𝑡 is a local temporary vari-
able used to store the return value of the first recursive call.
Dashed edges are inter-procedural.

is a mortal precondition for the procedure 𝑝 , in the sense that

for any state 𝑠 such that 𝑠 |= T𝜔
q
PathExp𝜔ICFG (entry(𝑝))

y
, we

have that ⟨entry(𝑝), 𝑠⟩ is a mortal state of 𝑃 .

Example 5.4 Consider the recursive Fibonacci function and
its inter-procedural control flow graph pictured in Figure 3.
We have

PathExp𝜔ICFG (𝑟 ) = body𝜔 , where

body = ⟨𝑟, 𝑎⟩ ⟨𝑎, 𝑏⟩ (⟨𝑏, 𝑟 ⟩ + ⟨𝑏, 𝑐⟩ ⟨𝑐, 𝑑⟩ ⟨𝑑, 𝑟 ⟩)

Observe that any infinite execution of fib corresponds to
a path in its ICFG, and therefore PathExp𝜔ICFG (𝑟 ). We can
compute a precondition under which Fibonacci terminates
by evaluating PathExp𝜔ICFG (𝑟 ), using mpLLRF as the mortal
precondition operator:

T JbodyK ≡ 𝑔 ≥ 2 ∧ (𝑔′ = 𝑔 − 1 ∨ 𝑔′ = 𝑔 − 2)

T𝜔
q
PathExp𝜔ICFG (𝑟 )

y
= true

⌟
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6 Modular Design of Mortal Precondition
Operators

The interface provided by algebraic termination analysis is
that the analysis designer provides a mortal precondition
operator for transition formulas, and the framework łliftsž
it to compute mortal preconditions for whole programs. Ex-
ample 3.2 gives one instantiation of the mortal precondition
operator using linear lexicographic ranking functions. This
section demonstrates the applicability of the framework, by
describing several combinators that can be used to construct
monotone mortal precondition operators. A common theme
to all is to take advantage of the properties of the algebraic
framework (compositionality and monotonicity, in particu-
lar).

6.1 Termination Analysis for Free

Summarizing loops using an over-approximate transitive
closure operator is an integral component of our algebraic
framework. This section demonstrates that loop summariza-
tion can be also be exploited to construct a mortal precon-
dition operator; i.e., an algebraic analyses for safety can be
extended to prove termination analysis without any burden
on the analysis designer.
Let 𝐹 be a transition formula. A sufficient (but not neces-

sary) condition for a state 𝑠 of 𝐹 to be mortal is that there is
a bound on the length of any execution starting from 𝑠 ; that
is there is some 𝑘 such that for all 𝑠 ′ with [𝑠, 𝑠 ′] |= 𝐹𝑘 , 𝑠 ′ has
no 𝐹 -successors. This condition is not decidable, but it can
be under-approximated using the procedure exp described
in Section 3.3 (or any other method for over-approximating
the iterated behavior of a transition formula); this yields the
following mortal precondition operator:

mpexp (𝐹 ) ≜ ∃𝑘.∀Var
′,Var′′.𝑘 ≥ 0 ∧ (exp(𝐹, 𝑘) ⇒ ¬𝐺)

where 𝐺 ≜ 𝐹 [Var ↦→ Var′,Var′ ↦→ Var′′].
The fact that mpexp is monotone follows from the mono-

tonicity of quantification, conjunction, and the exp operator,
and the fact that 𝐹 and exp(𝐹, 𝑘) appear in negative positions
in the formula.

Example 6.1 Consider the loop

while (x ≠ 0): x := x - 2,

with corresponding transition formula 𝐹 ≜ 𝑥 ≠ 0∧𝑥 ′ = 𝑥−2.
In this case, we have exp(𝐹, 𝑘) |= 𝑥 ′ = 𝑥 − 2𝑘 , and mpexp
computes the exact precondition for termination of the loop:

mpexp (𝐹 ) ≡ ∃𝑘.∀𝑥
′, 𝑥 ′′.𝑘 ≥ 0

∧ (𝑥 ′ = 𝑥 − 2𝑘 ⇒ ¬(𝑥 ′ ≠ 0 ∧ 𝑥 ′′ = 𝑥 ′ − 2))

≡ ∃𝑘.𝑘 ≥ 0 ∧ 𝑥 − 2𝑘 = 0

i.e., the loop terminates provided that it begins in a state
where 𝑥 is a non-negative even number. ⌟

6.2 Phase Analysis

This section describes a phase analysis combinator that im-
proves the precision of a given mortal precondition operator.
The idea is to extract a phase transition graph from a transi-
tion formula, in which each vertex represents a phase of a
loop, and each edge represents a phase transition. Using the
algebraic framework from Section 5 and a given mortal pre-
condition operator mp, we compute a mortal precondition
for the phase transition graph, which (under mild assump-
tions) is guaranteed to be weaker than applying mp to the
original transition formula (see Theorem 6.3). An important
feature of phase analysis is that it can address the challenge
of generating conditional termination arguments: even if
some phases do not terminate, we can still use phase analy-
sis to synthesize non-trivial mortal preconditions.
Let 𝐹 be a transition formula. We say that a transition

formula 𝑝 is 𝐹 -invariant if, should some transition of 𝐹
satisfy 𝑝 , then so too must any subsequent transition; that
is, the formula (𝐹 ∧ 𝑝) ◦ (𝐹 ∧ ¬𝑝) is inconsistent. Let 𝑃
be a fixed set of transition formulas (e.g., in our implemen-
tation, we take 𝑃 to be the set of all direction predicates,
𝑃 = {𝑥 ⊲⊳ 𝑥 ′ : 𝑥 ∈ Var, ⊲⊳∈ {<,=, >}}). Let 𝐼 (𝐹, 𝑃) denote the
𝐹 -invariant subset of 𝑃 ; 𝐼 (𝐹, 𝑃) can be computed by check-
ing the invariance condition for each formula in 𝑃 using an
SMT solver. The set of predicates 𝐼 (𝐹, 𝑃) defines a partition
P(𝐹, 𝑃) of the set of transitions of 𝐹 , where each cell corre-
sponds to a valuation of the predicates in 𝑃 (i.e., each cell
has the form

𝐹 ∧
©«
∧
𝑝∈𝑋

𝑝
ª®¬
∧

©«
∧

𝑝∈𝐼 (𝐹,𝑃 )\𝑋

¬𝑝
ª®¬
,

where𝑋 is a subset of 𝐼 (𝐹, 𝑃)). Since the predicates in 𝐼 (𝐹, 𝑃)
are 𝐹 -invariant, this partition has the property that any in-
finite computation of 𝐹 must eventually lie within a single
cell of the partition.
Define the phase transition graph Phase(𝐹, 𝑃) to be a

labeled control flow graph where the vertices are the cells
of the partition P(𝐹, 𝑃) plus a root vertex 𝑠 , and which has
the following properties: (1) each cell has a self-loop, labeled
by the cell (2) if cell 𝐹 𝑗 can immediately follow 𝐹𝑖 (i.e., 𝐹𝑖 ◦
𝐹 𝑗 is satisfiable), there is an edge from 𝐹𝑖 to 𝐹 𝑗 with label

1TF (3) there is an edge from 𝑠 to every cell with label 1TF.
The idea is that any infinite sequence 𝑠0 →𝐹 𝑠1 →𝐹 · · ·
corresponds to an 𝜔-path starting from 𝑠 in 𝐺 . Observe that
this property is maintained if we relax conditions (2) and
(3) so that we require only 1TF-labeled paths rather than
edges; call a phase transition graph reduced if it satisfies the
relaxed conditions, and the number of edges is minimal. An
algorithm that constructs a reduced phase transition graph
is given in Algorithm 3.
We now define the phase analysis combinator. Suppose

that mp is a mortal precondition operator; define the mortal
precondition operator mpPhase(𝑃,mp) as follows. Let 𝐹 be a
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1 Subroutine phase-transition-graph(𝐹, 𝑃) begin
Input :Formula 𝐹 , set of transition predicates 𝑃
Output :Reduced phase transition graph for 𝐹

and 𝑃
/* 𝑆 is the set of literals for 𝐹 -invariant predicates in 𝑃 */

2 𝑆 ← 𝐼 (𝐹, 𝑃) ∪ {¬𝑝 : 𝑝 ∈ 𝐼 (𝐹, 𝑃)};
/* Compute the cells of P(𝐹, 𝑃 ) */

3 𝑛 ← 0;

4 while 𝐹 ∧
∧𝑛

𝑖=1 ¬𝐹𝑖 is SAT do

5 Select a model 𝑡 with 𝑡 |= 𝐹 ∧
∧𝑛

𝑖=1 ¬𝐹𝑖 ;

6 𝑛 ← 𝑛 + 1;

7 𝐹𝑛 ← 𝐹 ∧
∧
{𝑝 ∈ 𝑆 : 𝑡 |= 𝑝};

/* Compute phase transitions */

8 Sort 𝐹1, . . . , 𝐹𝑛 by # of positive literals;

9 𝐸 ← {};

10 for 𝑖 = 2 to n do

11 for 𝑗 = 𝑖 − 1 downto 1 do
12 if

〈
𝐹 𝑗 , 𝐹𝑖

〉
∉ 𝐸∗ and 𝐹 𝑗 ◦ 𝐹𝑖 is SAT then

13 𝐸 ← 𝐸 ∪
{〈
𝐹 𝑗 , 𝐹𝑖

〉}
;

/* Connect virtual start node 𝑠 to unreachable vertices */

14 𝐸 ← 𝐸 ∪
{
⟨𝑠, 𝐹𝑖⟩ : � 𝑗 .

〈
𝐹 𝑗 , 𝐹𝑖

〉
∈ 𝐸

}
;

15 𝐸 ← 𝐸 ∪ {⟨𝐹𝑖 , 𝐹𝑖⟩ : 1 ≤ 𝑖 ≤ 𝑛} ; /* Add self-loops */

16 𝐿 ← 𝜆(𝐹𝑖 , 𝐹 𝑗 ).if 𝑖 = 𝑗 then 𝐹𝑖 else 1
TF;

17 return ⟨⟨{𝑠, 𝐹1, . . . , 𝐹𝑛}, 𝐸, 𝑠⟩ , 𝐿⟩
Algorithm 3: Phase transition graph construction

transition formula. Construct the (reduced) phase transition
graph ⟨𝐺 = ⟨𝑉 , 𝐸, 𝑠⟩ , 𝐿⟩ using Algorithm 3. Compute an 𝜔-
path expression PathExp𝜔𝐺 (𝑠) for𝐺 as in Section 4. Define an

interpretation T ≜ ⟨TF,MP, 𝐿⟩, where the (−)𝜔
MP

operator
is taken to be mp. Finally, define

mpPhase(𝑃,mp) (𝐹 ) ≜ T
𝜔
q
PathExp𝜔𝐺 (𝑠)

y
.

Theorem 6.2 (Soundness). Let mp be a mortal precondi-

tion operator and let 𝑃 be a set of transition predicates. Then

mpPhase(𝑃,mp) is a mortal precondition operator.

Theorem 6.3 (Guaranteed improvement). Let mp be amono-

tonemortal precondition operator and let 𝑃 be a set of transition

predicates. Suppose that for any transition formula 𝐹 , we have

wp(𝐹★,mp(𝐹 )) = mp(𝐹 ). Then mp(𝐹 ) |= mpPhase(𝑃,mp) (𝐹 ).

Theorem 6.4 (Monotonicity). Let mp be a monotone mortal

precondition operator and let 𝑃 be a set of transition pred-

icates. Suppose that for any transition formula 𝐹 , we have

wp(𝐹★,mp(𝐹 )) = mp(𝐹 ). Then the mortal precondition oper-

ator mpPhase(𝑃,mp) is monotone.

Example 6.5 Consider the loop in Figure 4. The loop does
not always terminate, so mpLLRF (Example 3.2) computes a
trivial mortal precondition (𝑥 ≤ 0). However, Algorithm 3
discovers a phase structure for this loop: once it execute the
then branch, it cannot ever execute the else branch; the

1 while (x > 0):

2 if ( f ≥ 0 ):

3 x := x - y

4 y := y + 1

5 f := f + 1

6 else

7 x := x + 1

8 f := f - 1

(a) A loop with phase structure

𝑥 > 0

∧

©«

©«

𝑓 ≥ 0

∧𝑥 ′ = 𝑥 − 𝑦
∧𝑦′ = 𝑦 + 1
∧𝑓 ′ = 𝑓 + 1

ª®®®¬
∨
©«

𝑓 < 0

∧𝑥 ′ = 𝑥 + 1
∧𝑓 ′ = 𝑓 − 1
∧𝑦′ = 𝑦

ª®®®¬

ª®®®®®®®®®®®¬
(b) Loop transition formula, 𝐹

𝑠

𝑎 𝑚

𝑏

1

𝐹 ∧
©«
¬(𝑥 ′ < 𝑥)
∧𝑦′ > 𝑦

∧𝑓 ′ > 𝑓

ª®¬
1

𝐹 ∧
©«

𝑥 ′ < 𝑥

∧𝑦′ > 𝑦

∧𝑓 ′ > 𝑓

ª®¬

1

𝐹 ∧
©«
¬(𝑥 ′ < 𝑥)
∧𝑦′ = 𝑦

∧𝑓 ′ < 𝑓

ª®¬

(c) Phase transition graph for 𝐹 . Solid edges form a reduced phase

transition graph.

Figure 4. Analysis of a loop with a phase structure

opposite is also true. Within the then branch, the variable 𝑥
may increase (or remain constant) for some transient period,
but then must ultimately decrease. This structure is depicted
in the phase transition graph in Figure 4c.
Although the original loop has no linear lexicographic

ranking function, the two phases in the then branch do: −𝑦
is a ranking function for phase 𝑎 and 𝑥 is ranking function for
phase 𝑏. The else branch does not, and so mpLLRF generates
a mortal precondition 𝑥 ≤ 0 ∨ 𝑓 ≥ 0 (which is the trivial
mortal precondition for phase𝑚, but is a precise description
of the mortal states of the original loop). Thus, by computing
the mortal precondition of the loop using its phase graph
rather than applying the mortal precondition operator to the
loop itself, we get a weaker mortal precondition. ⌟

6.3 Combining Mortal Precondition Operators

State-of-the-art termination analyzers often use a portfolio
of techniques to prove termination. Heuristics for selecting
among appropriate techniques in a portfolio can be another
source of unpredictable (non-monotone) behavior. A feature
of our framework is that it makes it easy to combine the
strengths of different termination analyses without such
heuristics.

1306



PLDI ’21, June 20ś25, 2021, Virtual, Canada Shaowei Zhu and Zachary Kincaid

Suppose that mp1 and mp2 are mortal precondition opera-
tors. Then we can combinemp1 andmp2 into a single mortal
precondition operator mp1 ⊗ mp2 by defining

(mp1 ⊗ mp2) (𝐹 ) ≜ mp1 (𝐹 ) ∨mp2 (𝐹 ) ;

if mp1,mp2 are monotone, then so too is mp1 ⊗𝑚𝑝2.
In fact, monotonicity allows us to do better. Define a sec-

ond combinator by

(mp1 ⋉mp2) (𝐹 ) ≜ mp2 (𝐹 ∧ ¬mp1 (𝐹 )) .

The intuition is that mp1 ⋉mp2 is an ordered product, which
asks mp2 only to find a mortal precondition for the region
of the state space that mp1 cannot prove to be mortal. If we
suppose that for all 𝐹 we have Pre(𝐹 ) |= mp2 (𝐹 ), then we
have (for all 𝐹 )

(mp1 ⊗ mp2) (𝐹 ) |= (mp1 ⋉mp2) (𝐹 ) .

7 Evaluation

Our tool ComPACT (Compositional andPredictableAnalysis
for Conditional Termination) implements the algebraic pro-
gram analysis framework described in Sections 4 and 5),
two mortal precondition operators mpLLRF (Example 3.2)
and mpexp (Section 6.1), and the combinator mpPhase (Sec-

tion 6.2). ComPACT’s default mortal precondition operator
is mpPhase(𝑃,mpLLRF⋉mpexp)

(where 𝑃 is a set of direction pred-

icates, 𝑃 ≜ {𝑥 ⊲⊳ 𝑥 ′ : 𝑥 ∈ Var, ⊲⊳∈ {<,=, >}}). We compare
ComPACT against Ultimate Automizer [24], 2LS [14], and
CPAchecker [38], the top three placing competitors in the
termination category of the Competition on Software Veri-
fication (SV-COMP) 20201. We also compare with Termite
[30], which implements a complete procedure for linear lexi-
cographic ranking function (LLRF) synthesis, to evaluate the
effectiveness of our algebraic framework. With the exception
of 2LS, all tools treat variables as unbounded integers.

Environment. We ran all experiments in a virtual ma-
chine with Ubuntu 18.04 and kernel version 5.3.0 − 62, with
a single-core Intel Core i7-10710U CPU @ 1.10GHz and 8GB
of RAM. All tools were run with a time limit of 10 minutes.

Benchmark design. We tested on a suite of 413 programs
divided into 4 categories. The termination, bitprecise,
and recursive suites contain small programs with chal-
lenging termination arguments, while the polybench2 suite
contains moderately sized kernels for numerical algorithms
which have relatively simple termination arguments. The
termination category consists of the non-recursive, termi-

nating tasks in the Termination-MainControlFlow suite
from SV-COMP. The recursive category consists of the
recursive, terminating tasks from the recursive directory

1https://sv-comp.sosy-lab.org/2020
2http://web.cs.ucla.edu/~pouchet/software/polybench
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Proved by both

Proved only by ComPACT

Proved only by UAutomizer

Not proved by either

Figure 5. ComPACT vs. UAutomizer performance

and Termination-MainControlFlow. The bitprecise cat-
egory consists of the same tasks as the termination cate-
gory, except that bounded integer semantics are encoded into
unbounded integer semantics for a more accurate compari-
sonwith 2LS (minus one task, which Ultimate Automizer was
able to prove to be non-terminating). Since signed overflow
is undefined in C, proving termination necessitates proving
absence of signed overflow. The encoding was performed by
using goto-instrument [2, 3] to instrument the code with
checks for signed overflow that enter an infinite loop on
failure.

How does ComPACT compare with the state-of-the-
art? A comparison of all tools across all test suites is shown
in Table 1. Ultimate Automizer proves the most tasks in the
termination and bitprecise suites, but uses significantly
more time than ComPACT (Figure 5). ComPACT proves ter-
mination of the most tasks in the recursive and polybench
suite (note that 2LS and Termite do not handle recursive pro-
grams, so we exclude them from the recursive suite). These
results suggest that ComPACT is able to match or even ex-
ceed the capabilities of state-of-the-art termination provers
while providing stronger behavioral guarantees.

How does each component contribute to ComPACT’s
capability? ComPACT implements two mortal precondi-
tion operators, LLRF-based mortal precondition operator
mpLLRF (LLRF) and transitive closure based mpexp (exp), and

the phase analysis (phase) combinator. We evaluate how
each component contributes to ComPACT’s ability to prove
termination in Table 2. First we notice that there is a large
overlap between the tasks solved by mpLLRF and mpexp. This

can be attributed to the fact that both are sufficient to prove
termination of loops with linear ranking functions, which
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Table 1. Termination verification benchmarks; time in seconds.

ComPACT 2LS UAutomizer CPAchecker Termite
benchmark #tasks #correct time #correct time #correct time #correct time #correct time

termination 171 141 81.7 115 1925.8 161 4684.8 126 13434.6 78 937.5
bitprecise 169 115 154.3 111 1911.8 122 26596.5 92 32755.8 4 693.8
recursive 42 31 49.6 ś ś 30 2073.8 23 710.1 ś ś
polybench 30 30 93.8 0 7944.2 0 16285.8 0 4397.3 26 36.7

Total 412 317 379.5 226 11781.8 313 49640.8 241 51297.8 108 1668.0

Table 2. Contributions of different components implemented in ComPACT; time in seconds.

ComPACT
Using mpLLRF as base operator Using mpexp as base operator

LLRF only LLRF + phase exp only exp + phase
benchmark #tasks #correct time #correct time #correct time #correct time #correct time

termination 171 141 81.7 122 65.2 138 70.3 112 72.2 130 92.4
bitprecise 169 115 154.3 105 134.5 115 142.6 103 175.7 113 240.6
recursive 42 31 49.6 15 31.2 22 38.7 24 44.7 31 78.9
polybench 30 30 93.8 30 60.8 30 93.4 30 86.5 30 565.0

Total 412 317 379.5 272 291.7 305 345.0 269 379.1 304 976.9

is the case for the majority of the tasks in our suite.3 The
relative strength of mpLLRF is on loops with complex control
structure (e.g., loops whose termination relies on precise rea-
soning about multiple paths through its body); the relative
strength of mpexp is on loops with non-convex guards (e.g.,

recursive functions where the recursive case is guarded by a
disequality). Theorem 6.3 implies that the set of tasks that
can be proved with phase analysis is a super-set of those that
can be proved without; our experimental results show that
the inclusion is strict for both configurations. These results
above suggest that the algebraic framework can be success-
fully applied using a variety of different mortal precondition
operators, and that different operators can be profitably com-
bined.

Impact of compositionality and monotonicity. The
algebraic framework łliftsž a termination analysis for tran-
sition formulas to whole programs. Comparing the LLRF
column of Table 2 with the Termite results in Table 1 demon-
strates the impact of this framework: both columns imple-
ment the same base analysis, but lift the analysis to whole
programs in different ways. This comparison demonstrates
the advantage of compositional summarization of nested
loops, and also suggests that precision loss due to composi-
tionality, i.e., synthesizing LLRFs without precise supporting
invariants, is not substantial.

3We confirmed this fact by running the experiments with a modifiedmpLLRF
that finds only linear ranking functions: it succeeds on 258 tasks without

phase analysis and 292 tasks with phase analysis.

A consequence of compositionality is that ComPACT has
relatively stable running time across all tasks and scales to
the larger tasks in the polybench suite. This suite contains
program with loops that have complex control flow (e.g.,
nested loops) but simple termination arguments, in particu-
lar, for loops like

1 for(int i = 0; i < n; i++) { ... }

where the loop body does not contain instructions that de-
crease i. ComPACT is assured to prove termination of such
loops as a consequence of compositionality and monotonic-
ity. The other tools on our comparison, even those that em-
ploy complete procedures for linear ranking function syn-
thesis, do not make such guarantees and may get stuck in
the logic of the loop body. For example, ComPACT proves
termination of the following loop in 0.3 seconds:

1 for(int i = 0; i < 4096; i++)

2 for(int j = 0; j < 4096; j++)

3 i = i;

Ultimate Automizer and CPAchecker exceed the 10 minute
time limit on this loop, and 2LS and Termite return łun-
knownž.

8 Related Work

Summarization for termination. At a high level, our
procedure proves that a loop terminates by first computing a
transition formula that summarizes the behavior of its body,
and then performing termination analysis on the transition
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formula. There are several approaches to termination analy-
sis that similarly apply summarization to handle nested loops
and procedure calls [8, 14, 47, 52]. There are various ways
of formulating such an analysis. Berdine et al. [8] generates
loop body summaries using a program transformation and a
conventional state-based invariant generator (e.g., polyhedra
analysis). Tsitovich et al. [47] takes an approach more similar
to ours: summarization is an operation that replaces a sub-
graph of a control flow graph by edges that summarize that
subgraph, and it is applied recursively to summarize nested
loops. We take an algebraic view, inspired by Tarjan [45, 46],
in which we generate an 𝜔-regular expression representing
the paths through a program and then define the analysis by
recursion on that expression.

The contribution of Section 5 is to provide a unified frame-
work in which these analyses can be understood. In view of
the algebraic framework, prior work can be understood in
terms of (1) the method used to summarize loops (i.e, the
(−)∗ operator), and (2) the method used to prove termination
(i.e, the (−)𝜔 operator). A concrete benefit of our framework
in light of this prior work is that our approach handles re-
cursive procedures and irreducible control flow, which are
not supported by some of the prior approaches (including
2LS) [14, 47, 52].

Complete ranking function synthesis. A ranking func-
tion synthesis algorithm is complete if it is guaranteed to find
a ranking function for a loop if one exists. Such techniques
are related to our work in that we sought a termination
analysis for which we can make guarantees about its behav-
ior. Complete ranking function synthesis algorithms exist
for a variety of classes of ranking functions, such as linear
[39], linear-lexicographic [11], nested [37], multi-phase [7],
. . . ). These algorithms apply only to very restricted classes
of loops, and in particular there are no complete ranking
function synthesis algorithms that operate on nested loops
or recursive procedures. The seminal work on Termina-

tor gives a general method for applying complete ranking
function synthesis algorithms to general programs by us-
ing them in a counter-example guided refinement loop [20].
Our framework of algebraic termination analysis provides
another general method, which allows the completeness guar-
antee to carry over to amonotonicity guarantee for the whole
analysis.

Conditional termination. In a compositional setting it is
natural to formulate the termination problem as the problem
of finding a sufficient condition under which a fragment of
code is guaranteed to terminate (i.e., a mortal precondition),
rather than the decision problem of universal termination.
Approaches to conditional termination include quantifier
elimination [16], abstract interpretation [22, 48ś50], abduc-
tive inference [36], conflict-driven learning [25], incremental
backwards reasoning [29], and constraint-based methods [9].

Our approach is unique in that we provide a conditional ter-
mination analysis that is both monotone and can be applied
to a general program model.

Bozga et al. [10] is closest to our work in that they give an
algorithm for which there are guarantees about its behavior
beyond soundness, albeit for a limited class of loops. They
give a technique for synthesizing the set of mortal states
of a loop, provided a logical formula representing the exact
transitive closure of that loop in a logical theory that admits
quantifier elimination. In Section 6.1, we use a related idea
to under-approximate the mortal states of a loop using an
over-approximation of the transitive closure of the loop.

Control flow refinement. Section 6.2 defines a mortal
precondition combinator that improves the precision of a
given mortal precondition operator by exposing phase struc-
ture in loops. There are several related approaches for im-
proving analysis results by program transformation [6, 23,
27, 28, 31, 40, 41]. In particular, the transition invariant pred-

icates from Section 6.2 are essentially a transition-predicate
analogue of the (state-based) splitter predicates from [41]; our
method for checking whether a candidate transition pred-
icate is invariant and partitioning the transition space are
new. Cyphert et al.’s work [23] on refinement of path ex-
pressions is closest to ours in that it is based on an algebraic
program analysis and provides a guarantee of improvement.
The refinement strategy is based on altering the path expres-
sion algorithm, whereas phase analysis alters the algebra
of the analysis. Operating at the algebra level enables us to
formulate and prove a monotonicity theorem.

9 Conclusion

This paper presents a termination analysis that is both com-

positional and monotone. We extended Tarjan [45, 46]’s path
expression method from safety analysis to termination analy-
sis, by using 𝜔-regular expressions to represent languages of
infinite paths and 𝜔-algebras to interpret those expressions.
One direction for future work is to apply this framework
to other analyses that require reasoning about infinite and
potentially infinite paths, such as non-termination analysis,
resource bound analysis, and verification of linear temporal
properties.
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