Templates and Recurrences: Better Together

Jason Breck
jbreck@cs.wisc.edu
University of Wisconsin
Madison, WI, USA

Zachary Kincaid
zkincaid@cs.princeton.edu
Princeton University
Princeton, NJ, USA

John Cyphert
jcyphert@wisc.edu
University of Wisconsin
Madison, WI, USA

Thomas Reps
reps@cs.wisc.edu
University of Wisconsin
Madison, WI, USA

Abstract
This paper is the confluence of two streams of ideas in the literature on generating numerical invariants, namely: (1) template-based methods, and (2) recurrence-based methods. A template-based method begins with a template that contains unknown quantities, and finds invariants that match the template by extracting and solving constraints on the unknowns. A disadvantage of template-based methods is that they require fixing the set of terms that may appear in an invariant in advance. This disadvantage is particularly prominent for non-linear invariant generation, because the user must supply maximum degrees on polynomials, bases for exponents, etc.

On the other hand, recurrence-based methods are able to find sophisticated non-linear mathematical relations, including polynomials, exponentials, and logarithms, because such relations arise as the solutions to recurrences. However, a disadvantage of past recurrence-based invariant-generation methods is that they are primarily loop-based analyses: they use recurrences to relate the pre-state and post-state of a loop, so it is not obvious how to apply them to a recursive procedure, especially if the procedure is non-linearly recursive (e.g., a tree-traversal algorithm). In this paper, we combine these two approaches and obtain a technique that uses templates in which the unknowns are functions rather than numbers, and the constraints on the unknowns are recurrences. The technique synthesizes invariants involving polynomials, exponentials, and logarithms, even in the presence of arbitrary control-flow, including any combination of loops, branches, and (possibly non-linear) recursion. For instance, it is able to show that (i) the time taken by merge-sort is $O(n \log(n))$, and (ii) the time taken by Strassen’s algorithm is $O(n^{\log_2(7)})$.

CCS Concepts: · Software and its engineering → Automated static analysis; · Theory of computation → Program analysis.

Keywords: Invariant generation, Recurrence relation

ACM Reference Format:

1 Introduction
A large body of work within the numerical-invariant-generation literature focuses on template-based methods [10, 31]. Such methods fix the form of the invariants that can be discovered, by specifying a template that contains unknown quantities. Given a program and some property to be proved, a template-based analyzer proceeds by finding constraints on the values of the unknowns and then solving these constraints to obtain invariants of the program that suffice to prove the property. Template-based methods have been particularly successful for finding invariants within the domain of linear arithmetic. Many programs have important numerical invariants that involve non-linear mathematical relationships, such as polynomials, exponentials, and logarithms. A disadvantage of template-based methods for non-linear invariant generation is that (in contrast to the linear case) there is no “most general” template term, so the user must supply the set of terms that may appear in the invariant.

In this paper, we present an invariant-synthesis technique that is related to template-based methods, but sidesteps the above difficulty. Our technique is based on a concept that we call a hypothetical summary, which is a template for a procedure summary in which the unknowns are functions, rather
than numbers. The constraints that we extract for these functions are recurrences. Solving these recurrence constraints allows us to synthesize terms over program variables that we can substitute in place of the unknown functions in our template and thereby obtain procedure summaries.

Whereas most template-based methods directly constrain the mathematical form of their invariants, our technique constrains the invariants indirectly, by way of recurrences, and thereby allows the invariants to have a wide variety of mathematical forms involving polynomials, exponentials, and logarithms. This aspect is intuitively illustrated by the recurrences \(S(n) = 2S(n/2) + n \) and \(T(n) = 2T(n/2) + n^2 \); although these two recurrences are outwardly similar, their solutions are more different than one would expect at first glance, in that \(S(n) = \Theta(n \log n) \), whereas \(T(n) = \Theta(n^2) \). Because the unknowns in our templates are functions, we can generate a wide variety of invariants (involving polynomials, exponentials, logarithms) without specifying their exact syntactic form.

However, recurrence-based invariant-generation techniques typically have disadvantages when applied to recursive programs. Recurrences are well-suited to characterize the sequence of states that occur as a loop executes. This idea can be extended to handle linear recursion—where a recursive procedure makes only a single recursive call: each procedure-entry state that occurs “on the way down” to the base case of the recursion is paired with the corresponding procedure-exit state that occurs “on the way back up” from the base case, and then recurrences are used to describe the sequence of such state pairs. However, non-linear recursion has a different structure: it is tree-shaped, rather than linear, and thus some kind of additional abstraction is required before non-linear recursion can be described using recurrences.

We use the technique of hypothetical summaries to extend the work of \cite{brent2010using}, \cite{brent2010finding}, and \cite{brent2011using}: hypothetical summaries enable a different approach to the analysis of non-linearly recursive programs, such as divide-and-conquer or tree-traversal algorithms. We show how to analyze the base case of a procedure to extract a template for a procedure summary (i.e., a hypothetical summary). By assuming that every call to the procedure, throughout the tree of recursive calls, is consistent with the template, we discover relationships (i.e., recurrence constraints) among the states of the program at different heights in the tree. We then solve the constraints and fill in the template to obtain a procedure summary. Hypothetical summaries thus provide the additional layer of abstraction that is required to apply recurrence-based invariant generation to non-linearly recursive procedures.

Our invariant generation procedure is both (1) general-purpose, so it is applicable to a wide variety of tasks, and (2) compositional, so the space and time required to analyze a program fragment depends on the size of the fragment rather than the whole program. In contrast, conventional template-based methods are goal-directed (they must be tailored to a specific problem of interest, e.g., a template-based invariant generator for verification problems cannot solve quantitative problems such as resource-bound analysis) and whole-program. The general-purpose nature of our procedure also distinguishes it from recurrence-based resource-bound analyses, which for example cannot be applied to assertion checking.

To evaluate the applicability of our analysis to challenging numerical-invariant-synthesis tasks, we applied it to the task of generating bounds on the computational complexity of non-linearly recursive programs and the task of generating invariants that suffice to prove assertions. Our experiments show that the analysis technique is able to prove properties that \cite{brent2011using} was not capable of proving, and is competitive with the output of state-of-the-art assertion-checking and resource-bound-analysis tools.

Contributions. Our work makes contributions in three main areas:

1. We introduce an analysis method based on “hypothetical summaries.” It hypothesizes that a summary exists of a particular form, using uninterpreted function symbols to stand for unknown expressions. Analysis is performed to obtain constraints on the function symbols, which are then solved to obtain a summary.

2. We develop a procedure-summarization technique called height-based recurrence analysis, which uses the notion of hypothetical summaries to produce bounds on the values of program variables based on the height of recursion (§4.1). Furthermore, we give an algorithm (§4.3) that generalizes height-based recurrence analysis to the setting of mutual recursion.

3. The technique is implemented in the CHORA tool. Our experiments show that CHORA is able to handle many non-linearly recursive programs, and generate invariants that include exponentials, polynomials, and logarithms (§5). For instance, it is able to show that (i) the time taken by merge-sort is \(O(n \log(n)) \), (ii) the time taken by Strassen’s algorithm is \(O(n^{\log_2(7)}) \), and (iii) an iterative function and a non-linearly recursive function that both perform exponentiation are functionally equivalent.

§2 presents an example to provide intuition. §3 provides background on material needed for understanding the paper’s results. §6 discusses related work.

\[1\] Warning: We use the term “non-linear” in two different senses: non-linear recursion and non-linear arithmetic. Even for a loop that uses linear arithmetic, non-linear arithmetic may be required to state a loop invariant. Moreover, arithmetic expressions in the programs that we analyze are not limited to linear arithmetic; variables can be multiplied.

The two uses of the term “non-linear” are essentially unrelated, and which term is intended should be clear from context. The paper primarily concerns new techniques for handling non-linear recursion, and non-linear arithmetic is handled by known methods, e.g., \cite{brent2010finding}.
The goal of this paper is to find numerical summaries for non-linearly recursive procedures such as \textit{subsetSumAux}, which is non-linearly recursive and calls \textit{subsetSumAux} as an example, let \(\tau \) be a set of polynomials over unprimed and primed program variables, representing the pre-state and post-state of \(P \), respectively. For each \(\tau \), we associate a function \(V_\tau : \mathbb{N} \rightarrow 2^\mathbb{Q} \), such that \(V_\tau(h) \) is defined to be the set of values \(v \) such that, for some \((\sigma, \sigma') \in R(P, h), \tau \) evaluates to \(v \) by using \(\sigma \) and \(\sigma' \) to interpret the unprimed and primed variables, respectively.

Using \textit{subsetSumAux} as an example, let \(\tau_1 \overset{def}{=} \text{return}' \). Then, \(V_1(1) \) denotes the set of values \(\text{return}' \) can take on in any base case of \textit{subsetSumAux}. In this program, \(\text{return}' \) is 0 in any base case, and so \(V_1(1) = \{0\} \). Now consider an execution of height 2. In the case that found is true, we have that \(\text{return}' \) increases by 1 compared to the value that \(\text{return}' \) has in the base case. If found is not true then \(\text{return}' \) remains the same. In other words, at height-2 executions, \(\text{return}' \) takes on the values 0 and 1; i.e., \(V_2(2) = \{0,1\} \). Similarly, \(V_1(3) = \{0,1,2\} \), and so on. We approximate the value set \(V_\tau(h) \) by finding a function \(b_\tau(h) : \mathbb{N} \rightarrow \mathbb{Q} \) that bounds \(V_\tau(h) \) for all \(h \); that is, for any \(v \in V_\tau(h) \), we have \(v \leq b_\tau(h) \). In the case of \(\tau_1 \), a suitable bounding function \(b_1(h) \) is \(b_1(h) = h - 1 \). The initial step of our analysis chooses terms \(\tau_1, \ldots, \tau_n \), and then for each term \(\tau_k \), tries to synthesize a function \(b_k(h) \) that bounds the set of values \(\tau_k \) can take on.
Note that for a given term \(\tau_j \), a corresponding bounding function may not exist. A necessary condition for a bounding function to exist for a term \(\tau_j \) is that the set \(V_j(1) \) must be bounded. This observation restricts our set of candidate terms \(\tau_1, ..., \tau_n \) to only be over terms that are bounded above in the base case. (Specifically, we require the expressions to be bounded above by zero.) For example, \(\text{return}' \leq 0 \) in the base case, and so \(\tau_1 \equiv \text{return}' \) is a candidate term. Similarly, the term \(\tau_2 \equiv n\text{Ticks}' - n\text{Ticks}-1 \) is also bounded above by 0 in the base case, and so \(\tau_2 \) is a candidate term. There are other candidate terms that our analysis would extract for this example, but for brevity they are not listed here. We discover these bounded terms \(\tau_1 \) and \(\tau_2 \) using symbolic abstraction (see §3).

Once we have a set of candidate terms \(\tau_1, ..., \tau_n \), we seek to find corresponding bounding functions \(b_1(h), ..., b_k(h) \). Note that such functions may not exist: just because \(\tau_k \) is bounded above in the base case does not mean it is bounded in all other executions. If a bounding function for a term does exist, we would like a closed-form expression for it in terms of \(h \). We derive such closed-form expressions by hypothesizing that a bounding function \(b_k(h) \) does exist. These hypothetical functions \(b_k(h) \) allow us to construct a hypothetical procedure summary \(\varphi_h \) that represents a typical height-\(h \) execution. For example, in the case of \text{subsetSumAux}:

\[
\varphi_h \equiv \text{return}' \leq b_1(h) \land n\text{Ticks}' - n\text{Ticks}-1 \leq b_2(h).
\]

Note that, although \(\varphi_h \) assumes the existence of several bounding functions (corresponding to \(b_k(h) \) for several values of \(k \)), the assumptions for different values of \(k \) need not all succeed or fail together. That is, if we fail to find a bounding function \(b_k(h) \) for some \(k \), this failure does not prevent us from continuing the analysis and finding other bounding functions \(b_j(h) \) with \(j \neq k \) for the same procedure.

We then build up a height-(\(h + 1 \)) summary, \(\varphi_{h+1} \), compositionally, with \(\varphi_h \) replacing the recursive calls. For example, consider the term \(\tau_2 = n\text{Ticks}' - n\text{Ticks}-1 \) in the context of Fig. 1. Our goal is to create a relational summary for the variable \(n\text{Ticks} \) between labels 1 and 6. We do this by extending a summary for the transition between labels 1 and 2 with a summary for the transition between 2 and 3, namely, our hypothetical summary. Then we extend that with a summary for the paths between labels 3 and 4, and so on. Between labels 1 and 2, \(n\text{Ticks} \) gets increased by 1. We then summarize the transition between 1 and 3. We know \(n\text{Ticks} \) gets increased by 1 between labels 1 and 2. Furthermore, our hypothetical bounding function \(n\text{Ticks}' - n\text{Ticks}-1 \leq b_2(h) \) says that \(n\text{Ticks} \) gets increased by at most \(b_2(h) + 1 \) between labels 2 and 3. Combining these summaries, we see that \(n\text{Ticks} \) gets increased by at most \(b_3(h) + 2 \) between labels 1 and 3. \(n\text{Ticks} \) does not change between labels 3 and 4, so the summary between labels 1 and 4 is the same as the one between labels 1 and 3. The transition between labels 4 and 5 is a recursive call, so we again use our hypothetical summary to approximate this transition. Once again, such a summary says \(n\text{Ticks} \) gets increased by at most \(b_5(h) + 1 \). Extending our summary for the transition between 1 and 4 with this information allows us to conclude that \(n\text{Ticks} \) gets increased by at most \(2b_2(h) + 3 \) between labels 1 and 5. \(n\text{Ticks} \) does not change between labels 5 and 6. Consequently, our summary for \(n\text{Ticks} \) between labels 1 and 6 is \(n\text{Ticks}' - n\text{Ticks} \leq 2b_2(h) + 3 \). Similar reasoning would also obtain a summary for \(\text{return}' \leq 1 + b_1(h) \). These formulas constitute our height-(\(h + 1 \)) hypothetical summary, \(\varphi_{h+1} \):

\[
\varphi_{h+1} \equiv \text{return}' \leq 1 + b_1(h) \land n\text{Ticks}' \leq n\text{Ticks} + 2b_2(h) + 3
\]

If we rearrange each conjunct to respectively place \(\tau_1 \) and \(\tau_2 \) on the left-hand-side of each inequality, we obtain height-(\(h + 1 \)) bounds on the values of \(\tau_1 \) and \(\tau_2 \). By definition such bounds are valid expressions for \(b_1(h + 1) \) and \(b_2(h + 1) \). That is at height-(\(h + 1 \)),

\[
\text{return}' \leq b_1(h + 1) = b_1(h + 1) \quad (1)
\]

\[
\text{nTicks}' - n\text{Ticks} - 1 \leq 2 + 2b_2(h) = b_2(h + 1) \quad (2)
\]

The equations give recursive definitions for \(b_1 \) and \(b_2 \). Solving these recurrence relations gives us bounds on the value sets \(V_1(h) \) and \(V_2(h) \), for all heights \(h \).

In §4.2, we present an algorithm that determines an upper bound on a procedure’s depth of recursion as a function of the parameters to the initial call and the values of global variables. This depth of recursion can also be interpreted as a stack height \(h \) that we can use as an argument to the bounding functions \(b_k(h) \). In the case of \text{subsetSumAux}, we obtain the bound \(h \leq \max(1, 1 + n - i) \). The solutions to the recurrences discussed above, when combined with the depth bound, yield the following summary.

\[
n\text{Ticks}' \leq n\text{Ticks} + 2^h - 1 \land \text{return}' \leq h - 1 \land h \leq \max(1, 1 + n - i)
\]

When \text{subsetSum} is called with some array size \(n \), the maximum possible depth of recursion that can be reached by \text{subsetSumAux} is equal to \(n \). In this way, we have established that the running time of \text{subsetSum} is exponential in \(n \), and the return value is at most \(n \).

3 Background

Relational semantics.

In the following, we give an abstract presentation of the relational semantics of programs. Fix a set \(\text{Var} \) of program variables. A state \(\sigma : \text{State} \equiv \text{Var} \rightarrow \mathbb{Z} \) consist of an integer valuation for each program variable. A recursive procedure \(P \) can be understood as a chain-continuous (and hence monotonic) function on state relations \(F[P] : 2^{\text{State} \times \text{State}} \rightarrow 2^{\text{State} \times \text{State}} \). The relational
semantics $\mathcal{R}[P]$ of P is given as the limit of the ascending Kleene chain of $\mathcal{F}[P]$:
\[
\mathcal{R}(P, 0) = \emptyset \\
\mathcal{R}(P, h + 1) = \mathcal{F}[P]\mathcal{R}(P, h) \\
\mathcal{R}[P] = \bigcup_{h \in \mathbb{N}} \mathcal{R}(P, h)
\]
Operationally, for any h we may view $\mathcal{R}(P, h)$ as the input/output relation of P on a machine with a stack limit of h activation records. We can extend relational semantics to mutually recursive procedures in the natural way, by considering $\mathcal{F}[P]$ to be a function that takes as input a k-tuple of state relations (where k is the number of mutually recursive procedures).

A transition formula φ is a formula over the program variables Var and an additional set Var' of “primed” copies, representing the values of the program variables before and after a computation. A transition relation φ can be interpreted as a property that holds of a pair of states (σ, σ'): we say that (σ, σ') satisfies φ if φ is true when each variable in Var is interpreted according to σ, and each variable in Var' is interpreted according to σ'. We use $\mathcal{R}[\varphi]$ to denote the state relation consisting of all pairs (σ, σ') that satisfy φ. This paper is concerned with the problem of procedure summarization, in which the goal is to find a transition formula φ that over-approximates a procedure, in the sense that $\mathcal{R}[P] \subseteq \mathcal{R}[\varphi]$.

A relational expression τ is a polynomial over $\text{Var} \sqcup \text{Var}'$ with rational coefficients. A relational expression can be evaluated at a state pair $(\sigma, \sigma') \in \text{State} \times \text{State}$ by using σ to interpret the unprimed symbols and σ' to interpret the primed symbols—we use $\mathcal{E}[\tau](\sigma, \sigma')$ to denote the evaluation of τ at (σ, σ').

Intra-procedural analysis. The technique for procedure summarization developed in this paper makes use of intra-procedural summarization as a sub-routine. We formalize this intra-procedural technique by a function $\text{PathSummary}(e, x, V, E)$, which takes as input a control-flow graph with vertices V, edges E, entry vertex e, and exit vertex x, and computes a transition formula that over-approximates all paths in (V, E) between e and x. We use $\text{Summary}(P, \varphi)$ to denote a function that takes as input a recursive procedure P and a transition formula φ, and computes a transition formula that over-approximates P when φ is used to interpret recursive calls (i.e., $\mathcal{F}[P](\mathcal{R}[\varphi]) \subseteq \mathcal{R}[\text{Summary}(P, \varphi)]$). $\text{Summary}(P, \varphi)$ can be implemented in terms of $\text{PathSummary}(e, x, V, E)$ by replacing all call edges with φ, and taking (e, x, V, E) to be the control-flow graph of P.

In principle, any intra-procedural summarization procedure can be used to implement $\text{Summary}(P, \varphi)$; the implementation of our method uses the technique from Kincaid et al. [25].

Algorithm 1: The convex-hull algorithm from [14]

- **Input**: Formula of the form $\exists X.\psi$ where ψ is satisfiable and quantifier-free
- **Output**: Convex hull of $\exists X.\psi$

```plaintext
P <- ⊥;
while there exists a model $m$ of $\psi$ do
  Q <- project($Q, X$); /* Polyhedral projection */
  P <- P $\cup$ Q; /* Polyhedral join */
  $\psi$ <- $\psi$ $\land$ $\neg$P;
return P
```

Symbolic abstraction. We use $\text{Abstract}(\varphi, V)$ to denote a procedure that takes a formula φ and computes a set of polynomial inequations over the variables V that are implied by φ. If φ is expressed in linear arithmetic, then a representation of all implied polynomial inequations (namely, a constraint representation of the convex hull of φ projected onto V) can be computed effectively (e.g., using [14, Alg. 2], which we show in this paper as Alg. 1). Otherwise, we settle for a sound procedure that produces inequations implied by φ, but not necessarily all of them (e.g., using [25, Alg. 3]).

In principle, the convex hull of a linear arithmetic formula F can be computed as follows: write F in disjunctive normal form, as $F \equiv C_1 \lor \ldots \lor C_n$, where each C_i is a conjunction of linear inequations (i.e., a convex polyhedron). The convex hull of F is obtained by replacing disjunctions with the join operator of the domain of convex polyhedra. This algorithm can be improved by using an SMT solver to enumerate the DNF lazily, and extended to handle existential quantification by using polyhedral projection (Alg. 1). A similar approach can be used to compute a conjunction of non-linear inequations that are implied by a formula F, by treating non-linear terms in the formula as additional dimensions of the space (e.g., a quadratic inequation $x^2 < y^2$ is treated as a linear inequation $d_{x^2} < d_{y^2}$, where d_{x^2} and d_{y^2} are symbols that we associate with the terms x^2 and y^2, but have no intrinsic meaning). The non-linear variation of the algorithm’s precision can be improved by using inference rules, congruence closure, and Groebner-basis algorithms to deduce linear relations among the non-linear dimensions that are consequences of the non-linear theory ([25, Alg. 3]). Note that, because non-linear integer arithmetic is undecidable, this process is (necessarily) incomplete.

Recurrence relations. C-finite sequences are a well-studied class of sequences defined by linear recurrence relations, of which a famous example is the Fibonacci sequence. Formally,

Definition 3.1. A sequence $s: \mathbb{N} \rightarrow \mathbb{Q}$ is C-finite of order d if it satisfies a linear recurrence equation

$$s(k + d) = c_1 s(k + d - 1) + \ldots + c_{d-1} s(k + 1) + c_d s(k),$$

where each c_i is a constant.
It is classically known that every C-finite sequence \(s(k) \) admits a closed form that is computable from its recurrence relation and takes the form of an exponential-polynomial

\[
s(k) = p_1(k)r_1^k + p_2(k)r_2^k + \ldots + p_l(k)r_l^k,
\]

where each \(p_i \) is a polynomial in \(k \) and each \(r_i \) is a constant. In the following, it will be convenient to use a different kind of recurrence relation to present C-finite sequences, namely

Definition 3.2. A stratified system of polynomial recurrences is a system of recurrence equations over sequences \(x_1, x_2, \ldots, x_{m, n} \) of the form

\[
\{x_{i,j}(k + 1) = c_{i,j,n}x_{i,n}(k) + \ldots + c_{i,j,n}x_{i,n}(k) + p_{i,j}\}_{i,j}
\]

where each \(c_{i,j,n} \) is a constant, and \(p_{i,j} \) is a polynomial in \(x_{i,n}, x_{i,n} \), etc.

Intuitively, these sequences \(x_1, x_2, \ldots, x_{m, n} \) are organized into strata \((x_1, x_2, \ldots, x_{m, n}) \) is the first, \(x_{2,1}, x_{2,2}, \ldots, x_{2,n} \) is the second, and so on), the right-hand-side of the equation for \(x_{i,j} \) can involve *linear* terms over the sequences in the \(i^{th} \) strata, and additional *polynomial* terms over sequences of lower strata. It follows from the closure properties of C-finite sequences that each \(x_{i,j} \) defines a C-finite sequence, and an exponential-polynomial closed form for each can be computed from a stratified system of polynomial recurrences [22]. The fact that *any* C-finite sequence satisfies a stratified system of polynomial recurrences follows from the fact that a recurrence of order \(d \) can be implemented as a system of *linear* recurrences among \(d \) sequences [22].

Example 3.3. An example of a stratified system of polynomial recurrences with four sequences \(w, x, y, z \) arranged into two strata \((w, x) \) and \((y, z) \) is as follows:

\[
\begin{align*}
\frac{w(k + 1)}{x(k + 1)} &= 1 \frac{1}{2} \frac{w(k)}{x(k)} + \frac{1}{0}, \\
\frac{y(k + 1)}{z(k + 1)} &= 1 \frac{0}{0} \frac{y(k)}{z(k)} + \frac{1}{3w(k) + x(k)}.
\end{align*}
\]

This system has the closed-form solution

\[
\begin{align*}
w(k) &= w(0) + \frac{(2^k - 1)}{3} x(0) + k x(0) = 2^k x(0), \\
y(k) &= \frac{4^k - 1}{3} x(0)^2 + y(0) + k, \\
z(k) &= 3w(0) + \frac{4^k - 3k - 1}{9} x(0)^2 + (2^{k+1} - k - 1)x(0) + ky(0) + z(0) + 2(k^2 - k).
\end{align*}
\]

4 Technical Details

This section gives algorithms for summarizing recursive procedures using recurrence solving. We assume that before these algorithms are applied to the procedures of a program \(\mathcal{P} \), we first compute and collapse the strongly connected components of the call graph of \(\mathcal{P} \) and topologically sort the collapsed graph. Our analysis then works on the strongly connected components of the call graph in a single pass, in a topological order of the collapsed graph, by applying the algorithms of this section to recursive components, and applying intraprocedural analysis to non-recursive components.

For simplicity, §4.1 focuses on the analysis of strongly connected components consisting of a single recursive procedure \(\mathcal{P} \). The first step of the analysis is to apply Alg. 2, which produces a set of inequations that describe the values of variables in \(\mathcal{P} \). Not all of the inequations found by Alg. 2 are suitable for use in a recurrence-based analysis, so we apply a fixpoint algorithm to filter the set of inequations down to a subset that, when combined, form a stratified recurrence. The next step is to give this recurrence to a recurrence solver, which results in a logical formula relating the values of variables in \(\mathcal{P} \) to the stack height \(h \) that may be used in \(\mathcal{P} \). In §4.2, we show how to (i) obtain a bound on \(h \) that depends on the program state before the initial call to \(\mathcal{P} \), and (ii) combine the recurrence solution with that depth bound to create a summary of \(\mathcal{P} \). In §4.3, we show how to extend the techniques of §4.1 to handle programs with mutual recursion, i.e., programs whose call graphs have strongly connected components consisting of multiple procedures. (In the technical report version of this document, there are two additional sub-sections. [5, §4.3] discusses a modified version of the algorithm of §4.1 that, in combination with the algorithm of §4.1, can prove more precise properties, e.g., that a variable is equal to, and not only bounded by, some function of the depth of recursion. [5, §4.5] discusses an extension of the algorithm of §4.3 that handles sets of mutually recursive procedures in which some procedures do not have base cases.)

4.1 Height-Based Recurrence Analysis

Let \(\tau \) be a relational expression and let \(\mathcal{P} \) be a procedure. We use \(V_\tau(\mathcal{P}, h) \) to denote the set of values of \(\tau \) in a height-\(h \) execution of \(\mathcal{P} \).

\[
V_\tau(\mathcal{P}, h) \overset{\text{def}}{=} \{ E[\tau](\sigma, \sigma') : (\sigma, \sigma') \in R(\mathcal{P}, h) \}
\]

It consists of values to which \(\tau \) may evaluate at a state pair belonging to \(R(\mathcal{P}, h) \). We call \(b_\tau : \mathbb{N} \rightarrow \mathbb{Q} \) a bounding function for \(\tau \) in \(\mathcal{P} \) if for all \(h \in \mathbb{N} \) and all \(\nu \in V_\tau(\mathcal{P}, h) \), we have \(\nu \leq b_\tau(h) \).

Intuitively, the bounding function \(b_\tau(h) \) bounds the value of an expression \(\tau \) in any execution that uses stack height at most \(h \).

The goal of §4.1 is to find a set of relational expressions and associated bounding functions. We proceed in three steps.

First, we determine a set of candidate relational expressions \(r_1, \ldots, r_n \). Second, we optimistically assume that there exist functions \(b_1(h), \ldots, b_n(h) \) that bound these expressions, and we analyze \(\mathcal{P} \) under that assumption to obtain constraints
Algorithm 2: Algorithm for extracting candidate recurrence inequations

\[\textbf{Input :} A procedure } P, \text{ and the associated vocabulary of program variables } V \ \\
\textbf{Output:} Height-based-recurrence summary } \psi_{\text{height}} \ \\
1. \beta \leftarrow \text{Summary}(P, \text{false}); \ \\
2. w_{\text{base}} \leftarrow \text{Abstract}(\beta, \text{Var} \cup \text{Var}'); \ \\
3. n \leftarrow \text{the number of inequations in } w_{\text{base}}; \ \\
4. \textbf{foreach } k \text{ in } 1, \ldots, n \textbf{ do} \ \\
5. \text{Let } r_k \text{ be the expression over } \text{Var} \cup \text{Var}' \text{ such that the } k^{\text{th}} \ \\
 \text{inequation in } w_{\text{base}} \text{ is } (r_k \leq 0); \ \\
6. \text{Let } b_k(\cdot) \text{ be a fresh uninterpreted function symbol}; \ \\
7. \varphi_{\text{call}} \leftarrow \bigwedge_{k=1}^{n} (r_k \leq b_k(h) \land b_k(h) \geq 0); \ \\
8. \varphi_{\text{rec}} \leftarrow \text{Summary}(P, \varphi_{\text{call}}); \ \\
9. \varphi_{\text{ext}} \leftarrow \varphi_{\text{rec}} \land \bigwedge_{k=1}^{n} (b_k(h+1) = r_k); \ \\
10. S \leftarrow \emptyset; \ \\
11. \textbf{foreach } k \text{ in } 1, \ldots, n \textbf{ do} \ \\
12. w_{\text{ext},k} \leftarrow \text{Abstract}(\varphi_{\text{ext}}, \{b_1(h), \ldots, b_n(h), b_k(h+1)\}); \ \\
13. \textbf{foreach inequation } I \text{ in } w_{\text{ext},k} \textbf{ do} \ \\
14. S \leftarrow S \cup \{I\}; \ \\
15. \text{return } S \]

relating the values of the relational expressions to the values of the \(b_i(h), \ldots, b_n(h)\) functions. Third, we re-arrange the constraints into recurrence relations for each of the \(b_i(h)\) functions (if possible) and solve them to synthesize a closed-form expression for \(b_h(h)\) that is suitable to be used in a summary for \(P\).

We begin our analysis of \(P\) by determining a set of suitable expressions \(r\). If a relational expression \(r\) has an associated bounding function, then it must be the case that \(V_r(P, 1) \text{ (i.e., the set of values that } r \text{ takes on in the base case)} \text{ is bounded above. Without loss of generality, we choose expressions } r \text{ so that } V_r(P, 1) \text{ is bounded above by zero.} \) (Note that if \(V_r(P, 1) \text{ is bounded above by } c \text{ then } V_r(P, 1) \text{ is bounded above by zero.}) \text{ We begin our analysis of } P \text{ by analyzing the base case to look for relational expressions that have this property.}

Selecting candidate relational expressions. The reason for looking at expressions over program variables, as opposed to individual variables, is illustrated by Ex. 2.1: the variable \(n\text{Ticks}' – n\text{Ticks} – 1\) always equal to zero in the base case.

With the goal of identifying relational expressions that are bounded above by zero, Alg. 2 begins by extracting a transition formula \(\beta\) for the non-recursive paths through \(P\) by calling \text{Summary}(P, \text{false}) \text{ (i.e., summarizing } P \text{ by using false as a summary for the recursive calls in } P\). Next, we compute a set \(w_{\text{base}}\) of polynomial inequations over \(\text{Var} \cup \text{Var}'\) (the set of un-primed (pre-state) and primed (post-state) copies of all global variables, along with unprimed copies of the parameters to \(P\) and the variable \(\text{return}'\), which represents the return value of \(P\) that are implied by \(\beta\) by calling \text{Abstract}(\beta, \text{Var} \cup \text{Var}'). \text{ Let } n \text{ be the number of inequations in } w_{\text{base}}. \text{ Then, for } k = 1, \ldots, n, \text{ we rewrite the } k^{\text{th}} \text{ inequation in the form } r_k \leq 0. \text{ In the case of Ex. 2.1, } r_1 \overset{\text{def}}{=} \text{return}' \text{ and } r_2 \overset{\text{def}}{=} n\text{Ticks}' – n\text{Ticks} – 1 \text{ have the property that } r_1 \leq 0 \text{ and } r_2 \leq 0 \text{ in the base case.}

Note that there are, in general, many sets of relational expressions \(r_1, \ldots, r_n\) that are bounded above by zero in the base case. The soundness of Alg. 2 only depends on \text{Abstract} choosing some such set. Our implementation of \text{Abstract} uses [25, Alg. 3], and is not guaranteed to choose the set of relational expressions that would lead to the most precise results for any given application, e.g., for a given assertion-checking or complexity-analysis problem. Intuitively, in the case that \(\beta\) is a formula in linear arithmetic, our implementation of \text{Abstract} amounts to using the operations of the polyhedral abstract domain to find a convex hull of \(\beta\). Then, each of the inequations in the constraint representation of the convex hull can be interpreted as a relational expression that is bounded above by zero in the base case.

Generating constraints on bounding functions. For each of the expressions \(r_k\) that has an upper bound in the base case, we are ultimately looking to find a function \(b_k(h)\) that is an upper bound on the value of that expression in any \(h\text{-exec} \text{ution. Our way of finding such a function is to analyze the recursive cases of } P \text{ to look for an invariant inequation that gives an upper bound on } V_{r_k}(P, h+1) \text{ in terms of an upper bound on } V_{r_k}(P, h). \text{ Such an inequation can be interpreted as a recurrence relating } b_k(h+1) \text{ to } b_k(h). \text{ The remainder of Alg. 2 (Lines (7)–(14)) finds such invariant inequations. The first step is to create the hypothetical procedure summary } \varphi_{\text{call}}, \text{ which hypothesizes that a bounding function } b_{\text{call}} \text{ exists for each expression } r_k \text{ and that the value of that function at height } h \text{ is an upper bound on the value of } r_k \text{. } \varphi_{\text{call}} \text{ is a transition formula that represents a height-}\text{h-execution of } P. \text{ In Ex. 2.1, } \varphi_{\text{call}} \text{ is:}

\[
\text{return}' \leq b_1(h) \land n\text{Ticks}' – n\text{Ticks} – 1 \leq b_2(h) \land b_1(h) \geq 0 \land b_2(h) \geq 0
\]

On line (8), Alg. 2 calls \text{Summary}, using \varphi_{\text{call}} as the representation of each recursive call in \(P\), and the resulting transition formula is stored in \varphi_{\text{rec}}. Thus, \varphi_{\text{rec}} describes a typical height-(\(h+1\)) execution of \(P\). In Ex. 2.1, a simplified version of \varphi_{\text{rec}} is given as \varphi_{\text{rec}} \text{ in §2.}

On line (9), the formula \varphi_{\text{ext}} is produced by conjointing \varphi_{\text{rec}} with a formula stating that, for each \(k\), \(b_k(h+1) = r_k\). \text{ Therefore, } \varphi_{\text{ext}} \text{ implies that any upper bound on } b_k(h+1) \text{ must be an upper bound on } r_k \text{ in any height-(\(h+1\)) execution.}

Ultimately, we wish to obtain a closed-form solution for each \(b_k(h)\). The formula \varphi_{\text{ext}} implicitly determines a set of recurrences relating \(b_1(h+1), \ldots, b_n(h+1)\) to \(b_1(h), \ldots, b_n(h)\).
However, φ_{ext} does not have the explicit form of a recurrence. Lines (12)–(14) abstract φ_{ext} to a conjunction of inequations that give an explicit relationship between $b_k(h+1)$ and $b_1(h), \ldots, b_n(h)$ for each k.

Extracting and solving recurrences. The next step of height-based recurrence analysis is to identify a subset of the inequations returned by Alg. 2 that constitute a stratified system of polynomial recurrences (Defn. 3.2). This subset must meet the following three stratification criteria:

1. Each bounding function $b_k(h+1)$ must appear on the left-hand-side of at most one inequation.
2. If a bounding function $b_k(h)$ appears on the right-hand-side of an inequation, then $b_k(h+1)$ appears on some left-hand-side.
3. It must be possible to organize the $b_k(h+1)$ into strata, so that if $b_k(h)$ appears in a non-linear term on the right-hand-side of the inequation for $b_j(h+1)$, then $b_k(h)$ must be on a strictly lower stratum than $b_j(h)$.

A maximal subset of inequations that complies with the above three rules can be computed in polytime using a fixpoint algorithm. (An algorithm for extracting a stratified recurrence is given in the technical-report version of this document as [5, Alg. 3].)

The next step of height-based recurrence analysis is to send this recurrence to a recurrence solver, such as the one above three rules can be computed in polytime using a fixpoint algorithm. (An algorithm for extracting a stratified recurrence is given in the technical-report version of this document as [5, Alg. 3].)

The subject of §4.2 is to find a formula $\zeta_{P_i}(H, \sigma)$ relating H to the pre-state σ of the initial call to P_i. The formula $\zeta_{P_i}(H, \sigma)$ can be combined with Eqn. (3) to obtain a more precise procedure summary.

Soundness. Roughly, the soundness of height-based recurrence analysis follows from: (i) sound extraction of the recurrence constraints used by CHORA to characterize non-linear recursion; (ii) sound recurrence solving; and (iii) soundness of the underlying framework of algebraic program analysis. The soundness of parts (ii) and (iii) depends on the soundness of prior work [25]. The soundness of (i) is addressed in a detailed proof in the appendix of the technical report version of this document [5]. The soundness property proved there is as follows: let P be a procedure to which Alg. 2 and the recurrence-extraction algorithm have been applied to obtain a stratified recurrence. Let $\{r_i\}_{i \in [1, n]}$ be the relational expressions computed by Alg. 2. Let $B \subseteq [1, n]$ be such that $\{b_j\}_{j \in B}$ is the set of functions produced by solving the stratified recurrence. We show that each b_j function bounds the corresponding $V_{r_i}(P, h)$ value set. In other words, the following statement holds: $\forall h \geq 1. \bigwedge_{i \in B} \forall u \in V_{r_i}(P, h). u \leq b_j(h)$.

4.2 Depth-Bound Analysis

In §4.1, we showed how to find a bounding function $b_i(h)$ that gives an upper bound on the value of a relational expression τ in an execution of a procedure P_i as a function of the stack height (i.e., maximum depth of recursion) h of that execution. In this section, the goal is to find bounds on the maximum depth of recursion h that may occur as a function of the pre-state σ (which includes the values of global variables and parameters to P_i) from which P_i is called.

For example, consider Ex. 2.1. The algorithms of §4.1 determine bounds on the values of two relational expressions in terms of h: namely: $n\text{Ticks}' \leq n\text{Ticks} + 2h - 1$, and $\text{return}' \leq h - 1$. The algorithm of this sub-section (Alg. 3) determines that h satisfies $h \leq \max(1, 1 + n - 1)$. These facts can be combined to form a procedure summary for Subset-SumAux that relates the return value and the increase to $n\text{Ticks}$ to the values of the parameters i and n.

The stack height h required to execute a procedure often depends on the number of times that some transformation can be applied to the procedure’s parameters before a base case must execute. For example, in Ex. 2.1, the height bound is a consequence of the fact that i is incremented by one at each recursive call, until $i \geq n$, at which point a base case executes. Likewise, in a typical divide-and-conquer algorithm, a size parameter is repeatedly divided by some constant until the size parameter is below some threshold, at which point a base case executes. Intuitively, the technique described in this section is designed to discover height bounds that are consequences of such repeated transformations (e.g., addition or division) applied to the procedures’ parameters.
To achieve this goal, we use Alg. 3, which is inspired by the algorithm for computing bounds on the depth of recursion in Albert et al. [3]. Alg. 3 constructs and analyzes an over-approximate \textit{depth-bounding model} of the procedures \(P_1, \ldots, P_n \) that includes an auxiliary depth-counter variable, \(D \). Each time that the model descends to a greater depth of recursion, \(D \) is incremented. The model exits only when a procedure executes its base case. In any execution of the model, the final value of \(D \) thus represents the depth of recursion at which some procedure’s base case is executed.

Alg. 3 takes as input a representation of the procedures in \(S \) as a single, combined control-flow graph \((V, E, C)\) having two kinds of edges: (1) weighted edges \((u, \varphi, v) \in E\), which are weighted with a transition formula \(\varphi \), and (2) call edges in the set \(C \). Each call edge in \(C \) is a triple \((u, Q, v)\), in which \(u \) is the call-site vertex, \(v \) is the return-site vertex, and the edge is labeled with \(Q \), representing a call to a procedure \(Q \). We assume that if any procedure \(Q \notin S \) is called by some procedure in \(S \), then \(Q \) has been fully analyzed already, and therefore a procedure summary \(\varphi_Q \) for \(Q \) has already been computed. Each procedure \(Q \) has an entry vertex \(e_Q \), an exit vertex \(x_Q \), and a transition formula \(\beta_Q \) that over-approximates the base cases of \(Q \). Note that \((V, E, C)\) consists of several disjoint, single-procedure control-flow graphs when \(n > 1 \).

On lines (2)–(13), Alg. 3 constructs the depth-bounding model, represented as a new control-flow graph \((V', E', \emptyset)\). The algorithm begins by creating new auxiliary entry vertices \(e'_{P_1}, \ldots, e'_{P_n} \) for the procedures \(P_1, \ldots, P_n \) and a new auxiliary exit vertex \(x' \). The new vertex set \(V' \) contains \(V \) along with these \(n + 1 \) new vertices. Alg. 3 then creates a new integer-valued variable \(D \). For \(i = 1, \ldots, n \), the algorithm then creates an edge from \(e'_{P_i} \) to \(e_{P_i} \), weighted with a transition formula that initializes \(D \) to one, and an edge from \(x_{P_i} \) weighted with the formula \(\beta_{P_i} \), which is a summary of the base case of \(P_i \).

Alg. 3 replaces every call edge \((u, Q, v) \in C\) with one or more weighted edges. Each call to a procedure \(Q \notin \{P_1, \ldots, P_n\} \) is replaced by an edge \((u, \varphi_Q, v)\) weighted with the procedure summary \(\varphi_Q \) for \(Q \). Each call to some \(P_i \) is replaced by two edges. The first edge represents descending into \(P_i \), and goes from \(u \) to \(e_{P_i} \), and is weighted with a formula that increments \(D \) and havocs local variables. The second edge represents skipping over the call to \(P_i \), rather than descending into \(P_i \). This edge is weighted with a transition formula that havocs all global variables and the variable return, but leaves local variables unchanged.

The final step of Alg. 3, on line (15), actually computes the depth-bounding summary \(\zeta_{P_i}(D, \sigma) \) for each procedure \(P_i \). Because there are no call edges in the new control-flow graph \((V', E', \emptyset)\), intraprocedural-analysis techniques can be used to compute transition formulas that summarize the transition relation for all paths between two specified vertices. For each procedure \(P_i \), the formula \(\zeta_{P_i}(D, \sigma) \) is a summary of all paths from \(e'_{P_i} \) to \(x' \), which serves to relate \(D \) to \(\sigma \), which is the pre-state of the initial call to \(P_i \).

The formulas \(\zeta_{P_i}(D, \sigma) \) for \(i = 1, \ldots, n \) can be used to establish an upper bound on the depth of recursion in the following way. Let \((\sigma, \sigma')\) be a state pair in the relational semantics \(\mathcal{R}[P] \) of \(P_i \). Then, there is an execution \(e \) of \(P_i \) that starts in state \(\sigma \) and finishes in state \(\sigma' \), in which the maximum\footnote{Note that non-terminating executions of \(P_i \) do not correspond to any state-pair \((\sigma, \sigma')\) in the relational semantics \(\mathcal{R}[P] \); therefore, such executions are not represented in the procedure summary for \(P_i \) that we wish to construct.} recursion depth is some \(d \in \mathbb{N} \). Then there is a path through the control-flow graph \((V', E', \emptyset)\) that corresponds to the path taken in \(e \) to reach some execution of a base case at the maximum recursion depth \(d \). Therefore, if \(d \) is a possible depth of recursion when starting from state \(\sigma \), then there is a satisfying assignment of \(\zeta_{P_i}(D, \sigma) \) in which \(D \) takes the value \(d \). The contrapositive of this argument says that, if there does not exist any satisfying assignment of \(\zeta_{P_i}(D, \sigma) \) in which \(D \) takes the value \(d \), then it must be the case that no execution of \(P_i \) that starts in state \(\sigma \) can have maximum recursion depth \(d \). In this way, \(\zeta_{P_i}(D, \sigma) \) can be interpreted as providing bounds on the maximum recursion depth that can occur when \(P_i \) is started in state \(\sigma \).

Once we have the depth-bound summary \(\zeta_P \) for some procedure \(P \), we can combine it with the closed-form solutions for bounding functions that we obtained using the algorithms of §4.1 to produce a procedure summary. Let \(B \) be the set of indices \(k \) such that we found a recurrence for the bounding function \(b_k(h) \). We produce a procedure summary of the form shown in Eqn. (4), which uses the depth-bound summary \(\zeta_P \) to relate the pre-state \(\sigma \) to the variable \(H \), which in turn is used to index into the bounding function \(b_k(h) \) for each \(k \in B \).

\[
\exists H. \zeta_P(H, \sigma) \land \bigwedge_{k \in B} [\tau_k \leq b_k(H)] \tag{4}
\]

4.3 Mutual Recursion

In this section, we describe the generalization of the height-based recurrence analysis of §4.1 to the case of mutual recursion. Instead of analyzing a single procedure \(P \), we assume that we are given a set of procedures \(P_1, \ldots, P_m \) that form a strongly connected component of the call graph of some program.

Example 4.1. We use the following program to illustrate the application of our technique to mutually recursive procedures. The procedure \(P1 \) increments the global variable \(g \) in its base case, and calls \(P2 \) eighteen times in a for-loop in its recursive case. Similarly, \(P2 \) increments \(g \) in its base case and calls \(P1 \) two times in a for-loop in its recursive case.
int g;
void P1(int n) {
 if (n <= 1) { g++; return; }
 for(int i = 0; i < 18; i++) { P2(n - 1); }
}
void P2(int n) {
 if (n <= 1) { g++; return; }
 for(int i = 0; i < 2; i++) { P1(n - 1); }
}

To apply height-based recurrence analysis to a set \(S = \{P_1, \ldots, P_m\} \) of mutually recursive procedures, we use a variant of Alg. 2 that interleaves some of the analysis operations on the procedures in \(S \). Specifically, we make the following changes to Alg. 2. First, we perform the operations on lines (1)–(7) for each procedure \(P_i \) to obtain the symbolic summary formula \(\varphi_{\text{call}(P_i)} \). For each procedure \(P_i \), we obtain a set of bounded terms \(\tau_{1,i}, \ldots, \tau_{n,i} \), and our goal will be to find a height-based recurrence for each such term.

Note that a term \(\tau_{i,j} \) that we obtain when analyzing \(P_i \) may be syntactically identical to a term \(\tau_{i,s} \) that we obtained when analyzing some earlier \(P_j \). In such a case, \(\tau_{i,r} \) and \(\tau_{i,s} \) have different interpretations. For example, when analyzing Ex. 4.1, the two most important terms are \(\tau_{1,1} = g' - g - 1 \) and \(\tau_{2,1} = g' - g - 1 \). However, \(\tau_{1,1} \) represents the increase to \(g \) as a result of a call to \(P_1 \) and \(\tau_{2,1} \) represents the increase to \(g \) as a result of a call to \(P_2 \). Our technique will attempt to find distinct bounding functions for these two terms.

Second, on line (8), we replace the call to the intraprocedural summarization function \(\text{Summary}(P, \varphi_{\text{call}}) \). In the general case, each procedure \(P_i \) might call every other member of its strongly connected component. To reduce this analysis step to an intraprocedural-analysis problem, we must replace every such call with a summary formula. Therefore, for each \(P_i \), the call on the analysis subroutine has the form \(\text{Summary}(P, \varphi_{\text{call}(P_1)}, \ldots, \varphi_{\text{call}(P_m)}) \). \text{Summary} analyzes the body of \(P_i \) by replacing each call to some \(P_j \) with the formula \(\varphi_{\text{call}(P_j)} \). The summary formula thus produced for \(P_i \) is denoted by \(\varphi_{\text{rec}(P_i)} \).

Lines (9)–(14) of Alg. 2 are then executed for each \(P_i \). On line (9), the formula \(\varphi_{\text{ext}(P_i)} \) is produced by conjointing \(\varphi_{\text{rec}(P_i)} \) with one equality constraint for each of the terms \(\tau_{1,i}, \ldots, \tau_{n,i} \), but not the terms \(\tau_{j,q} \) for \(j \neq i \). On line (12), the call to \(\text{Abstract} \) has the form \(\text{Abstract}(\varphi_{\text{ext}(P_i)}, b_{1,i}(h), \ldots, b_{m,n,m}(h), b_{i,q}(h + 1)) \). That is, we look for inequations that provide a bound on \(b_{i,q}(h + 1) \), which relates to \(P_i \) specifically, in terms of all of the height-\(h \) bounding functions for \(P_1, \ldots, P_m \). For example, in Ex. 4.1, we find the constraints \(b_{1,i}(h + 1) \leq 18b_{2,i}(h) + 17 \) and \(b_{2,i}(h + 1) \leq 2b_{1,i}(h) + 1 \).

The next steps of height-based analysis are to find a collection of inequations that form a stratified recurrence, and to solve that stratified recurrence (as in §4.1). These steps are the same in the case of mutual recursion as in the case of a single recursive procedure. After solving the recurrence, we obtain a closed-form solution for the subset of the bounding functions \(b_{1,i}(h), \ldots, b_{m,n,m}(h) \) that appeared in the recurrence. Let \(b_i \) be the set of indices \(q \) such that we found a recurrence for \(b_{i,q}(h) \). Then, the procedure summary that we obtain for \(P_i \) has the following form:

\[
3\mathcal{H}(\tau_i, P_i, g) \wedge \bigwedge_{q \in b_i} \tau_q \leq b_{i,q}(H) \tag{5}
\]

In Ex. 4.1, the recurrence that we obtain is:

\[
\begin{align*}
 b_{1,i}(h + 1) & \leq 0 & 18b_{1,i}(h) + 17 \\
 b_{2,i}(h + 1) & \leq 2 & b_{2,i}(h) + 1
\end{align*}
\]

Notice that this recurrence involves an interdependency between the bounding functions for the increase to \(g \) in \(P_1 \) and \(P_2 \). Simplified versions of the \(g \) bounds found by \text{CHORA} for \(P_1 \) and \(P_2 \) are \(3 \cdot 6^{n-1} \) and \(6^{n-1} \), respectively.

For each procedure within a strongly connected component \(S \) of the call graph, the algorithm of §4.3 needs to be able to identify a base case (i.e., a set of paths containing no calls to the procedures of \(S \)). Some programs contain procedures without such base cases. (For a discussion of an extension to our algorithm that can handle such programs, see the technical report version of this document [5, §4.5].)

5 Experiments

Our techniques are implemented as an interprocedural extension of Compositional Recurrence Analysis (CRA) [14], resulting in a tool we call Compositional Higher-Order Recurrence Analysis (\text{CHORA}).

CRA is a program-analysis tool that uses recurrences to summarize loops, and uses Kleene iteration to summarize recursive procedures. Interprocedural Compositional Recurrence Analysis (ICRA) [24] is an earlier extension of CRA that lifts CRA’s recurrence-based loop summarization to summarize linearly recursive procedures. However, ICRA resorts to Kleene iteration in the case of non-linear recursion. \text{CHORA} can analyze programs containing arbitrary combinations of loops and branches using CRA. In the case of linear recursion, \text{CHORA} uses the same reduction to CRA as ICRA. Thus, in those cases, \text{CHORA} will produce results almost identical to those of ICRA. The algorithms of §4, which allow \text{CHORA} to perform a precise analysis of non-linear recursion, are what distinguish \text{CHORA} from prior work. For this reason, our experiments are focused on the analysis of non-linearly recursive programs.

Our experimental evaluation is designed to answer the following question:

\text{Is} \text{CHORA} \text{effective at generating invariants for programs containing non-linear recursion?}

Despite the prominence of non-linear recursion (e.g., divide-and-conquer algorithms), there are few benchmarks...
in the verification literature that make use of it. The examples that we found are bounds-generation benchmarks that come from the complexity-analysis literature, as well as assertion-checking benchmarks from the recursive subcategory of SV-COMP.

Generating complexity bounds. For our first set of experiments, we evaluate CHORA on twelve benchmark programs from the complexity-analysis literature. This set of experiments is designed to determine how the complexity-analysis results obtained by CHORA compare with those obtained by ICRA and state-of-the-art complexity-analysis tools. We selected all of the non-linearly recursive programs in the benchmark suites from a recent set of complexity-analysis papers [8, 9, 20], as well as the web site of PUBS [2], and removed duplicate (or near-duplicate) programs, and translated them to C. Our implementations of divide-and-conquer algorithms are working implementations rather than cost models, and therefore CHORA’s analysis of these programs involves performing non-trivial invariant generation and cost analysis at the same time. Source code for CHORA and all benchmarks can be found in the CHORA repository [4].

To perform a complexity analysis of a program using CHORA, we first manually modify the program to add an explicit variable (cost) that tracks the time (or some other resource) used by the program. We then use CHORA to generate a term that bounds the final value of cost as a function of the program’s inputs. Note that, as a consequence of this technique, CHORA’s bounds on a program’s running time are only sound under the assumption that the program terminates. Throughout the analysis, CHORA merely treats cost as another program variable; that is, the recurrence-based analytical techniques that it uses to perform cost analysis are the same as those it uses to find all other numerical invariants.

The benchmark programs on which we evaluated CHORA, as well as the complexity bounds obtained by CHORA’s analysis, are shown in Tab. 1. The first five programs are elementary examples of non-linear recursion. The next seven are more challenging complexity-analysis problems that have been used to test the limits of state-of-the-art complexity analyzers.

We observe that on two benchmarks, karatsuba and strassen, CHORA finds an asymptotically tight bound that was not found by the technique from which the benchmark was taken. For example, the bound obtained by CHORA for karatsuba has the form cost \(\leq 3 \log_2(n) \) which is equivalent to cost \(\leq n^{\log_2(3)} \), and is therefore tighter than the bound using the rational exponent 1.6 cited in [9], although the technique from [9] can obtain rational bounds that are arbitrarily close to \(\log_3(n) \). On two benchmarks, CHORA fails to produce an asymptotically tight bound. For example, for qsort_steps, cost tracks the number of instructions, CHORA finds an exponential bound (as does the PUBS complexity analyzer [2],

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Actual</th>
<th>CHORA</th>
<th>ICRA</th>
<th>Other Tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>fibonacci</td>
<td>(O(q^n))</td>
<td>(O(2^n))</td>
<td>\text{n.b.}</td>
<td>(O(2^n))</td>
</tr>
<tr>
<td>hanoi</td>
<td>(O(2^n))</td>
<td>(O(2^n))</td>
<td>\text{n.b.}</td>
<td>(O(2^n))</td>
</tr>
<tr>
<td>subset_sum</td>
<td>(O(2^n))</td>
<td>(O(2^n))</td>
<td>\text{n.b.}</td>
<td>(O(2^n))</td>
</tr>
<tr>
<td>bst_copy</td>
<td>(O(2^n))</td>
<td>(O(2^n))</td>
<td>\text{n.b.}</td>
<td>(O(2^n))</td>
</tr>
<tr>
<td>ball_bins3</td>
<td>(O(2^n))</td>
<td>(O(3^n))</td>
<td>\text{n.b.}</td>
<td>(O(3^n))</td>
</tr>
<tr>
<td>karatsuba</td>
<td>(O(n^{\phi(n)})</td>
<td>(O(n^{\log_2(3)}))</td>
<td>\text{n.b.}</td>
<td>(O(n^{1.6}))</td>
</tr>
<tr>
<td>mergesort</td>
<td>(O(n \log(n)))</td>
<td>(O(n \log(n)))</td>
<td>\text{n.b.}</td>
<td>(O(n \log(n)))</td>
</tr>
<tr>
<td>strassen</td>
<td>(O(n^{\log_2(11)}))</td>
<td>(O(n^{\log_2(17)}))</td>
<td>\text{n.b.}</td>
<td>(O(n^{2.7}))</td>
</tr>
<tr>
<td>qsort_calls</td>
<td>(O(n))</td>
<td>(O(2^n))</td>
<td>(O(n))</td>
<td>(O(n))</td>
</tr>
<tr>
<td>qsort_steps</td>
<td>(O(n^2))</td>
<td>(O(n^2))</td>
<td>\text{n.b.}</td>
<td>(O(n^2))</td>
</tr>
<tr>
<td>closest_pair</td>
<td>(O(n \log(n)))</td>
<td>\text{n.b.}</td>
<td>\text{n.b.}</td>
<td>(O(n \log(n)))</td>
</tr>
<tr>
<td>ackermann</td>
<td>(Ack(n))</td>
<td>\text{n.b.}</td>
<td>\text{n.b.}</td>
<td>(\text{n.b.})</td>
</tr>
</tbody>
</table>

Figure 2. Results of running CHORA and four other tools on the SV-COMP19 recursive directory of benchmarks. Each point indicates a benchmark containing assertions that a tool proved to be true, and the amount of time taken by that tool on that benchmark.

which also uses recurrence solving and height-based abstraction), whereas [9] finds the optimal \(O(n^2) \) bound. On two more benchmarks, CHORA is unable to find a bound. Note that CHORA’s technique for summarizing recursive functions significantly improves upon ICRA’s, which can find only one bound across the suite.

Assertion-checking experiments. Next, we tested CHORA’s invariant-generation abilities on assertion-checking benchmarks. A standard benchmark suite from the literature is the Software Verification Competition
We ran C (UA) [SV-COMP], which includes a recursive sub-category 18.04 with 16 GB of RAM, on a host machine with 32GB do not actually require an analyzer to perform invariant-generation. The Ackermann benchmark contains an implementation of the
two-argument Ackermann function, and the benchmark asserts that the return value of Ackermann is non-negative if its arguments are non-negative; CHORA is able to prove that this assertion holds. The RecHanoi01 benchmark contains a non-linearly recursive cost-model of the Tower of Hanoi problem, along with a linearly recursive function that doubles its return value and adds one at each recursive call. The assertion in recHanoi01 states that these two functions compute the same value, and CHORA is able to prove this assertion. (The other tools that we tested, namely ICRA, UA, UTaipan, and VIAP, were not able to prove this assertion.) The McCarthy91 benchmark contains an implementation of McCarthy’s 91 function, along with an assertion that the return value of that function, when applied to an argument x, either (1) equals 91, or else (2) equals x – 10. CHORA is not well-suited to prove this assertion because the asserted property is a disjunction, i.e., it describes the return value using two cases, whereas the hypothetical summaries used by CHORA do not contain disjunctions. (ICRA, UA, UTaipan, and VIAP were all able to prove this assertion.)

To further test CHORA’s capabilities, we also manually created three new assertion-checking benchmarks, shown in Fig. 4. Because our goal is to assess CHORA’s ability to synthesize invariants, our additional suite consists of recursive examples for which unrolling is an impractical strategy.

quad has a recursive call in a loop that may run for arbitrarily many iterations, and its return value is always n(n+1)/2. pow2_overflow contains an assertion inside a non-linearly
Table 2. Five analysis tools, along with the results of assertion-checking experiments using the benchmarks shown in Fig. 4. A ✓ indicates that the tool was able to prove the assertion within 900 seconds, and an X indicates that it was not. We also show the time required to analyze each benchmark.

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>CHORA</th>
<th>ICRA</th>
<th>UA</th>
<th>UTaipan</th>
<th>VIAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>quad</td>
<td>✓ (0.70s)</td>
<td>✓ (1.08s)</td>
<td>X (900s)</td>
<td>✓ (4.24s)</td>
<td>X (4.71s)</td>
</tr>
<tr>
<td>pow2_overflow</td>
<td>✓ (0.61s)</td>
<td>✓ (1.28s)</td>
<td>X (900s)</td>
<td>X (900s)</td>
<td>X (1.79s)</td>
</tr>
<tr>
<td>height</td>
<td>✓ (0.58s)</td>
<td>X (0.52s)</td>
<td>✓ (8.82s)</td>
<td>✓ (13.0s)</td>
<td>X (2.85s)</td>
</tr>
</tbody>
</table>

recursive function, and an assumption about the range of parameter values; if the assertion passes, we may conclude that the program is safe from numerical-overflow bugs. The benchmark height asserts that the size (i.e., the number of nodes) of a tree of recursive calls is an upper bound on the height of the tree of recursive calls.

The results of our experiments are shown in Tab. 2. CHORA is able to prove the assertions in all three programs; ICRA and UTaipan each prove two; UA proves one, and VIAP proves none. Times taken by each tool are also shown in the table. CHORA’s ability to prove the assertion in quad illustrates that it can find invariants even for programs in which running time (and the number of recursive calls) is unbounded. quad illustrates CHORA’s applicability to perform program-equivalence tasks on numerical programs, while pow2_overflow illustrates CHORA’s applicability to perform overflow-checking.

Conclusions. Our main experimental question is whether CHORA is effective at the problem of generating invariants for programs using non-linear recursion. Results from the complexity-analysis and assertion-checking experiment show that CHORA is able to generate non-linear invariants that are sufficient to solve these kinds of problems. In these ways, CHORA has shown success in a domain, i.e., invariant generation for non-linear recursive programs, that is not addressed by many other tools.

6 Related Work

Following the seminal work of Cousot and Cousot [11], most invariant-generation techniques are based on iterative fixpoint computation, which over-approximates Kleene-iteration within some abstract domain. This paper presents a non-iterative method for generating numerical invariants for recursive procedures, which is based on extracting and solving recurrence relations. It was inspired by two streams of ideas found in prior work.

Template-based methods fix a desired template for the invariants in a program, in which there are undetermined constant symbols [10, 31]. Constraints on the constants are derived from the structure of the program, which are given to a constraint solver to derive values for the constants. The hypothetical summaries introduced in §4.1 were inspired by template-based methods, but go beyond them in an important way: in particular, the indeterminates in a hypothetical summary are functions rather than constants, and our work uses recurrence solving to synthesize these functions.

Of particular relevance to our work are template-based methods for generating non-linear invariants [7, 9, 21, 26, 32]. Contrasting with the technique proposed in this paper, a distinct advantage of template-based methods for generating polynomial invariants for programs with real-typed variables is that they enjoy completeness guarantees [9, 21, 32], owing to the decidability of the theory of the reals. The advantages of our proposed technique over traditional template-based techniques are (1) it is compositional, (2) it can generate exponential and logarithmic invariants, and (3) it does not require fixing bounds on polynomial degrees a priori. Also note that template-based techniques pay an up-front cost for instantiating templates that is exponential in the degree bound. (In practice, this exponential blow-up can be mitigated [26].)

Recurrence-based methods find loop invariants by extracting recurrence relations between the pre-state and post-state of the loop and then generating invariants from their closed forms [12, 14, 18, 19, 23, 25, 27, 30]. This paper gives an answer to the question of how such analyses can be applied to recursive procedures rather than loops, by extracting height-indexed recurrences using template-based techniques.

Reps et al. [29] demonstrate that tensor products can be used to apply loop analyses to linearly recursive procedures. This technique is used in the recurrence-based invariant generator ICRA to handle linear recursion [24]. ICRA falls back on a fixpoint procedure for non-linear recursion; in contrast, the technique presented in this paper uses recurrence solving to analyze recursive procedures.

Rajkhowa and Lin [28] presents a verification technique that analyzes recursive procedures by encoding them into first-order logic; recurrences are extracted and replaced with closed forms as a simplification step before passing the query to a theorem prover. In contrast to this paper, Rajkhowa and Lin [28]’s approach has the flexibility to use other approaches (e.g., induction) when recurrence-based simplification fails, but cannot be used for general-purpose invariant generation.

Resource-bound analysis [33] is another related area of research. Three lines of recent research in resource-bound analysis are represented by the tools PUBS [1], CoFloCo [15], KoAT [6], and RAML [17]. In resource-bound analysis, the goal is to find an expression that upper-bounds or lower-bounds the amount of some resource (e.g., time, memory, etc.) used by a program. Resource-bound analysis typically consists of two parts: (i) size analysis, which finds invariants that bound program variables, and (ii) cost analysis, which finds bounds on cost using the results of the size analysis. Cost can be seen as an auxiliary program variable, although it is updated in a restricted manner (by addition only), it has
no effect on control flow, and it is often assumed to be non-negative. Our work differs from resource-bound analyzers in several ways, ultimately because our goal is to find invariants and check assertions, rather than to find resource bounds specifically.

The capabilities of our technique are different, in that we are able to find non-linear mathematical relationships (including polynomials, exponentials, and logarithms) between variables, even in non-linearly recursive procedures. PUBS and CoFloCo use polyhedra to represent invariants, so they are restricted to finding linear relationships between variables, although they can prove that programs have non-linear costs. KoAT has the ability to find non-linear (polynomial and exponential) bounds on the values of variables, but it has limited support for analyzing non-linearly recursive functions; in particular, KoAT cannot reason about the transformation of program state performed by a call to a non-linearly recursive function. Typically, resource-bound analyzers also reason about non-terminating executions of a program, whereas our analysis does not. RAML reasons about manipulations of data structures, whereas our work only reasons about integer variables. Originally, RAML only discovered polynomial bounds, although recent work [20] extends the technique to find exponential bounds.

The algorithms that we use are different in that we have a unified approach, rather than separate approaches, for analyzing cost and analyzing a program’s transformation of other variables. To perform resource-bound analysis, we materialize cost as a program variable and then find a procedure summary; the summary describes the program’s transformation of all variables, including the cost variable. Recurrence-solving is the essential tool that we use for analyzing loops, linear recursion, and non-linear recursion, and we are able to find non-linear mathematical relationships because such relationships arise in the solutions of recurrences.

Acknowledgments

Supported, in part, by a gift from Rajiv and Ritu Batra; by ONR under grants N00014-17-1-2889 and N00014-19-1-2318. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon. Opinions, findings, conclusions, or recommendations expressed in this publication are those of the authors, and do not necessarily reflect the views of the sponsoring agencies.

References
