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Abstract

This paper is the confluence of two streams of ideas in the
literature on generating numerical invariants, namely: (1)
template-based methods, and (2) recurrence-based methods.

A template-based method begins with a template that con-
tains unknown quantities, and finds invariants that match
the template by extracting and solving constraints on the
unknowns. A disadvantage of template-based methods is
that they require fixing the set of terms that may appear in
an invariant in advance. This disadvantage is particularly
prominent for non-linear invariant generation, because the
user must supply maximum degrees on polynomials, bases
for exponents, etc.
On the other hand, recurrence-based methods are able to

find sophisticated non-linear mathematical relations, includ-
ing polynomials, exponentials, and logarithms, because such
relations arise as the solutions to recurrences. However, a
disadvantage of past recurrence-based invariant-generation
methods is that they are primarily loop-based analyses: they
use recurrences to relate the pre-state and post-state of a
loop, so it is not obvious how to apply them to a recursive
procedure, especially if the procedure is non-linearly recur-

sive (e.g., a tree-traversal algorithm).
In this paper, we combine these two approaches and ob-

tain a technique that uses templates in which the unknowns
are functions rather than numbers, and the constraints on the
unknowns are recurrences. The technique synthesizes invari-
ants involving polynomials, exponentials, and logarithms,
even in the presence of arbitrary control-flow, including any
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combination of loops, branches, and (possibly non-linear)
recursion. For instance, it is able to show that (i) the time
taken by merge-sort isO(n log(n)), and (ii) the time taken by

Strassen’s algorithm is O(nlog2(7)).
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1 Introduction

A large body of work within the numerical-invariant-
generation literature focuses on template-based methods

[10, 31]. Such methods fix the form of the invariants that
can be discovered, by specifying a template that contains
unknown quantities. Given a program and some property
to be proved, a template-based analyzer proceeds by finding
constraints on the values of the unknowns and then solving
these constraints to obtain invariants of the program that
suffice to prove the property. Template-based methods have
been particularly successful for finding invariants within the
domain of linear arithmetic.

Many programs have important numerical invariants that
involve non-linear mathematical relationships, such as poly-
nomials, exponentials, and logarithms. A disadvantage of
template-based methods for non-linear invariant generation
is that (in contrast to the linear case) there is no łmost gen-
eralž template term, so the user must supply the set of terms
that may appear in the invariant.

In this paper, we present an invariant-synthesis technique
that is related to template-based methods, but sidesteps the
above difficulty. Our technique is based on a concept that we
call a hypothetical summary, which is a template for a proce-
dure summary in which the unknowns are functions, rather
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than numbers. The constraints that we extract for these func-
tions are recurrences. Solving these recurrence constraints
allows us to synthesize terms over program variables that
we can substitute in place of the unknown functions in our
template and thereby obtain procedure summaries.

Whereas most template-based methods directly constrain
the mathematical form of their invariants, our technique
constrains the invariants indirectly, by way of recurrences,
and thereby allows the invariants to have a wide variety of
mathematical forms involving polynomials, exponentials,
and logarithms. This aspect is intuitively illustrated by the
recurrences S(n) = 2S(n/2) + n and T (n) = 2T (n/2) + n2:
although these two recurrences are outwardly similar, their
solutions are more different than one would expect at first
glance, in that S(n) is Θ(n logn), whereas T (n) is Θ(n2). Be-
cause the unknowns in our templates are functions, we can
generate a wide variety of invariants (involving polynomi-
als, exponentials, logarithms) without specifying their exact
syntactic form.
However, recurrence-based invariant-generation tech-

niques typically have disadvantages when applied to recur-
sive programs. Recurrences are well-suited to characterize
the sequence of states that occur as a loop executes. This
idea can be extended to handle linear recursionÐwhere a
recursive procedure makes only a single recursive call: each
procedure-entry state that occurs łon the way downž to the
base case of the recursion is paired with the corresponding
procedure-exit state that occurs łon the way back upž from
the base case, and then recurrences are used to describe the
sequence of such state pairs. However, non-linear recursion
has a different structure: it is tree-shaped, rather than linear,
and thus some kind of additional abstraction is required be-
fore non-linear recursion can be described using recurrences.

We use the technique of hypothetical summaries to extend
the work of [14], [25], and [24]: hypothetical summaries en-
able a different approach to the analysis of non-linearly recur-
sive programs, such as divide-and-conquer or tree-traversal
algorithms.1 We show how to analyze the base case of a
procedure to extract a template for a procedure summary
(i.e., a hypothetical summary). By assuming that every call
to the procedure, throughout the tree of recursive calls, is
consistent with the template, we discover relationships (i.e.,
recurrence constraints) among the states of the program at
different heights in the tree. We then solve the constraints

1Warning: We use the term łnon-linearž in two different senses: non-linear

recursion and non-linear arithmetic. Even for a loop that uses linear arith-

metic, non-linear arithmetic may be required to state a loop invariant.

Moreover, arithmetic expressions in the programs that we analyze are not

limited to linear arithmetic: variables can be multiplied.

The two uses of the term łnon-linearž are essentially unrelated, and

which term is intended should be clear from context. The paper primarily

concerns new techniques for handling non-linear recursion, and non-linear

arithmetic is handled by known methods, e.g., [25].

and fill in the template to obtain a procedure summary. Hy-
pothetical summaries thus provide the additional layer of
abstraction that is required to apply recurrence-based invari-
ant generation to non-linearly recursive procedures.
Our invariant generation procedure is both (1) general-

purpose, so it is applicable to a wide variety of tasks, and
(2) compositional, so the space and time required to analyze
a program fragment depends on the size of the fragment
rather than the whole program. In contrast, conventional
template-based methods are goal-directed (they must be tai-
lored to a specific problem of interest, e.g., a template-based
invariant generator for verification problems cannot solve
quantitative problems such as resource-bound analysis) and
whole-program. The general-purpose nature of our proce-
dure also distinguishes it from recurrence-based resource-
bound analyses, which for example cannot be applied to
assertion checking.

To evaluate the applicability of our analysis to challenging
numerical-invariant-synthesis tasks, we applied it to the task
of generating bounds on the computational complexity of
non-linearly recursive programs and the task of generating
invariants that suffice to prove assertions. Our experiments
show that the analysis technique is able to prove properties
that [24] was not capable of proving, and is competitive
with the output of state-of-the-art assertion-checking and
resource-bound-analysis tools.

Contributions. Our work makes contributions in three
main areas:
1. We introduce an analysis method based on łhypothetical

summaries.ž It hypothesizes that a summary exists of a
particular form, using uninterpreted function symbols to
stand for unknown expressions. Analysis is performed
to obtain constraints on the function symbols, which are
then solved to obtain a summary.

2. We develop a procedure-summarization technique called
height-based recurrence analysis, which uses the notion
of hypothetical summaries to produce bounds on the val-
ues of program variables based on the height of recursion
(ğ4.1). Furthermore, we give an algorithm (ğ4.3) that gen-
eralizes height-based recurrence analysis to the setting of
mutual recursion.

3. The technique is implemented in the CHORA tool. Our ex-
periments show that CHORA is able to handle many non-
linearly recursive programs, and generate invariants that
include exponentials, polynomials, and logarithms (ğ5).
For instance, it is able to show that (i) the time taken by
merge-sort isO(n log(n)), (ii) the time taken by Strassen’s

algorithm is O(nlog2(7)), and (iii) an iterative function and
a non-linearly recursive function that both perform expo-
nentiation are functionally equivalent.

ğ2 presents an example to provide intuition. ğ3 provides back-
ground on material needed for understanding the paper’s
results. ğ6 discusses related work.
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int nTicks; bool f ound ;
int subsetSum(int ∗A, int n) {

found = false; return subsetSumAux(A, 0,n, 0);
}

int subsetSumAux(int ∗A, int i, int n, int sum) {
nTicks++;
if (i >= n) {

if (sum == 0) { found = true; }
return 0;

}

int size = subsetSumAux(A, i + 1,n, sum +A[i]);
if (found) { return size + 1; }
size = subsetSumAux(A, i + 1,n, sum);
return size;

}

1
rec. 

call

Time

nTicks′ - nTicks - 1 ≤ b2(h+1) 

2

height h+1

pre-state

3

nTicks′ - nTicks - 1 ≤ b2(h) nTicks′ - nTicks - 1 ≤ b2(h)

rec. 

call4 5 6

height ≤ h
pre-state 

height ≤ h 
post-state

height h+1

post-state

height ≤ h
pre-state 

height ≤ h 
post-state

Figure 1. Example program subsetSum. The diagram at the
bottom shows a timeline of a height (h + 1) execution of
subsetSumAux. b2(h + 1) is related to the increase of nTicks
between the pre-state (label 1) and the post-state (label 6).
b2(h) is related to the increase of nTicks between (2) and (3)
and also between (4) and (5), i.e., between the pre-states and
post-states of height-h executions.

2 Overview

The goal of this paper is to find numerical summaries for
all the procedures in a given program. For simplicity, this
section discusses the analysis of a program that contains a
single procedure P , which is non-linearly recursive and calls
no other procedures.
We use the following example to illustrate how our tech-

niques use recurrence solving to summarize non-linearly-
recursive procedures.

Example 2.1. The function subsetSum (Fig. 1) takes an ar-
ray A of n integers, and performs a brute-force search to
determine whether any non-empty subset of A’s elements
sums to zero. If it finds such a set, it returns the number of
elements in the set, and otherwise it returns zero. The recur-
sive function subsetSumAux works by sweeping through the
array from left to right, making two recursive calls for each
array element. The first call considers subsets that include
the element A[i], and the second call considers subsets that

exclude A[i]. The sum of the values in each subset is com-
puted in the accumulating parameter sum. When the base
case is reached, subsetSumAux checks whether sum is zero,
and if so, sets found to true. At each of the two recursive
call sites, the value returned by the recursive call is stored in
the variable size. After found is set to true, subsetSumAux

computes the size of the subset by returning size + 1 if the
subset was found after the first recursive call, or returning
size unchanged if the subset was found after the second
recursive call.
In this paper, a state of a program is an assignment of

integers to program variables. For each procedure P , we wish
to characterize the relational semantics R(P), defined as the
set of state pairs (σ ,σ ′) such that P can start executing in
state σ and finish in state σ ′. To find an over-approximate
representation of the relational semantics of a recursive pro-
cedure such as subsetSumAux, we take an approach that we
call height-based recurrence analysis. In height-based recur-
rence analysis, we construct and solve recurrence relations
to discover properties of the transition relation of a recursive
procedure. To formalize our use of recurrence relations, we
give the following definitions.

We define the height-bounded relational semantics R(P ,h)

to be the subset of R(P) that P can achieve if it is limited to
using an execution stack with a height of at mosth activation
records. We define a height-h execution of P to be any exe-
cution of P that uses a stack height of at most h, or, in other
words, an execution of P having recursion depth no more
than h. Base cases are defined to be of height 1. Let τ1, ...,τn
be a set of polynomials over unprimed and primed program
variables, representing the pre-state and post-state of P , re-
spectively. For each τk we associate a function Vk : N→ 2Q,
such that Vk (h) is defined to be the set of values v such that,
for some (σ ,σ ′) ∈ R(P ,h), τk evaluates tov by using σ and σ ′

to interpret the unprimed and primed variables, respectively.

Using subsetSumAux as an example, let τ1
def
= return′.

Then, V1(1) denotes the set of values return
′ can take on

in any base case of subsetSumAux. In this program, return′

is 0 in any base case, and so V1(1) = {0}. Now consider
an execution of height 2. In the case that found is true, we
have that return′ increases by 1 compared to the value
that return′ has in the base case. If found is not true then
return′ remains the same. In other words, at height-2 execu-
tions, return′ takes on the values 0 and 1; i.e.,V1(2) = {0, 1}.
Similarly, V1(3) = {0, 1, 2}, and so on. We approximate the
value set Vk (h) by finding a function bk (h) : N → Q that
bounds Vk (h) for all h; that is, for any v ∈ Vk (h), we have
v ≤ bk (h). In the case of τ1, a suitable bounding function
b1(h) is b1(h) = h− 1. The initial step of our analysis chooses
terms τ1, ...,τn , and then for each term τk , tries to synthesize
a function bk (h) that bounds the set of values τk can take on.
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Note that for a given term τj , a corresponding bounding
function may not exist. A necessary condition for a bound-
ing function to exist for a term τj is that the set Vj (1) must
be bounded. This observation restricts our set of candidate
terms τ1, ...,τn to only be over terms that are bounded above
in the base case. (Specifically, we require the expressions to
be bounded above by zero.) For example, return′ ≤ 0 in the

base case, and so τ1
def
= return′ is a candidate term. Similarly,

the term τ2
def
= nTicks’-nTicks-1 is also bounded above by

0 in the base case, and so τ2 is a candidate term. There are
other candidate terms that our analysis would extract for this
example, but for brevity they are not listed here. We discover
these bounded terms τ1 and τ2 using symbolic abstraction

(see ğ3).
Once we have a set of candidate terms τ1, ...,τn , we seek to

find corresponding bounding functions b1(h), ...,bk (h). Note
that such functions may not exist: just because τk is bounded
above in the base case does not mean it is bounded in all
other executions. If a bounding function for a term does exist,
we would like a closed-form expression for it in terms of h.
We derive such closed-form expressions by hypothesizing

that a bounding functionbk (h) does exist. These hypothetical
functionsbk (h) allow us to construct a hypothetical procedure
summary φh that represents a typical height-h execution. For
example, in the case of subsetSumAux:

φh
def
= return′ ≤ b1(h) ∧ nTicks′ − nTicks − 1 ≤ b2(h).

Note that, although φh assumes the existence of several
bounding functions (corresponding to bk (h) for several val-
ues of k), the assumptions for different values of k need not
all succeed or fail together. That is, if we fail to find a bound-
ing function bk (h) for some k , this failure does not prevent
us from continuing the analysis and finding other bounding
functions (bj (h), with j , k) for the same procedure.

We then build up a height-(h + 1) summary, φh+1, compo-
sitionally, with φh replacing the recursive calls. For example,
consider the term τ2 = nTicks′−nTicks−1 in the context of
Fig. 1. Our goal is to create a relational summary for the vari-
able nTicks between labels 1 and 6. We do this by extending
a summary for the transition between labels 1 and 2 with
a summary for the transition between 2 and 3, namely, our
hypothetical summary. Then we extend that with a summary
for the paths between labels 3 and 4, and so on. Between
labels 1 and 2, nTicks gets increased by 1. We then summa-
rize the transition between 1 and 3. We know nTicks gets
increased by 1 between labels 1 and 2. Furthermore, our hy-
pothetical bounding function nTicks′ − nTicks − 1 ≤ b2(h)
says that nTicks gets increased by at most b2(h)+1 between
labels 2 and 3. Combining these summaries, we see that
nTicks gets increased by at most b2(h) + 2 between labels
1 and 3. nTicks does not change between labels 3 and 4,
so the summary between labels 1 and 4 is the same as the
one between labels 1 and 3. The transition between labels

4 and 5 is a recursive call, so we again use our hypothetical
summary to approximate this transition. Once again, such
a summary says nTicks gets increased by at most b2(h) + 1.
Extending our summary for the transition between 1 and
4 with this information allows us to conclude that nTicks
gets increased by at most 2b2(h) + 3 between labels 1 and
5. nTicks does not change between labels 5 and 6. Conse-
quently, our summary for nTicks between labels 1 and 6
is nTicks′ − nTicks ≤ 2b2(h) + 3. Similar reasoning would
also obtain a summary for return as return′ ≤ 1 + b1(h).
These formulas constitute our height-(h + 1) hypothetical
summary, φh+1.

φh+1
def
= return′ ≤ 1+b1(h) ∧ nTicks

′ ≤ nTicks+2b2(h)+3

If we rearrange each conjunct to respectively place τ1 and τ2
on the left-hand-side of each inequality, we obtain height-
(h + 1) bounds on the values of τ1 and τ2. By definition such
bounds are valid expressions for b1(h+ 1) and b2(h+ 1). That
is at height-(h + 1),

return′ ≤ b1(h) + 1 = b1(h + 1) (1)

nTicks′ − nTicks − 1 ≤ 2 + 2b2(h) = b2(h + 1) (2)

The equations give recursive definitions forb1 andb2. Solving
these recurrence relations give us bounds on the value sets
V1(h) and V2(h), for all heights h.

In ğ4.2, we present an algorithm that determines an upper
bound on a procedure’s depth of recursion as a function of
the parameters to the initial call and the values of global
variables. This depth of recursion can also be interpreted
as a stack height h that we can use as an argument to the
bounding functions bk (h). In the case of subsetSumAux, we
obtain the bound h ≤ max(1, 1 + n − i). The solutions to the
recurrences discussed above, when combined with the depth
bound, yield the following summary.

nTicks′ ≤ nTicks + 2h − 1 ∧ return′ ≤ h − 1 ∧

h ≤ max(1, 1 + n − i)

When subsetSum is called with some array size n, the max-
imum possible depth of recursion that can be reached by
subsetSumAux is equal to n. In this way, we have established
that the running time of subsetSum is exponential in n, and
the return value is at most n.

3 Background

Relational semantics. In the following, we give an ab-
stract presentation of the relational semantics of programs.

Fix a set Var of program variables. A state σ : State
def
=

Var → Z consist of an integer valuation for each program
variable. A recursive procedure P can be understood as a
chain-continuous (and hence monotonic) function on state
relations F JPK : 2State×State → 2State×State . The relational
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semantics RJPK of P is given as the limit of the ascending
Kleene chain of F JPK:

R(P , 0) = ∅

R(P ,h + 1) = F JPK(R(P ,h))

RJPK =
⋃

h∈N

R(P ,h)

Operationally, for anyhwemay viewR(P ,h) as the input/out-
put relation of P on a machine with a stack limit of h acti-
vation records. We can extend relational semantics to mutu-
ally recursive procedures in the natural way, by considering
F JPK to be function that takes as input a k-tuple of state
relations (where k is the number of mutually recursive pro-
cedures).
A transition formula φ is a formula over the program

variables Var and an additional set Var ′ of łprimedž copies,
representing the values of the program variables before and
after a computation. A transition relation φ can be inter-
preted as a property that holds of a pair of states (σ ,σ ′): we
say that (σ ,σ ′) satisfies φ if φ is true when each variable
in Var is interpreted according to σ , and each variable in
Var ′ is interpreted according to σ ′. We use RJφK to denote
the state relation consisting of all pairs (σ ,σ ′) that satisfy
φ. This paper is concerned with the problem of procedure
summarization, in which the goal is to find a transition for-
mula φ that over-approximates a procedure, in the sense that
RJPK ⊆ RJφK.

A relational expressionτ is a polynomial overVar∪Var ′

with rational coefficients. A relational expression can be eval-
uated at a state pair (σ ,σ ′) ∈ State × State by using σ to in-
terpret the unprimed symbols and σ ′ to interpret the primed
symbolsÐwe use EJτ K(σ ,σ ′) to denote the evaluation of τ
at (σ ,σ ′).

Intra-procedural analysis. The technique for proce-
dure summarization developed in this paper makes use
of intra-procedural summarization as a sub-routine. We
formalize this intra-procedural technique by a function
PathSummary(e,x ,V ,E), which takes as input a control-
flow graph with vertices V , edges E, entry vertex e , and
exit vertex x , and computes a transition formula that over-
approximates all paths in (V ,E) between e and x . We use
Summary(P ,φ) to denote a function that takes as input a
recursive procedure P and a transition formula φ, and com-
putes a transition formula that over-approximates P when
φ is used to interpret recursive calls (i.e., F JPK(RJφK) ⊆
RJSummary(P ,φ)K). Summary(P ,φ) can be implemented in
terms of PathSummary(e,x ,V ,E) by replacing all call edges
with φ, and taking (e,x ,V ,E) to be the control-flow graph
of P .
In principle, any intra-procedural summarization proce-

dure can be used to implement Summary(P ,φ); the imple-
mentation of our method uses the technique from Kincaid
et al. [25].

Algorithm 1: The convex-hull algorithm from [14]

Input :Formula of the form ∃X .ψ whereψ is satisfiable

and quantifier-free

Output :Convex hull of ∃X .ψ

1 P ← ⊥;

2 while there exists a modelm ofψ do

3 Let Q be a cube of the DNF ofψ s.t.m |= Q ;

4 Q ← project(Q,X ) ; /* Polyhedral projection */

5 P ← P ⊔Q ; /* Polyhedral join */

6 ψ ← ψ ∧ ¬P ;

7 return P

Symbolic abstraction. We useAbstract(φ,V ) to denote a
procedure that takes a formula φ and computes a set of poly-
nomial inequations over the variables V that are implied by
φ. If φ is expressed in linear arithmetic, then a representation
of all implied polynomial inequations (namely, a constraint
representation of the convex hull of φ projected onto V ) can
be computed effectively (e.g., using [14, Alg. 2], which we
show in this paper as Alg. 1). Otherwise, we settle for a sound
procedure that produces inequations implied by φ, but not
necessarily all of them (e.g., using [25, Alg. 3]).

In principle, the convex hull of a linear arithmetic formula
F can be computed as follows: write F in disjunctive normal
form, as F ≡ C1 ∨ ... ∨Cn , where eachCi is a conjunction of
linear inequations (i.e., a convex polyhedron). The convex
hull of F is obtained by replacing disjunctions with the join
operator of the domain of convex polyhedra. This algorithm
can be improved by using an SMT solver to enumerate the
DNF lazily, and extended to handle existential quantification
by using polyhedral projection (Alg. 1). A similar approach
can be used to compute a conjunction of non-linear inequa-
tions that are implied by a formula F , by treating non-linear
terms in the formula as additional dimensions of the space
(e.g., a quadratic inequation x2 < y2 is treated as a linear
inequation dx 2 < dy2 , where dx 2 and dy2 are symbols that

we associate with the terms x2 and y2, but have no intrin-
sic meaning). The non-linear variation of the algorithm’s
precision can be improved by using inference rules, congru-
ence closure, and Grobner-basis algorithms to deduce linear
relations among the non-linear dimensions that are conse-
quences of the non-linear theory ([25, Alg. 3]). Note that,
because non-linear integer arithmetic is undecidable, this
process is (necessarily) incomplete.

Recurrence relations. C-finite sequences are a well-
studied class of sequences defined by linear recurrence rela-
tions, of which a famous example is the Fibonacci sequence.
Formally,

Definition 3.1. A sequence s : N→ Q is C-finite of order
d if it satisfies a linear recurrence equation

s(k + d) = c1s(k + d − 1) + ... + cd−1s(k + 1) + cds(k) ,

where each ci is a constant.
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It is classically known that every C-finite sequence s(k)
admits a closed form that is computable from its recurrence
relation and takes the form of an exponential-polynomial

s(k) = p1(k)r
k
1 + p2(k)r

k
2 + ... + pl (k)r

k
l ,

where each pi is a polynomial in k and each ri is a constant.
In the following, it will be convenient to use a different kind
of recurrence relation to present C-finite sequences, namely
stratified systems of polynomial recurrences.

Definition 3.2. A stratified system of polynomial recur-

rences is a system of recurrence equations over sequences
x1,1, ...,x1,n1 , ...,xm,1, ...,xm,nm of the form

{xi, j (k + 1) = ci, j,1xi,1(k) +· · · + ci, j,nixi,ni (k) + pi, j }i, j

where each ci, j,1, ..., ci, j,ni is a constant, and pi, j is a polyno-
mial in x1,1(k), ...,x1,n1 (k), ...,xi−1,1(k), ...,xi−1,ni−1 (k).

Intuitively, the sequences x1,1, ...,x1,n1 , ...,xm,1, ...,xm,nm

are organized into strata (x1,1, ...,x1,n1 is the first,
x2,1, ...,x2,n1 is the second, and so on), the right-hand-side
of the equation for xi, j can involve linear terms over the

sequences in the i th strata, and additional polynomial terms
over sequences of lower strata. It follows from the closure
properties of C-finite sequences that each xi, j defines a
C-finite sequence, and an exponential-polynomial closed
form for each sequence can be computed from a stratified
system of polynomial recurrences [22]. The fact that any
C-finite sequence satisfies a stratified system of polynomial
recurrences follows from the fact that a recurrence of order
d can be implemented as a system of linear recurrences
among d sequences [22].

Example 3.3. An example of a stratified system of polyno-
mial recurrences with four sequences (w,x ,y, z) arranged
into two strata ((w,x) and (y, z)) is as follows:

[

w(k + 1)
x(k + 1)

]

=

[

1 1
3

0 2

] [

w(k)

x(k)

]

+

[

1
0

]

[

y(k + 1)
z(k + 1)

]

=

[

1 0
1 1

] [

y(k)

z(k)

]

+

[

x(k)2 + 1
3w(k) + x(k)

]

This system has the closed-form solution

w(k) = w(0) +
(2k − 1)

3
x(0) + k x(k) = 2kx(0)

y(k) =
4k − 1

3
x(0)2 + y(0) + k

z(k) = 3w(0) +
4k − 3k − 1

9
x(0)2+

(2k+1 − k − 1)x(0) + ky(0) + z(0) + 2(k2 − k) .

4 Technical Details

This section gives algorithms for summarizing recursive pro-
cedures using recurrence solving. We assume that before
these algorithms are applied to the procedures of a program

P, we first compute and collapse the strongly connected
components of the call graph of P and topologically sort the
collapsed graph. Our analysis then works on the strongly
connected components of the call graph in a single pass,
in a topological order of the collapsed graph, by applying
the algorithms of this section to recursive components, and
applying intraprocedural analysis to non-recursive compo-
nents.
For simplicity, ğ4.1 focuses on the analysis of strongly

connected components consisting of a single recursive pro-
cedure P . The first step of the analysis is to apply Alg. 2,
which produces a set of inequations that describe the values
of variables in P . Not all of the inequations found by Alg. 2
are suitable for use in a recurrence-based analysis, so we
apply a fixpoint algorithm to filter the set of inequations
down to a subset that, when combined, form a stratified
recurrence. The next step is to give this recurrence to a re-
currence solver, which results in a logical formula relating
the values of variables in P to the stack height h that may be
used by P . In ğ4.2, we show how to (i) obtain a bound on h
that depends on the program state before the initial call to
P , and (ii) combine the recurrence solution with that depth
bound to create a summary of P . In ğ4.3, we show how to ex-
tend the techniques of ğ4.1 to handle programs with mutual
recursion, i.e., programs whose call graphs have strongly
connected components consisting of multiple procedures.
(In the technical report version of this document, there are
two additional sub-sections. [5, ğ4.3] discusses a modified
version of the algorithm of ğ4.1 that, in combination with
the algorithm of ğ4.1, can prove more precise properties, e.g.,
that a variable is equal to, and not only bounded by, some
function of the depth of recursion. [5, ğ4.5] discusses an ex-
tension of the algorithm of ğ4.3 that handles sets of mutually
recursive procedures in which some procedures do not have
base cases.)

4.1 Height-Based Recurrence Analysis

Let τ be a relational expression and let P be a procedure. We
use Vτ (P ,h) to denote the set of values of τ in a height-h
execution of P .

Vτ (P ,h)
def
= {EJτ K(σ ,σ ′) : (σ ,σ ′) ∈ R(P ,h)}

It consists of values to which τ may evaluate at a state pair
belonging to R(P ,h). We call bτ : N→ Q a bounding function

for τ in P if for all h ∈ N and all v ∈ Vτ (P ,h), we have
v ≤ bτ (h). Intuitively, the bounding function bτ (h) bounds
the value of an expression τ in any execution that uses stack
height at most h.

The goal of ğ4.1 is to find a set of relational expressions and
associated bounding functions. We proceed in three steps.
First, we determine a set of candidate relational expressions
τ1, ...,τn . Second, we optimistically assume that there exist
functions b1(h), ...,bn(h) that bound these expressions, and
we analyze P under that assumption to obtain constraints
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Algorithm 2: Algorithm for extracting candidate re-
currence inequations

Input :A procedure P , and the associated vocabulary of

program variables Var

Output :Height-based-recurrence summary φheight
1 β ← Summary(P , false) ;

2 wbase ← Abstract(β ,Var ∪ Var′) ;

3 n ← the number of inequations inwbase;

4 foreach k in 1, ...,n do

5 Let τk be the expression over Var ∪ Var′ such that the kth

inequation inwbase is (τk ≤ 0) ;

6 Let bk (·) be a fresh uninterpreted function symbol ;

7 φcall ←
∧n
k=1
(τk ≤ bk (h) ∧ bk (h) ≥ 0) ;

8 φrec ← Summary(P ,φcall) ;

9 φext ← φrec ∧
∧n
k=1
(bk (h + 1) = τk ) ;

10 S ← ∅;

11 foreach k in 1, ...,n do

12 wext,k ← Abstract(φext, {b1(h), ...,bn (h),bk (h + 1)}) ;

13 foreach inequation I inwext,k do

14 S ← S ∪ {I}

15 return S

relating the values of the relational expressions to the values
of the b1(h), ...,bn(h) functions. Third, we re-arrange the
constraints into recurrence relations for each of the bk (h)
functions (if possible) and solve them to synthesize a closed-
form expression for bk (h) that is suitable to be used in a
summary for P .

We begin our analysis of P by determining a set of suitable
expressions τ . If a relational expression τ has an associated
bounding function, then it must be the case thatVτ (P , 1) (i.e.,
the set of values that τ takes on in the base case) is bounded
above. Without loss of generality, we choose expressions τ so
that Vτ (P , 1) is bounded above by zero. (Note that if Vτ (P , 1)
is bounded above by c then Vτ−c (P , 1) is bounded above by
zero.) We begin our analysis of P by analyzing the base case
to look for relational expressions that have this property.

Selecting candidate relational expressions. The rea-
son for looking at expressions over program variables, as
opposed to individual variables, is illustrated by Ex. 2.1: the
variable nTicks has a different value each time the base case
executes, but the expression nTicks′ − nTicks− 1 is always
equal to zero in the base case.
With the goal of identifying relational expressions that

are bounded above by zero, Alg. 2 begins by extracting a
transition formula β for the non-recursive paths through P
by calling Summary(P , false) (i.e., summarizing P by using
false as a summary for the recursive calls in P ). Next, we com-
pute a set wbase of polynomial inequations over Var ∪ Var′

(the set of un-primed (pre-state) and primed (post-state)
copies of all global variables, along with unprimed copies of
the parameters to P and the variable return′, which repre-
sents the return value of P ) that are implied by β by calling

Abstract(β ,Var ∪ Var′). Let n be the number of inequations
inwbase. Then, for k = 1, ...,n, we rewrite the kth inequation

in the form τk ≤ 0. In the case of Ex. 2.1, τ1
def
= return′ and

τ2
def
= nTicks′ − nTicks − 1 have the property that τ1 ≤ 0

and τ2 ≤ 0 in the base case.
Note that there are, in general, many sets of relational

expressions τ1, ...,τn that are bounded above by zero in the
base case. The soundness of Alg. 2 only depends on Abstract

choosing some such set. Our implementation ofAbstract uses
[25, Alg. 3], and is not guaranteed to choose the set of rela-
tional expressions that would lead to the most precise results
for any given application, e.g., for a given assertion-checking
or complexity-analysis problem. Intuitively, in the case that
β is a formula in linear arithmetic, our implementation of
Abstract amounts to using the operations of the polyhedral
abstract domain to find a convex hull of β . Then, each of
the inequations in the constraint representation of the con-
vex hull can be interpreted as a relational expression that is
bounded above by zero in the base case.

Generating constraints on bounding functions. For
each of the expressions τk that has an upper bound in the
base case, we are ultimately looking to find a function bk (h)
that is an upper bound on the value of that expression in
any height-h execution. Our way of finding such a function
is to analyze the recursive cases of P to look for an invariant
inequation that gives an upper bound on Vτk (P ,h + 1) in
terms of an upper bound on Vτk (P ,h). Such an inequation
can be interpreted as a recurrence relating bk (h + 1) to bk (h).

The remainder of Alg. 2 (Lines (7)ś(14)) finds such invari-
ant inequations. The first step is to create the hypothetical
procedure summary φcall, which hypothesizes that a bound-
ing function bτk exists for each expression τk , and that the
value of that function at height h is an upper bound on the
value of τk . φcall is a transition formula that represents a
height-h execution of P . In Ex. 2.1, φcall is:

return′ ≤ b1(h) ∧ nTicks
′ − nTicks − 1 ≤ b2(h)∧

b1(h) ≥ 0 ∧ b2(h) ≥ 0

On line (8), Alg. 2 calls Summary, using φcall as the rep-
resentation of each recursive call in P , and the resulting
transition formula is stored in φrec. Thus, φrec describes a
typical height-(h + 1) execution of P . In Ex. 2.1, a simplified
version of φrec is given as φh+1 in ğ2.

On line (9), the formula φext is produced by conjoining
φrec with a formula stating that, for each k , bk (h + 1) = τk .
Therefore, φext implies that any upper bound on bk (h + 1)
must be an upper bound on τk in any height-(h+1) execution.
Ultimately, we wish to obtain a closed-form solution for

each bk (h). The formula φext implicitly determines a set of
recurrences relating b1(h + 1), ...,bn(h + 1) to b1(h), ...,bn(h).
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However, φext does not have the explicit form of a recur-
rence. Lines (12)ś(14) abstract φext to a conjunction of in-
equations that give an explicit relationship between bk (h+1)
and b1(h), ...,bn(h) for each k .

Extracting and solving recurrences. The next step of
height-based recurrence analysis is to identify a subset of
the inequations returned by Alg. 2 that constitute a stratified
system of polynomial recurrences (Defn. 3.2). This subset
must meet the following three stratification criteria:
1. Each bounding function bk (h + 1) must appear on the

left-hand-side of at most one inequation.
2. If a bounding function bk (h) appears on the right-hand-

side of an inequation, then bk (h + 1) appears on some
left-hand-side.

3. It must be possible to organize the bk (h + 1) into strata,
so that if bk (h) appears in a non-linear term on the right-
hand-side of the inequation for bj (h + 1), then bk (h) must
be on a strictly lower stratum than bk (h).
A maximal subset of inequations that complies with the

above three rules can be computed in polytime using a fix-
point algorithm. (An algorithm for extracting a stratified
recurrence is given in the technical-report version of this
document as [5, Alg. 3].)
The next step of height-based recurrence analysis is to

send this recurrence to a recurrence solver, such as the one
described in Kincaid et al. [25]. The solution to the recurrence
is a set of bounding functions. Let B be the set of indices k
such that we found a recurrence for, and obtained a closed-
form solution to, the bounding function bk (h). Using these
bounding functions, we can derive the following procedure
summary for P , which leaves the height H unconstrained.

∃H .
∧

k ∈B

[τk ≤ bk (H )] (3)

The subject of ğ4.2 is to find a formula ζPi (H ,σ ) relating
H to the pre-state σ of the initial call to P . The formula
ζPi (H ,σ ) can be combined with Eqn. (3) to obtain a more
precise procedure summary.

Soundness. Roughly, the soundness of height-based re-
currence analysis follows from: (i) sound extraction of the
recurrence constraints used by CHORA to characterize non-
linear recursion; (ii) sound recurrence solving; and (iii) sound-
ness of the underlying framework of algebraic program anal-
ysis. The soundness of parts (ii) and (iii) depends on the
soundness of prior work [25]. The soundness of (i) is ad-
dressed in a detailed proof in the appendix of the technical
report version of this document [5]. The soundness property
proved there is as follows: let P be a procedure towhichAlg. 2
and the recurrence-extraction algorithm have been applied to
obtain a stratified recurrence. Let {τi }i ∈[1,n] be the relational
expressions computed by Alg. 2. Let B ⊆ [1,n] be such that
{bi }i ∈B is the set of functions produced by solving the strat-
ified recurrence. We show that each bi function bounds the

Algorithm 3: Algorithm for producing a depth-
bound formula
Input :A weighted control-flow graph (V ,E,C)

Output :Depth-bound formulas ζP1 (D,σ ), ..., ζPn (D,σ )

1 foreach i ∈ {1, ...n} do

2 Let e ′
Pi

be a new vertex

3 Let x ′ be a new vertex;

4 V ′ ← V ∪ {x ′} ∪ {e ′
Pi
| i ∈ {1, ...,n}};

5 Create a new integer-valued auxiliary variable D;

6 E ′ ← E;

7 foreach i ∈ {1, ...,n} do

8 E ′ ← E ′ ∪ {(e ′
Pi
,φ[D :=1], ePi )} ∪{(ePi , βPi ,x

′)}

9 foreach call edge (u,Q,v) in C do

10 if Q = Pi for some i then

11 E ′ ← E ′ ∪ {(u,φ[D :=D+1], eQ )} ∪ {(u,φ[havoc],v)}

12 else

13 E ′ ← E ′ ∪ {(u,φQ ,v)}

14 foreach i = 1, ...,n do

15 ζPi (D,σ ) ← PathSummary (e ′
P1
,x ′,V ′,E ′, ∅)

16 return ζP1 (D,σ ), ..., ζPn (D,σ )

correspondingVτi (P ,h) value set. In other words, the follow-
ing statement holds: ∀h ≥ 1.

∧

i ∈B ∀v ∈ Vτi (P ,h).v ≤ bi (h).

4.2 Depth-Bound Analysis

In ğ4.1, we showed how to find a bounding function bτ (h)
that gives an upper bound on the value of a relational ex-
pression τ in an execution of a procedure Pi as a function
of the stack height (i.e., maximum depth of recursion) h of
that execution. In this section, the goal is to find bounds on
the maximum depth of recursion h that may occur as a func-
tion of the pre-state σ (which includes the values of global
variables and parameters to Pi ) from which Pi is called.

For example, consider Ex. 2.1. The algorithms of ğ4.1 de-
termine bounds on the values of two relational expressions
in terms of h, namely: nTicks′ ≤ nTicks + 2h − 1, and
return′ ≤ h − 1. The algorithm of this sub-section (Alg. 3)
determines that h satisfies h ≤ max(1, 1 + n − i). These facts
can be combined to form a procedure summary for Subset-
SumAux that relates the return value and the increase to
nTicks to the values of the parameters i and n.

The stack height h required to execute a procedure often
depends on the number of times that some transformation
can be applied to the procedure’s parameters before a base
case must execute. For example, in Ex. 2.1, the height bound
is a consequence of the fact that i is incremented by one at
each recursive call, until i ≥ n, at which point a base case ex-
ecutes. Likewise, in a typical divide-and-conquer algorithm,
a size parameter is repeatedly divided by some constant until
the size parameter is below some threshold, at which point
a base case executes. Intuitively, the technique described in
this section is designed to discover height bounds that are
consequences of such repeated transformations (e.g., addi-
tion or division) applied to the procedures’ parameters.
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To achieve this goal, we use Alg. 3, which is inspired by
the algorithm for computing bounds on the depth of recur-
sion in Albert et al. [3]. Alg. 3 constructs and analyzes an
over-approximate depth-bounding model of the procedures
P1, ..., Pn that includes an auxiliary depth-counter variable,
D. Each time that the model descends to a greater depth of
recursion, D is incremented. The model exits only when a
procedure executes its base case. In any execution of the
model, the final value of D thus represents the depth of re-
cursion at which some procedure’s base case is executed.

Alg. 3 takes as input a representation of the procedures in
S as a single, combined control-flow graph (V ,E,C) having
two kinds of edges: (1) weighted edges (u,φ,v) ∈ E, which
are weighted with a transition formula φ, and (2) call edges
in the setC . Each call edge inC is a triple (u,Q,v), in whichu
is the call-site vertex,v is the return-site vertex, and the edge
is labeled withQ , representing a call to a procedureQ . We as-
sume that if any procedureQ < S is called by some procedure
in S , then Q has been fully analyzed already, and therefore a
procedure summary φQ for Q has already been computed.
Each procedure Q has an entry vertex eQ , an exit vertex xQ ,
and a transition formula βQ that over-approximates the base
cases of Q . Note that (V ,E,C) consists of several disjoint,
single-procedure control-flow graphs when n > 1.
On lines (2)ś(13), Alg. 3 constructs the depth-bounding

model, represented as a new control-flow graph (V ′,E ′, ∅).
The algorithm begins by creating new auxiliary entry ver-
tices e ′P1 , ..., e

′
Pn

for the procedures P1, ..., Pn and a new aux-

iliary exit vertex x ′. The new vertex set V ′ contains V along
with these n + 1 new vertices. Alg. 3 then creates a new
integer-valued variable D. For i = 1, ...,n, the algorithm
then creates an edge from e ′Pi to ePi , weighted with a transi-

tion formula that initializes D to one, and an edge from xPi
weighted with the formula βPi , which is a summary of the
base case of Pi .
Alg. 3 replaces every call edge (u,Q,v) ∈ C with one

or more weighted edges. Each call to a procedure Q <

{P1, ..., Pn} is replaced by an edge (u,φQ ,v) weighted with
the procedure summary φQ for Q . Each call to some Pi is
replaced by two edges. The first edge represents descend-
ing into Pi , and goes from u to ePi , and is weighted with a
formula that increments D and havocs local variables. The
second edge represents skipping over the call to Pi rather
than descending into Pi . This edge is weighted with a transi-
tion formula that havocs all global variables and the variable
return, but leaves local variables unchanged.

The final step of Alg. 3, on line (15), actually computes the
depth-bounding summary ζPi (D,σ ) for each procedure Pi .
Because there are no call edges in the new control-flow graph
(V ′,E ′, ∅), intraprocedural-analysis techniques can be used
to compute transition formulas that summarize the transition
relation for all paths between two specified vertices. For each
procedure Pi , the formula ζPi (D,σ ) is a summary of all paths

from e ′Pi to x
′, which serves to relate D to σ , which is the

pre-state of the initial call to Pi .
The formulas ζPi (D,σ ) for i = 1, ...,n can be used to es-

tablish an upper bound on the depth of recursion in the
following way. Let (σ ,σ ′) be a state pair in the relational
semantics RJPiK of Pi . Then, there is an execution e of Pi
that starts in state σ and finishes in state σ ′, in which the
maximum2 recursion depth is some d ∈ N. Then there is a
path through the control-flow graph (V ′,E ′, ∅) that corre-
sponds to the path taken in e to reach some execution of a
base case at the maximum recursion depth d . Therefore, if d
is a possible depth of recursion when starting from state σ ,
then there is a satisfying assignment of ζPi (D,σ ) in which
D takes the value d . The contrapositive of this argument
says that, if there does not exist any satisfying assignment
of ζPi (D,σ ) in which D takes the value d , then it must be the
case that no execution of Pi that starts in state σ can have
maximum recursion depth d . In this way, ζPi (D,σ ) can be
interpreted as providing bounds on the maximum recursion
depth that can occur when Pi is started in state σ .
Once we have the depth-bound summary ζP for some

procedure P , we can combine it with the closed-form so-
lutions for bounding functions that we obtained using the
algorithms of ğ4.1 to produce a procedure summary. Let B be
the set of indices k such that we found a recurrence for the
bounding function bk (h). We produce a procedure summary
of the form shown in Eqn. (4), which uses the depth-bound
summary ζP to relate the pre-state σ to the variableH , which
in turn is used to index into the bounding function bk (h) for
each k ∈ B.

∃H .ζP (H ,σ ) ∧
∧

k ∈B

[τk ≤ bk (H )] (4)

4.3 Mutual Recursion

In this section, we describe the generalization of the height-
based recurrence analysis of ğ4.1 to the case of mutual recur-
sion. Instead of analyzing a single procedure P , we assume
that we are given a set of procedures P1, ..., Pm that form
a strongly connected component of the call graph of some
program.

Example 4.1. We use the following program to illustrate
the application of our technique to mutually recursive pro-
cedures. The procedure P1 increments the global variable
g in its base case, and calls P2 eighteen times in a for-loop
in its recursive case. Similarly, P2 increments g in its base
case and calls P1 two times in a for-loop in its recursive case.

2Note that non-terminating executions of Pi do not correspond to any state-

pair (σ , σ ′) in the relational semantics RJPK; therefore, such executions are

not represented in the procedure summary for Pi that we wish to construct.
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int д;
void P1(int n) {

if (n <= 1) { д++; return; }
for(int i = 0; i < 18; i++){ P2(n − 1); }

}

void P2(int n) {
if (n <= 1) { д++; return; }
for(int i = 0; i < 2; i++){ P1(n − 1); }

}

To apply height-based recurrence analysis to a set S =
{P1, ..., Pm} of mutually recursive procedures, we use a vari-
ant of Alg. 2 that interleaves some of the analysis operations
on the procedures in S . Specifically, we make the follow-
ing changes to Alg. 2. First, we perform the operations on
lines (1)ś(7) for each procedure Pi to obtain the symbolic
summary formula φcall(Pi ). For each procedure Pi , we obtain
a set of bounded terms τi,1, ...,τi,ni , and our goal will be to
find a height-based recurrence for each such term.
Note that a term τi,r that we obtain when analyzing Pi

may be syntactically identical to a term τj,s that we obtained
when analyzing some earlier Pj . In such a case, τi,r and τj,s
have different interpretations. For example, when analyzing
Ex. 4.1, the two most important terms are τ1,1 = g′ − g − 1
and τ2,1 = g′ − g − 1. However, τ1,1 represents the increase
to g as a result of a call to P1 and τ2,1 represents the increase
to g as a result of a call to P2. Our technique will attempt to
find distinct bounding functions for these two terms.
Second, on line (8), we replace the call to the intraproce-

dural summarization function Summary(P ,φcall). In the gen-
eral case, each procedure Pi might call every other member
of its strongly connected component. To reduce this anal-
ysis step to an intraprocedural-analysis problem, we must
replace every such call with a summary formula. There-
fore, for each Pi , the call on the analysis subroutine has the
form Summary(Pi ,φcall(P1), ...,φcall(Pm )). Summary analyzes
the body of Pi by replacing each call to some Pj with the
formula φcall(Pj ). The summary formula thus produced for Pi
is denoted by φrec(Pi ).
Lines (9)ś(14) of Alg. 2 are then executed for each

Pi . On line (9), the formula φext(Pi ) is produced by con-
joining φrec(Pi ) with one equality constraint for each
of the terms τi,1, ...,τi,ni , but not the terms τj,q for
j , i . On line (12), the call to Abstract has the form
Abstract(φext(Pi ),b1,1(h), ...,bm,nm (h),bi,q(h+ 1)). That is, we
look for inequations that provide a bound on bi,q(h + 1),
which relates to Pi specifically, in terms of all of the height-h
bounding functions for P1, ..., Pm . For example, in Ex. 4.1,
we find the constraints b1,1(h + 1) ≤ 18b2,1(h) + 17 and
b2,1(h + 1) ≤ 2b1,1(h) + 1.

The next steps of height-based analysis are to find a col-
lection of inequations that form a stratified recurrence, and
to solve that stratified recurrence (as in ğ4.1). These steps
are the same in the case of mutual recursion as in the case

of a single recursive procedure. After solving the recurrence,
we obtain a closed-form solution for the subset of the bound-
ing functions b1,1(h), ...,bm,nm (h) that appeared in the recur-
rence. Let Bi be the set of indices q such that we found a
recurrence for bi,q(h). Then, the procedure summary that
we obtain for Pi has the following form:

∃H .ζPi (H ,σ ) ∧
∧

q∈Bi

[τq ≤ bi,q(H )] (5)

In Ex. 4.1, the recurrence that we obtain is:
[

b1,1(h + 1)
b2,1(h + 1)

]

≤

[

0 18
2 0

] [

b1,1(h)

b2,1(h)

]

+

[

17
1

]

Notice that this recurrence involves an interdependency be-
tween the bounding functions for the increase to g in P1 and
P2. Simplified versions of the g bounds found by CHORA for
P1 and P2 are 3 · 6n−1 and 6n−1, respectively.
For each procedure within a strongly connected compo-

nent S of the call graph, the algorithm of ğ4.3 needs to be
able to identify a base case (i.e., a set of paths containing no
calls to the procedures of S). Some programs contain pro-
cedures without such base cases. (For a discussion of an
extension to our algorithm that can handle such programs,
see the technical report version of this document [5, ğ4.5].)

5 Experiments

Our techniques are implemented as an interprocedural ex-
tension of Compositional Recurrence Analysis (CRA) [14],
resulting in a tool we call Compositional Higher-Order Re-
currence Analysis (CHORA).
CRA is a program-analysis tool that uses recurrences to

summarize loops, and uses Kleene iteration to summarize
recursive procedures. Interprocedural Compositional Recur-
rence Analysis (ICRA) [24] is an earlier extension of CRA that
lifts CRA’s recurrence-based loop summarization to summa-
rize linearly recursive procedures. However, ICRA resorts to
Kleene iteration in the case of non-linear recursion. CHORA

can analyze programs containing arbitrary combinations of
loops and branches using CRA. In the case of linear recur-
sion, CHORA uses the same reduction to CRA as ICRA. Thus,
in those cases, CHORA will produce results almost identical
to those of ICRA. The algorithms of ğ4, which allow CHORA

to perform a precise analysis of non-linear recursion, are
what distinguish CHORA from prior work. For this reason,
our experiments are focused on the analysis of non-linearly
recursive programs.
Our experimental evaluation is designed to answer the

following question:

Is CHORA effective at generating invariants for programs
containing non-linear recursion?

Despite the prominence of non-linear recursion (e.g.,
divide-and-conquer algorithms), there are few benchmarks
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in the verification literature that make use of it. The ex-
amples that we found are bounds-generation benchmarks
that come from the complexity-analysis literature, as well as
assertion-checking benchmarks from the recursive subcate-
gory of SV-COMP.

Generating complexity bounds. For our first set of ex-
periments, we evaluate CHORA on twelve benchmark pro-
grams from the complexity-analysis literature. This set of
experiments is designed to determine how the complexity-
analysis results obtained by CHORA compare with those
obtained by ICRA and state-of-the-art complexity-analysis
tools. We selected all of the non-linearly recursive programs
in the benchmark suites from a recent set of complexity-
analysis papers [8, 9, 20], as well as the web site of PUBS
[2], and removed duplicate (or near-duplicate) programs,
and translated them to C. Our implementations of divide-
and-conquer algorithms are working implementations rather
than cost models, and therefore CHORA’s analysis of these
programs involves performing non-trivial invariant gener-
ation and cost analysis at the same time. Source code for
CHORA and all benchmarks can be found in theCHORA repos-
itory [4].
To perform a complexity analysis of a program using

CHORA, we first manually modify the program to add an
explicit variable (cost) that tracks the time (or some other
resource) used by the program. We then use CHORA to gen-
erate a term that bounds the final value of cost as a function
of the program’s inputs. Note that, as a consequence of this
technique, CHORA’s bounds on a program’s running time are
only sound under the assumption that the program termi-
nates. Throughout the analysis,CHORAmerely treats cost as
another program variable; that is, the recurrence-based ana-
lytical techniques that it uses to perform cost analysis are the
same as those it uses to find all other numerical invariants.

The benchmark programs on which we evaluated CHORA,
as well as the complexity bounds obtained by CHORA’s anal-
ysis, are shown in Tab. 1. The first five programs are elemen-
tary examples of non-linear recursion. The next seven are
more challenging complexity-analysis problems that have
been used to test the limits of state-of-the-art complexity
analyzers.
We observe that on two benchmarks, karatsuba and

strassen, CHORA finds an asymptotically tight bound that
was not found by the technique from which the benchmark
was taken. For example, the bound obtained by CHORA for

karatsuba has the form cost ≤ 3log2(n) which is equivalent

to cost ≤ nlog2(3), and is therefore tighter than the bound
using the rational exponent 1.6 cited in [9], although the tech-
nique from [9] can obtain rational bounds that are arbitrarily
close to log2(3). On two benchmarks, CHORA fails to produce
an asymptotically tight bound. For example, for qsort_steps,
cost tracks the number of instructions, CHORA finds an ex-
ponential bound (as does the PUBS complexity analyzer [2],

Table 1. Column 2 shows the actual asymptotic bound for
each benchmark program. Columns 3-4 show the asymptotic
complexity of the bounds determined by CHORA and ICRA.
Column 5 gives the source of the benchmark as well as the
published bound from that source. łn.b.ž indicates that no
bound was found. For each benchmark, only one other tool’s
bound is shown, even if more than one such tool is capable
of finding a bound.

Benchmark Actual CHORA ICRA Other Tools

fibonacci O(φn) O(2n) n.b. [2]:O(2n)

hanoi O(2n) O(2n) n.b. [2]:O(2n)

subset_sum O(2n) O(2n) n.b. [20]:O(2n)

bst_copy O(2n) O(2n) n.b. [2]:O(2n)

ball_bins3 O(3n) O(3n) n.b. [20]:O(3n)

karatsuba O(nlog2 (3)) O(nlog2 (3)) n.b. [9]:O(n1.6)

mergesort O(n log(n)) O(n log(n)) n.b. [2]:O(n log(n))

strassen O(nlog2 (7)) O(nlog2 (7)) n.b. [9]:O(n2.9)

qsort_calls O(n) O(2n) O(n) [8]:O(n)

qsort_steps O(n2) O(n2n) n.b. [9]:O(n2)

closest_pair O(n log(n)) n.b. n.b. [9]:O(n log(n))

ackermann Ack(n) n.b. n.b. [2]:n.b.

2 4 6 8 10 12
Number of benchmarks

1
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100

Ti
m

e 
(s
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CHORA
ICRA
U. Automizer
UTaipan
VIAP

Figure 2. Results of running CHORA and four other tools
on the SV-COMP19 recursive directory of benchmarks. Each
point indicates a benchmark containing assertions that a tool
proved to be true, and the amount of time taken by that tool
on that benchmark.

which also uses recurrence solving and height-based abstrac-
tion), whereas [9] finds the optimal O(n2) bound. On two
more benchmarks, CHORA is unable to find a bound. Note
that CHORA’s technique for summarizing recursive functions
significantly improves upon ICRA’s, which can find only one
bound across the suite.

Assertion-checking experiments. Next, we tested
CHORA’s invariant-generation abilities on assertion-
checking benchmarks. A standard benchmark suite from
the literature is the Software Verification Competition
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int ackermann(intm, int n) {

if (m == 0) { return n + 1; }

if (n == 0) { return ackermann(m − 1, 1); }

return ackermann(m − 1, ackermann(m,n − 1));

}

assert(n < 0 | |m < 0 | | ackermann(m,n) >= 0)

int hanoi(int n) {

if (n == 1) { return 1; }

return 2 ∗ (hanoi(n − 1)) + 1;

}

void applyHanoi(int n, int f rom, int to, int via) {

if (n == 0) { return; }

counter++;

applyHanoi(n − 1, f rom,via, to);

applyHanoi(n − 1,via, to, f rom);

}

counter = 0; applyHanoi(n, ...); assert(hanoi(n) == counter )

int f91(int x) {

if (x > 100) return x − 10; else { return f91(f91(x + 11)) };

}

res = f 91(x); assert(res == 91 | | x > 101 && res == x − 10)

Figure 3. Source code for three programs from the SV-
COMP suite: Ackermann01, RecHanoi01, and McCarthy91

(SV-COMP), which includes a recursive sub-category
(ReachSafety-Recursive). Within this sub-category, we
selected the benchmarks in the recursive sub-directory that
contained true assertions, yielding a set of 17 benchmarks.
We ran CHORA, ICRA, and the top three performers on this
category from the 2019 competition: Ultimate Automizer
(UA) [16], UTaipan [13], and VIAP [28]. Fig. 2 presents a
cactus plot showing the number of benchmarks proved by
each tool, as well as the timing characteristics of their runs.

Timings were taken on a virtual machine running Ubuntu
18.04 with 16 GB of RAM, on a host machine with 32GB
of RAM and a 3.7 GHz Intel i7-8000K CPU. These results
demonstrate that CHORA is roughly an order of magnitude
faster for each benchmark than the other tools. UA proved
the assertions in 12 out of 17 benchmarks; UTaipan and VIAP
each proved the assertions in 10 benchmarks; CHORA proved
the assertions in 8 benchmarks; all other tools from the com-
petition proved the assertions in 6 or fewer benchmarks.
While the SV-COMP benchmarks do give some insight

into CHORA’s invariant-generation capability, the recursive
suite is not an ideal test of that capability, because the suite
contains many benchmarks that can be proved safe by un-
rolling (e.g., verifying that Ackermann’s function evaluated
at (2,2) is equal to 7). That is, many of these benchmarks
do not actually require an analyzer to perform invariant
generation.
We now discuss three benchmarks from the SV-COMP

suite that do give some insight into CHORA’s capabilities,
in that they are non-linearly recursive benchmarks that re-
quire an analyzer to perform invariant-generation. The Ack-
ermann01 benchmark contains an implementation of the

int quad(intm) {

if (m == 0) { return 0; }

int retval;

do { retval = quad(m − 1) +m } while(∗);

return retval;

}

assert(quad(n) ∗ 2 == n + n ∗ n)

int pow2_overflow(int p) {

// pow2_overflow is called with 0 ≤ p ≤ 29

if (p == 0) { return 1; }

int r1 = pow2_overflow(p − 1);

int r2 = pow2_overflow(p − 1);

assert(r1 + r2 < 1073741824);

return r1 + r2;

}

int height(int size) {

if (size == 0) { return 0; }

int left_size = nondet(0, size); // 0 ≤ left_size < size

int right_size = size − left_size − 1;

int left_height = height(left_size);

int right_height = height(right_size);

return 1 +max(left_height, right_height);

}

assert(heiдht(n) ≤ n)

Figure 4. Source code for three non-linearly recursive pro-
grams containing assertions.

two-argument Ackermann function, and the benchmark as-
serts that the return value of Ackermann is non-negative
if its arguments are non-negative; CHORA is able to prove
that this assertion holds. The RecHanoi01 benchmark con-
tains a non-linearly recursive cost-model of the Tower of
Hanoi problem, along with a linearly recursive function that
doubles its return value and adds one at each recursive call.
The assertion in recHanoi01 states that these two functions
compute the same value, and CHORA is able to prove this
assertion. (The other tools that we tested, namely ICRA, UA,
UTaipain, and VIAP, were not able to prove this assertion.)
The McCarthy91 benchmark contains an implementation
of McCarthy’s 91 function, along with an assertion that the
return value of that function, when applied to an argument
x , either (1) equals 91, or else (2) equals x − 10. CHORA is
not well-suited to prove this assertion because the asserted
property is a disjunction, i.e., it describes the return value
using two cases, whereas the hypothetical summaries used
by CHORA do not contain disjunctions. (ICRA, UA, UTaipan,
and VIAP were all able to prove this assertion.)

To further test CHORA’s capabilities, we also manually cre-
ated three new assertion-checking benchmarks, shown in
Fig. 4. Because our goal is to assess CHORA’s ability to syn-
thesize invariants, our additional suite consists of recursive
examples for which unrolling is an impractical strategy.

quad has a recursive call in a loop that may run for arbitrar-
ily many iterations, and its return value is always n(n+ 1)/2.
pow2_overflow contains an assertion inside a non-linearly
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Table 2. Five analysis tools, along with the results
of assertion-checking experiments using the benchmarks
shown in Fig. 4. A✓ indicates that the tool was able to prove
the assertion within 900 seconds, and an X indicates that it
was not. We also show the time required to analyze each
benchmark.

Benchmark CHORA ICRA UA UTaipan VIAP

quad ✓(0.70s) ✓(1.08s) X(900s) ✓(4.24s) X(4.71s)

pow2_overflow ✓(0.61s) ✓(1.28s) X(900s) X(900s) X(1.79s)

height ✓(0.58s) X(0.52s) ✓(8.82s) ✓(13.0s) X(2.85s)

recursive function, and an assumption about the range of
parameter values; if the assertion passes, we may conclude
that the program is safe from numerical-overflow bugs. The
benchmark height asserts that the size (i.e., the number of
nodes) of a tree of recursive calls is an upper bound on the
height of the tree of recursive calls.

The results of our experiments are shown in Tab. 2.CHORA

is able to prove the assertions in all three programs; ICRA
and UTaipan each prove two; UA proves one, and VIAP
proves none. Times taken by each tool are also shown in
the table. CHORA’s ability to prove the assertion in quad il-
lustrates that it can find invariants even for programs in
which running time (and the number of recursive calls) is un-
bounded. quad illustrates CHORA’s applicability to perform
program-equivalence tasks on numerical programs, while
pow2_overflow illustrates CHORA’s applicability to perform
overflow-checking.

Conclusions. Our main experimental question is
whether CHORA is effective at the problem of generating
invariants for programs using non-linear recursion. Results
from the complexity-analysis and assertion-checking
experiment show that CHORA is able to generate non-linear
invariants that are sufficient to solve these kinds of problems.
In these ways, CHORA has shown success in a domain, i.e.,
invariant generation for non-linearly recursive programs,
that is not addressed by many other tools.

6 Related Work

Following the seminal work of Cousot and Cousot [11],
most invariant-generation techniques are based on itera-

tive fixpoint computation, which over-approximates Kleene-
iteration within some abstract domain. This paper presents
a non-iterative method for generating numerical invariants
for recursive procedures, which is based on extracting and
solving recurrence relations. It was inspired by two streams
of ideas found in prior work.

Template-based methods fix a desired template for the
invariants in a program, in which there are undetermined
constant symbols [10, 31]. Constraints on the constants are
derived from the structure of the program, which are given
to a constraint solver to derive values for the constants. The

hypothetical summaries introduced in ğ4.1 were inspired by
template-based methods, but go beyond them in an impor-
tant way: in particular, the indeterminates in a hypothetical
summary are functions rather than constants, and our work
uses recurrence solving to synthesize these functions.
Of particular relevance to our work are template-based

methods for generating non-linear invariants [7, 9, 21, 26, 32].
Contrasting with the technique proposed in this paper, a dis-
tinct advantage of template-based methods for generating
polynomial invariants for programswith real-typed variables
is that they enjoy completeness guarantees [9, 21, 32], owing
to the decidability of the theory of the reals. The advantages
of our proposed technique over traditional template-based
techniques are (1) it is compositional, (2) it can generate expo-
nential and logarithmic invariants, and (3) it does not require
fixing bounds on polynomial degrees a priori. Also note that
template-based techniques pay an up-front cost for instanti-
ating templates that is exponential in the degree bound. (In
practice, this exponential blow-up can be mitigated [26].)

Recurrence-based methods find loop invariants by ex-
tracting recurrence relations between the pre-state and post-
state of the loop and then generating invariants from their
closed forms [12, 14, 18, 19, 23, 25, 27, 30]. This paper gives an
answer to the question of how such analyses can be applied to
recursive procedures rather than loops, by extracting height-
indexed recurrences using template-based techniques.
Reps et al. [29] demonstrate that tensor products can be

used to apply loop analyses to linearly recursive procedures.
This technique is used in the recurrence-based invariant gen-
erator ICRA to handle linear recursion [24]. ICRA falls back
on a fixpoint procedure for non-linear recursion; in contrast,
the technique presented in this paper uses recurrence solving
to analyze recursive procedures.
Rajkhowa and Lin [28] presents a verification technique

that analyzes recursive procedures by encoding them into
first-order logic; recurrences are extracted and replaced with
closed forms as a simplification step before passing the query
to a theorem prover. In contrast to this paper, Rajkhowa and
Lin [28]’s approach has the flexibility to use other approaches
(e.g., induction) when recurrence-based simplification fails,
but cannot be used for general-purpose invariant generation.

Resource-bound analysis [33] is another related area of
research. Three lines of recent research in resource-bound
analysis are represented by the tools PUBS [1], CoFloCo [15],
KoAT [6], and RAML [17]. In resource-bound analysis, the
goal is to find an expression that upper-bounds or lower-
bounds the amount of some resource (e.g., time, memory,
etc.) used by a program. Resource-bound analysis typically
consists of two parts: (i) size analysis, which finds invariants
that bound program variables, and (ii) cost analysis, which
finds bounds on cost using the results of the size analysis.
Cost can be seen as an auxiliary program variable, although
it is updated in a restricted manner (by addition only), it has
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no effect on control flow, and it is often assumed to be non-
negative. Our work differs from resource-bound analyzers in
several ways, ultimately because our goal is to find invariants
and check assertions, rather than to find resource bounds
specifically.
The capabilities of our technique are different, in that

we are able to find non-linear mathematical relationships
(including polynomials, exponentials, and logarithms) be-
tween variables, even in non-linearly recursive procedures.
PUBS and CoFloCo use polyhedra to represent invariants,
so they are restricted to finding linear relationships between
variables, although they can prove that programs have non-
linear costs. KoAT has the ability to find non-linear (poly-
nomial and exponential) bounds on the values of variables,
but it has limited support for analyzing non-linearly recur-
sive functions; in particular, KoAT cannot reason about the
transformation of program state performed by a call to a
non-linearly recursive function. Typically, resource-bound
analyzers also reason about non-terminating executions of
a program, whereas our analysis does not. RAML reasons
about manipulations of data structures, whereas our work
only reasons about integer variables. Originally, RAML only
discovered polynomial bounds, although recent work [20]
extends the technique to find exponential bounds.
The algorithms that we use are different in that we have

a unified approach, rather than separate approaches, for an-
alyzing cost and analyzing a program’s transformation of
other variables. To perform resource-bound analysis, we ma-
terialize cost as a program variable and then find a procedure
summary; the summary describes the program’s transforma-
tion of all variables, including the cost variable. Recurrence-
solving is the essential tool that we use for analyzing loops,
linear recursion, and non-linear recursion, and we are able
to find non-linear mathematical relationships because such
relationships arise in the solutions of recurrences.
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