
Proving Liveness of Parameterized Programs
(extended version)

Azadeh Farzan
University of Toronto

Zachary Kincaid
Princeton University

Andreas Podelski
University of Freiburg

Abstract
Correctness of multi-threaded programs typically requires that they
satisfy liveness properties. For example, a program may require that
no thread is starved of a shared resource, or that all threads eventu-
ally agree on a single value. This paper presents a method for prov-
ing that such liveness properties hold. Two particular challenges
addressed in this work are that (1) the correctness argument may
rely on global behaviour of the system (e.g., the correctness argu-
ment may require that all threads collectively progress towards “the
good thing” rather than one thread progressing while the others do
not interfere), and (2) such programs are often designed to be exe-
cuted by any number of threads, and the desired liveness properties
must hold regardless of the number of threads that are active in the
program.

1. Introduction
Many multi-threaded programs are designed to be executed in par-
allel by an arbitrary number of threads. A challenging and practi-
cally relevant problem is to verify that such a program is correct no
matter how many threads are running.

Let us consider the example of the ticket mutual exclusion pro-
tocol, pictured in Figure 1. This protocol is an idealized version of
the one used to implement spin-locks in the Linux kernel. The pro-
tocol maintains two natural-typed variables: s (the service number)
and t (the ticket number), which are both initially zero. A fixed
but unbounded number of threads simultaneously execute the pro-
tocol, which operates as follows. First, the thread acquires a ticket
by storing the current value of the ticket number into a local vari-
able m and incrementing the ticket number (atomically). Second,
the thread waits for the service number to reach m (its ticket value),
and then enters its critical section. Finally, the thread leaves its criti-
cal section by incrementing the service number, allowing the thread
with the next ticket to enter.

Mutual exclusion, a safety property, is perhaps the first property
that comes to mind for this protocol: no two threads should be in
their critical sections at the same time. But one of the main reasons
that the ticket protocol came to replace simpler implementations
of spin-locks in the Linux kernel was because it satisfies non-
starvation [11] (a liveness property): no thread that acquires a
ticket waits forever to enter its critical section (under the fairness
assumption that every thread is scheduled to execute infinitely
often).

Intuitively, the argument for non-starvation in the ticket proto-
col is obvious: tickets are assigned to threads in sequential order,
and whenever a thread exits its critical section, the next thread in
the sequence enters. However, it is surprisingly difficult to come up
with a formal correctness argument manually, let alone automati-
cally. This paper presents a theoretical foundation for algorithmic
verification of liveness properties of multi-threaded programs with
any number of threads.

global nat s, t
local nat m
while(true):
m=t++ // Acquire a ticket
while(m>s): // Busy wait
skip

// Critical section
s++ // Exit critical

1 2 3
m=t++ [m<=s]

s++

[m>s]

Figure 1. Ticket mutual exclusion protocol
The core of our method is the notion of well-founded proof

spaces. Well-founded proof spaces are a formalism for proving
properties of infinite traces. An infinite trace is an infinite sequence
of program commands paired with thread identifiers, where a pair
〈σ : i〉 indicates that the command σ is executed by thread i.
We associate with each well-founded proof space a set of infinite
traces that the space proves to be terminating. A well-founded
proof space constitutes a proof of program termination if every
trace of the program is proved terminating. A well-founded proof
space constitutes a proof of a liveness property if every trace of
the program that does not satisfy the liveness property is proved
terminating.

The main technical contribution of the paper is an approach to
verifying that a well-founded proof space proves that all program
traces terminate. Checking this condition is a language inclusion
problem, which is complicated by the fact that the languages con-
sist of words of infinite length, and are defined over an infinite al-
phabet (since each command must be tagged with an identifier for
the thread that executed it). This inclusion problem is addressed in
two steps: first, we show how the inclusion between two sets of
infinite traces of a particular form can be proven by proving inclu-
sion between two sets of finite traces (Theorems 3.8 and 4.2). This
is essentially a reduction of infinite trace inclusion to verification
of a safety property; the reduction solves the infinite length aspect
of the inclusion problem. Second, we develop quantified predicate
automata, a type of automaton suitable for representing these lan-
guages that gives a concrete characterization of this safety problem
as an emptiness problem (Theorem 4.5). In this context, quantifica-
tion is used as a mechanism for enforcing behaviour that all threads
must satisfy. This solves the infinite alphabet aspect of the inclusion
problem.

The overall contribution of this paper is a formal foundation
for automating liveness proofs for parameterized programs. We
investigate its theoretical properties and pave the way for future
work on exploring efficient algorithms to implement the approach.

1.1 Related work
There exist proof systems for verifying liveness properties of pa-
rameterized systems (for example, [28]). However, the problem of
automatically constructing such proofs has not been explored. To
the best of our knowledge, this paper is the first to address the

topic of automatic verification of liveness properties of (infinite-
state) programs with a parameterized number of threads.

Parameterized model checking considers systems that con-
sist of unboundedly many finite-state processes running in parallel
[1, 2, 13–15, 24]. In this paper, we develop an approach to the prob-
lem of verifying liveness properties of parameterized programs, in
which processes are infinite state. This demands substantially dif-
ferent techniques than those used in parameterized model checking.
The techniques used in this paper are more closely related to termi-
nation analysis and parameterized program analysis.

Termination analysis an active field with many effective tech-
niques [8, 10, 12, 19, 23, 31]. One of the goals of the present paper
is to adapt the incremental style of termination analysis pioneered
by Cook et al. [7, 8] to the setting of parameterized programs. The
essence of this idea is to construct a termination argument itera-
tively via abstraction refinement: First, sample some behaviours of
the program and prove that those are terminating. Second, assemble
a termination argument for the example behaviours into a candidate
termination argument. Third, use a safety checker to prove that the
termination argument applies to all behaviours of the program. If
the safety check succeeds, the program terminates; if not, we can
use the counter-example to improve the termination argument.

Termination analyses have been developed for the setting of
concurrent programs [9, 22, 26]. Our work differs in two respects.
First, our technique handles the case that there are unboundedly
many threads operating simultaneously in the system. Second, the
aforementioned techniques prove termination using thread-local
arguments. A thread-local termination argument expresses that
each thread individually progresses towards some goal assuming
that its environment (formed by the other threads) is either passive
or at least does not disrupt its progress. In contrast, the technique
proposed in the paper is able to reason about termination that re-
quires coordination between all threads (that is, all threads together
progress towards some goal). This enables our approach to prove
liveness for programs such as the Ticket protocol (Figure 1): prov-
ing that some distinguished thread will eventually enter its critical
section requires showing that all other threads collectively make
progress on increasing the value of the service number until the
distinguished thread’s ticket is reached.

Parameterized safety analysis deals with proving safety prop-
erties of infinite state concurrent programs with unboundedly many
threads [20, 21, 29, 30]. Safety analysis is relevant to liveness anal-
ysis in two respects: (1) In liveness analysis based on abstraction
refinement, checking the validity of a correctness argument is re-
duced to the verification of a safety property [7, 8] (2) An invariant
is generally needed in order to establish (or to support) a ranking
function. Well-founded proof spaces can be seen as an extension of
proof spaces [16], a proof system for parameterized safety analysis,
to prove liveness properties. A more extensive comparison between
proof spaces and other methods for parameterized safety analysis
can be found in [16].

2. Parameterized Program Termination
This section defines parameterized programs and parameterized
program termination in a language-theoretic setting.

A parameterized program is a multi-threaded program in which
each thread runs the same code, and where the number of threads
is an input parameter to the system. A parameterized program can
be specified by a control flow graph that defines the code that each
thread executes. A control flow graph is a directed, labeled graph

P = 〈Loc,Σ, `init, src, tgt〉
where Loc is a set of program locations, Σ is a set of program
commands, `init is a designated initial location, and src, tgt : Σ →
Loc are functions mapping each program command to its source

and target location.
Let P be a program as given above. An indexed command

〈σ : i〉 ∈ Σ × N of P is a pair consisting of a program command
σ and an identifier i for the thread that executes the command.1

For any natural number N , define Σ(N) to be the set of indexed
commands 〈σ : i〉 with i ∈ {1, ..., N}.

Let Σ be a set of program commands and N ∈ N be a natural
number. A trace over Σ(N) is a finite or infinite sequence of
indexed commands. We use Σ(N)∗ to denote the set of all finite
traces over Σ(N) and Σ(N)ω to denote the set of infinite traces
over Σ(N). For a finite trace τ , we use |τ | to denote the length of
τ . For a (finite or infinite) trace τ , we use τk to denote the kth letter
of τ and τ [m,n] to denote the sub-sequence τmτm+1· · · τn. For
a finite trace τ , and a (finite or infinite) trace τ ′, we use τ · τ ′ to
denote the concatenation of τ and τ ′. We use τω for the infinite
trace obtained by the infinite repeated concatenation of the finite
trace τ (τ · τ · τ · · ·).

For a parameterized program P and a number N ∈ N, we use
P (N) to denote a Büchi automaton that accepts the traces of the
N -threaded instantiation of the program P . Formally, we define
P (N) = 〈Q,Σ(N),∆, q0, F 〉 where
• Q = {1, ..., N} → Loc (states are N -tuples of locations)
• ∆ = {(q, 〈σ : i〉, q′) : q(i) = src(σ) ∧ q′ = q[i 7→ tgt(σ)]}
• q0 = λi.`init (initially, every thread is at `init)
• F = Q (every state is accepting)

We useL(P (N)) to denote the language recognized by P (N), and
define the set of traces of P to be L(P) =

⋃
N∈N L(P (N)). We

call the traces in L(P) program traces.
Fix a set of global variables GV and a set of local variables LV.

For any N ∈ N, we use LV(N) to denote a set of indexed local
variables of the form l(i), where l ∈ LV, and i ∈ {1, ..., N}.
Var(N) denotes the set GV ∪ LV(N). We do not fix the syntax
of program commands. A program assertion (program term) is
a formula (term) over the vocabulary of some appropriate theory
augmented with a symbol for each member of GV and LV(N) (for
allN). For example, the program term (x(1) + y(2) + z) refers to the
sum of Thread 1’s copy of the local variable x, Thread 2’s copy of
the local variable y, and the global variable z, and can be evaluated
in a program state with at least the threads {1, 2}; the program
assertion (x(1) > x(2)) is satisfied by any state (with at least the
threads {1, 2}) where Thread 1’s value for x is greater than Thread
2’s.

We do not explicitly formalize the semantics of parameterized
programs, but will rely on an intuitive understanding of some stan-
dard concepts. We write s |= ϕ to indicate that the program state s

satisfies the program assertion ϕ. We write s
〈σ:i〉−−−→ s′ to indicate

that s may transition to s′ when thread i executes the command σ.
Lastly, we say that a program state s is initial if the program may
begin in state s.

A trace
〈σ1 : i1〉〈σ2 : i2〉· · ·

is said to be feasible if there exists a corresponding infinite execu-
tion starting from some initial state s0:

s0
〈σ1:i1〉−−−−→ s1

〈σ2:i2〉−−−−→· · · .
A trace for which there is no corresponding infinite execution is
said to be infeasible.

Finally, we may give our definition of parameterized program
termination as follows:

1 In the following, we will use typewriter font i as a meta-variable that
ranges over thread identifiers (so i is just a natural number, but one that is
intended to identify a thread).

Definition 2.1 (Parameterized Program Termination). We say
that a parameterized program P terminates if every program trace
of P is infeasible. That is, for every N , every τ ∈ L(P (N)) is
infeasible. ⌟

This definition captures the fact that a counter-example to pa-
rameterized termination involves only finitely many threads (i.e.,
a counter example is a trace τ ∈ L(P (N)) for some N). This is
due to the definition of the set of traces of a parameterized program
L(P) (which is a language over an infinite alphabet) as an infinite
union of languages L(P (N)), each over a finite alphabet.

The next two sections concentrate on parameterized program
termination. We will return to general liveness properties in Sec-
tion 5.

3. Well-founded Proof Spaces
A well-founded proof space is a formalism for proving parame-
terized termination by proving that its set of program traces are
infeasible. This section defines well-founded proof spaces, estab-
lishes a sound proof rule for parameterized program termination,
and describes how well-founded proof spaces can be used in an
incremental algorithm for proving parameterized program termina-
tion.

3.1 Overview
We motivate the formal definitions that will follow in this section
by informally describing the role of well-founded proof spaces in
an incremental strategy (á la [7, 8]) for proving termination of pa-
rameterized programs. The pseudo-code for this (semi-)algorithm
is given in Algorithm 1. The algorithm takes as input a parameter-
ized program P and returns “Yes” if P terminates, “No” if P has
a trace that can be proved non-terminating, and “Unknown” if the
algorithm encounters a trace it cannot prove to be terminating or
non-terminating. (There is also a fourth possibility that the algo-
rithm runs forever, repeatedly sampling traces but never finding a
termination argument that generalizes to the whole program).

Input : Parameterized program P
1 B ← ∅ /* Initialize the basis, B */

/* Has every program trace been proved infeasible? */
2 while L(P) * ω(〈〈B〉〉) do

/* Sample a possibly-feasible trace */
3 Pick τ ∈ L(P) \ ω(〈〈B〉〉)
4 switch FindInfeasibilityProof(τ) do
5 case Infeasibility proof Π
6 Construct B′ from Π so that τ ∈ ω(〈〈B′〉〉)
7 B ← B +B′

8 case Feasibility proof Π
9 return No /* P is non-terminating */

10 otherwise
11 return Unknown /* Inconclusive */
12 return Yes /* P is terminating */

Algorithm 1: Incremental algorithm for parameterized program
termination

Algorithm 1 builds a well-founded proof space by repeatedly
sampling traces of P , finding infeasibility proofs for the sam-
ples, and then assembling the proofs into a well-founded proof
space. More precisely, the algorithm builds a basis B for a proof
space, which can be seen as a finite set of axioms that generates
a (typically infinite) well-founded proof space 〈〈B〉〉. The well-
founded proof space 〈〈B〉〉 serves as an infeasibility proof for a
set of traces, which is denoted ω(〈〈B〉〉) (Definition 3.3). The goal
of the algorithm is to construct a basis for a well-founded proof
space that proves the infeasibility of every program trace (at line 2,

L(P) ⊆ ω(〈〈B〉〉)): if the algorithm succeeds in doing so, then P
terminates.

We will illustrate the operation of this algorithm on the sim-
ple example pictured in Figure 2. The algorithm begins with an
empty basisB (at line 1): the empty basis generates an empty well-
founded proof space 〈〈B〉〉 that proves infeasibility of an empty
set of traces (i.e., ω(〈〈B〉〉) = ∅). Since the inclusion L(P) ⊆
ω(〈〈B〉〉) does not hold (at line 2), we sample (at line 3) a possibly-
feasible program trace τ ∈ L(P) \ ω(〈〈B〉〉) (we delay the dis-
cussion of how to verify the inclusion L(P) ⊆ ω(〈〈B〉〉) to Sec-
tion 4). Suppose that our choice for τ is the trace pictured in Fig-
ure 3(a), in which a single thread (Thread 1) executes the loop for-
ever. This trace is ultimately periodic: τ is of the form π ·ρω , where
π (the stem) and ρ (the loop) are finite traces. Under reasonable as-
sumptions (that we formalize in Section 3.3) we ensure that sam-
ple traces (counter-examples to the inclusion L(P) ⊆ ω(〈〈B〉〉))
are ultimately periodic. The importance of ultimate periodicity is
two-fold: first, ultimately periodic traces have a (non-unique) finite
representation: a pair of finite words 〈π, ρ〉. Second, ultimately pe-
riodic traces correspond to a simple class of sequential programs,
allowing Algorithm 1 to leverage the wealth of techniques that
have been developed for proving termination [3, 18, 25] and non-
termination [17]. The auxiliary procedure FindInfeasibilityProof
denotes an (unspecified) algorithm that uses such techniques to
prove feasibility or infeasibility of a given trace.

Suppose that calling FindInfeasibilityProof on the sample trace
τ gives the infeasibility proof pictured in Figure 3(b) and (c). The
infeasibility proof has two parts. The first part is an invariance
proof, which is a Hoare proof of an inductive invariant (d(1) > 0)
that supports the termination argument. The second part is a vari-
ance proof, which is a Hoare proof that (assuming the inductive
invariant holds at the beginning of the loop) executing the loop
causes the state of the program to decrease in some well-founded
order. This well-founded order is expressed by the ranking formula
old(x) > x∧old(x) ≥ 0 (the post-condition of the variance proof).
This formula denotes a (well-founded) binary relation between the
state of the program and its old state (the program state at the be-
ginning of the loop) that holds whenever the value of x decreases
and was initially non-negative. Since there is no infinite descending
sequence of program states in this well-founded order, the trace τ
(which executes the loop infinitely many times) is infeasible.

We use the termination proof for τ to construct a basis B′ for
a well-founded proof space (at line 6). This is done by breaking
the termination proof down into simpler components: the Hoare
triples that were used in the invariance and variance proofs, and
the ranking formula that was used in the variance proof. The
basis B′ constructed from Figure 3 is pictured in Figure 4. We
then add B′ to the incrementally constructed basis B (at line 7)
and begin the loop again, sampling another possibly-feasible trace
τ ′ ∈ L(P) \ ω(〈〈B〉〉).

The incremental algorithm makes progress in the sense that it
never samples the same trace twice: if τ is sampled at some loop
iteration, then τ ∈ ω(〈〈B〉〉) for all future iterations. But in fact,
ω(〈〈B〉〉) contains infinitely many other traces, whose termination
proofs can be derived from the same basic building blocks (Hoare
triples and ranking formulas) as τ . For example, ω(〈〈B〉〉) contains
all traces of the form
〈x=pos() : i〉〈d=pos() : i〉

(
〈[x>0] : i〉〈x=x-d : i〉

)ω
(all of which are, intuitively, infeasible for the same reason as τ).
The essential idea is that new Hoare triples and ranking formulas
can be deduced from the ones that appear in the basis B by apply-
ing some simple inference rules. The resulting collections of Hoare
triples and ranking formulas (which are closed under these infer-
ence rules) forms a well-founded proof space 〈〈B〉〉. Thus in Algo-
rithm 1, well-founded proof spaces serve as a mechanism for gener-

global int x
local int d
x = pos()
d = pos()
while (x > 0):
x = x - d

1 2 3 4
x=pos() d=pos()

[x>0]

x=x-d

Figure 2. Decrement example, pictured along side its control flow
graph. The expression pos() denotes a non-deterministically gen-
erated positive integer, and the command [x>0] is an assumption;
its execution does not change the state of the program, but it can
only proceed when x is greater than 0.

〈x=pos() : 1〉〈d=pos() : 1〉︸ ︷︷ ︸
Stem

(〈[x>0] : 1〉〈x=x-d : 1〉︸ ︷︷ ︸
Loop

)ω

(a) An ultimately periodic trace of Figure 2

{true}
〈x=pos() : 1〉
{true}

〈d=pos() : 1〉
{d(1) > 0}
〈[x>0] : 1〉
{d(1) > 0}
〈x=x-d : 1〉
{d(1) > 0}

(b) Invariance proof

{d(1) > 0 ∧ old(x) = x}
〈[x>0] : 1〉

{d(1) > 0∧ old(x) = x∧ old(x) ≥ 0}
〈x=x-d : 1〉

{old(x) > x ∧ old(x) ≥ 0}
(c) Variance proof

Figure 3. An ultimately periodic trace and termination proof.
alizing infeasibility proofs: they provide an answer to the question
given infeasibility proofs for a finite set of sample traces, how can
we re-arrange the ingredients of those proofs to form infeasibility
proofs for other traces?

We will stop our demonstration of Algorithm 1 here, concluding
with a listing of the remaining Hoare triples that must be discovered
by the algorithm to complete the proof (that is, if those triples are
added to the basis B, then ω(〈〈B〉〉) contains L(P)):

{d(1) > 0} 〈x=pos() : 2〉 {d(1) > 0}
{d(1) > 0} 〈d=pos() : 2〉 {d(1) > 0}
{d(1) > 0} 〈[x>0] : 2〉 {d(1) > 0}
{d(1) > 0} 〈x=x-d : 2〉 {d(1) > 0}
{old(x) ≥ 0} 〈[x>0] : 1〉 {old(x) ≥ 0}
{old(x) ≥ 0} 〈x=x-d : 1〉 {old(x) ≥ 0}
{old(x) > x} 〈[x>0] : 1〉 {old(x) ≥ 0}

{d(1) > 0 ∧ old(x) > x} 〈x=x-d : 1〉 {old(x) > x} .
The remainder of this section is organized as follows: in Sec-

tion 3.2, we give the formal definition of well-founded proof
spaces, and describe how a well-founded proof space proves infea-
sibility of an infinite set of traces. This section treats well-founded
proof spaces as a mathematical object, divorcing it from its al-
gorithmic side. In Section 3.3, we describe regular well-founded
proof spaces, a restricted form of well-founded proof spaces. The
key result in this section (Theorem 3.8) is that to prove param-
eterized program termination, it is sufficient for a regular proof
space to prove that the ultimately periodic traces of the program
terminate.

3.2 Formal definition of Well-founded proof spaces
A well-founded proof space is a set of Hoare triples and a set of
ranking terms, both closed under certain rules of inference. They
serve two roles. First, they are the core of a proof rule for parame-
terized program termination. A well-founded proof space acts as a
termination certificate for a set of infinite traces (Definition 3.3); we
may prove that a program P terminates by showing that all traces

Hoare triples:
{true} 〈x=pos() : 1〉 {true}

{true} 〈d=pos() : 1〉 {d(1) > 0}
{d(1) > 0} 〈[x>0] : 1〉 {d(1) > 0}
{d(1) > 0} 〈x=x-d : 1〉 {d(1) > 0}
{old(x) = x} 〈[x>0] : 1〉 {old(x) = x}
{old(x) = x} 〈[x>0] : 1〉 {old(x) ≥ 0}

{d(1) > 0 ∧ old(x) = x} 〈x=x-d : 1〉 {old(x) > x}
{old(x) ≥ 0} 〈x=x-d : 1〉 {old(x) ≥ 0}

Ranking formula: old(x) > x ∧ old(x) ≥ 0

Figure 4. Basis computed from the termination proof in Figure 3
of L(P) are contained inside this set. Second, well-founded proof
spaces are a mechanism for proof generalization: starting from a
(finite) basis of Hoare triples, we can take the closure of the basis
under some simple inference rules to form a well-founded proof
space that proves the termination of a larger set of traces (Defini-
tion 3.2). We will now define these notions formally.

We begin by formalizing the components of well-founded proof
spaces, Hoare triples and ranking formulas, and their inference
rules.

A Hoare triple
{ϕ} 〈σ : i〉 {ψ}

consists of an indexed command 〈σ : i〉 and two program asser-
tions ϕ and ψ (the pre- and post-condition of the triple, respec-
tively). We say that such a triple is valid if for any pair of program

states s, s′ such that s |= ϕ and s
〈σ:i〉−−−→ s′, we have s′ |= ψ.

We can infer new valid Hoare triples from a set of given ones
using the inference rules of proof spaces, namely SEQUENCING,
SYMMETRY, and CONJUNCTION [16]. We will recall the definition
of these three rules below.

SEQUENCING is a variation of the classical sequencing rule of
Hoare logic. For example, we may sequence the two triples

{true} 〈d=pos() : 1〉 {d(1) > 0} and
{d(1) > 0} 〈[x>0] : 1〉 {d(1) > 0}

to yield
{true} 〈d=pos() : 1〉 · 〈[x>0] : 1〉 {d(1) > 0} .

Two triples may be sequenced only when the post-condition of
the first entails the pre-condition of the first, according to a combi-
natorial entailment rule. The combinatorial entailment relation
is defined as
ϕ1 ∧ ... ∧ ϕn ψ1 ∧ ... ∧ ψm iff {ϕ1, ..., ϕn} ⊇ {ψ1, ..., ψm}
(i.e., ϕ ψ iff, viewed as sets of conjuncts, ϕ is a superset of ψ).
Combinatorial entailment is a weaker version of logical entailment
(which is used in the classical sequencing rule in Hoare logic). Our
sequencing rule can be written as follows:

SEQUENCING

{ϕ0} τ0 {ϕ1} ϕ1 ϕ′1 {ϕ′1} τ1 {ϕ2}
{ϕ0} τ0 · τ1 {ϕ2}

SYMMETRY allows thread identifiers to be substituted uni-
formly in a Hoare triple. For example, from

{true} 〈d=pos() : 1〉 {d(1) > 0}
we may derive

{true} 〈d=pos() : 2〉 {d(2) > 0}
via the symmetry rule. Given a permutation π ∈ N→ N and a pro-
gram assertion ϕ, we use ϕ[π] to denote the result of substituting
each indexed local variable l(i) in ϕ with l(π(i)). The symmetry
rule may be written as follows:

SYMMETRY
{ϕ} 〈σ1 : i1〉· · · 〈σn : in〉 {ψ}

{ϕ[π]} 〈σ1 : π(i1)〉· · · 〈σn : π(in)〉 {ψ[π]}
π : N→ N
is a permutation

CONJUNCTION is precisely the conjunction rule of Hoare logic.
For example, from the triples

{d(1) > 0} 〈[x>0] : 1〉 {d(1) > 0} and
{old(x) = x} 〈[x>0] : 1〉 {old(x) ≥ 0}

we may derive
{d(1) > 0 ∧ old(x) = x} 〈[x>0] : 1〉 {d(1) > 0 ∧ old(x) ≥ 0} .
The conjunction rule can be written as follows:

CONJUNCTION
{ϕ1} τ {ψ1} {ϕ2} τ {ψ2}
{ϕ1 ∧ ϕ2} τ {ψ1 ∧ ψ2}

A proof space is defined to be a set of valid Hoare triples that is
closed under these three rules [16]. Proof spaces were used in [16]
to prove infeasibility of a set of finite traces. To form a well-founded
proof space, which proves infeasibility of a set of infinite traces, we
enrich a proof space with a set of ranking formulas.

A ranking formula is a logical representation of a well-founded
order on program states. We suppose that each program variable x
has an associated old version old(x) that allows formulas to refer
to the value of x in some “previous” state. Any such formula ϕ can
be interpreted as a binary relation Rϕ on states, with s Rϕ s′ iff ϕ
holds in the interpretation that uses s to interpret the old variables
and s′ to interpret the rest. A ranking formula is defined to be a
formula w over the program variables and their old copies such
that the relation Rw is a well-founded order.

The only inference rule that we consider for ranking formulas
is a symmetry rule: if w is a ranking formula and π : N → N is a
permutation of thread identifiers, then w[π] is a ranking formula.

We may now define well-founded proof spaces formally:

Definition 3.1 (Well-founded proof space). A well-founded proof
space 〈H ,W 〉 is a pair consisting of a set of Hoare triples H
and a set of ranking formulas W such that H is closed under
SEQUENCING, SYMMETRY, and CONJUNCTION, and W is closed
under permutations of thread identifiers. ⌟

We may present a well-founded proof as the closure of some
basis (perhaps constructed from termination proofs of some small
set of sample traces). Formally,

Definition 3.2. Let H be a set of valid Hoare triples, and let W
be a set of ranking formulas. H and W generate a well-founded
proof space 〈〈H,W 〉〉, defined to be the smallest well-founded
proof space 〈H ,W 〉 such that H ⊆ H and W ⊆ W . We say
that 〈H,W 〉 is a basis for 〈H ,W 〉. ⌟

The fact that 〈〈H,W 〉〉 is well-defined (i.e., contains only valid
Hoare triples and ranking functions) follows immediately from the
soundness of the inference rules for well-founded proof spaces.

We associate with each well-founded proof space the set of all
infinite traces that it proves infeasible. Intuitively, a well-founded
proof space proves that a trace τ is infeasible by exhibiting a rank-
ing formulaw and a decomposition of τ into (infinitely many) finite
segments τ = τ0τ1τ2· · · such that for each i, the program state de-
creases in the order w along each segment τi. More formally,

Definition 3.3. Let 〈H ,W 〉 be a well-founded proof space. We
define the set ω(H ,W) of infinite traces recognized by 〈H ,W 〉
to be the set of infinite traces τ = 〈σ1 : i1〉〈σ2 : i2〉· · · ∈ Σ(N)ω

such that {ik : k ∈ N} is finite and there exists a sequence of
naturals {αk}k∈N, and a ranking formula w ∈ W such that:
1. For all k ∈ N, αk < αk+1

2. For all k ∈ N, there exists some formula ϕ such that
{true} τ [1, αk] {ϕ} ∈H , and

{ϕ ∧
∧

x∈Var(N)

old(x) = x} τ [αk + 1, αk+1] {w} ∈H ⌟

The fundamental property of interest concerning the definition
of ω(H ,W) is the following soundness theorem:

Theorem 3.4 (Soundness). Let 〈H ,W 〉 be a well-founded proof
space. Then every infinite trace in ω(H ,W) is infeasible. ⌟

Theorem 3.4 is the basis of our proof rule for termination: for
a given program P , if we can derive a well-founded proof space
〈H ,W 〉 such that ω(H ,W) contains all the traces of P , then P
terminates. This proof rule justifies the soundness of Algorithm 1.

3.3 Ultimately periodic traces
Algorithm 1 relies on an auxiliary procedure FindInfeasibili-
tyProof to prove infeasibility of sample traces (counter-examples
to the inclusion L(P) ⊆ ω(〈〈B〉〉)). An attractive way of imple-
menting FindInfeasibilityProof is to use existing sequential pro-
gram termination techniques [3, 18, 25] that are very good at prov-
ing termination by synthesizing ranking functions for programs of
a restricted form, namely so-called lasso programs. To take ad-
vantage of these techniques, we must ensure that the sample traces
given to FindInfeasibilityProof are ultimately periodic, so that they
may be represented by lasso programs. This section defines a reg-
ularity condition on well-founded proof spaces that enables us to
ensure that ultimately periodic counter-examples always exist.

An ultimately periodic trace is an infinite trace of the form
π · ρω , where π and ρ are finite traces. Such a trace corresponds to
a lasso program, a sequential program that executes the sequence
π followed by ρ inside of a while loop (since only finitely many
threads are involved in π and ρ, the local variables of each thread
may be renamed apart).

x=0
while(true):
i = 0
while(i < x):
i++

x++

The question in this sub-section is
how can we prove parameterized pro-
gram termination while sampling only
the counter-example traces to the suffi-
ciency of the proof argument that are ul-
timately periodic? Phrased differently, is
proving termination of ultimately periodic traces enough to prove
parameterized program termination? The (sequential) program to
the right illustrates the potential pitfall: even though every ulti-
mately periodic trace of the program is infeasible, the program
does not terminate.

We place restrictions on well-founded proof spaces so that any
(suitably restricted) well-founded proof space that proves termina-
tion of all ultimately periodic program traces inevitably proves ter-
mination of all program traces (i.e., if ω(H ,W) includes all ulti-
mately periodic traces in L(P), it inevitably contains all of L(P)).
These restrictions are somewhat technical, and can be skipped on a
first reading.

First, we exclude Hoare triples in which local variables “spon-
taneously appear”, such as x(2) in:

{true} 〈x = 0 : 1〉 {x(1) = x(2) ∨ x(1) = 0}
This triple is valid, but the appearance of x(2) in the post-condition
is arbitrary. This technical restriction is formalized by well-formed
Hoare triples:

Definition 3.5 (Well-formed Hoare triple). A Hoare triple
{ϕ} τ {ψ}

is well-formed if for each i ∈ N such that an indexed local variable
of the form x(i) appears in the post-condition ψ, then either i
executes some command along τ or x(i) or some other indexed
local variable y(i) with the same index i appears in the pre-
condition ϕ. ⌟

The second restriction we make is to require that the well-
founded proof space is generated by a finite basis in which there
are no “weak” Hoare triples. There are two types of weakness

we prohibit. First, we exclude Hoare triples with conjunctive post-
conditions

{ϕ} τ {ψ1 ∧ ψ2}
because such a triple can be derived from the pair

{ϕ} τ {ψ1} and {ϕ} τ {ψ2}
via the CONJUNCTION rule. Second, we exclude Hoare triples for
traces of length greater than one

{ϕ} τ · 〈σ : i〉 {ψ}
because such a triple can be derived from the pair

{ϕ} τ {ϕ′} and {ϕ′} 〈σ : i〉 {ψ}
(for some choice of ϕ′) via the SEQUENCING rule. We formalize
these restrictions with basic Hoare triples:

Definition 3.6 (Basic Hoare triple). A Hoare triple
{ϕ} 〈σ : i〉 {ψ}

is basic if it is valid, well-formed, and the post-condition ψ is
atomic in the sense that it cannot be constructed by conjoining two
other formulas. ⌟

We call a well-founded proof space that meets all of these
technical restrictions regular. Formally:

Definition 3.7 (Regular). We say that a well-founded proof space
〈H ,W 〉 is regular if there exists a finite set of basic Hoare triples
H and a finite set of ranking formulas W such that 〈H,W 〉 gener-
ates 〈H ,W 〉. ⌟

The justification for calling such proof spaces regular is that if
〈H ,W 〉 is regular, then ω(H ,W) is “nearly” ω-regular, in the
sense that ω(H ,W) ∩ Σ(N)ω is ω-regular (accepted by a Büchi
automaton) for all N ∈ N.

Finally, we state the main result of this sub-section: regular
well-founded proof spaces guarantee the existence of ultimately
periodic counter-examples. More precisely, if there is a sample
program trace that cannot be proved terminating by a given regular
well-founded proof space, then there is also an ultimately periodic
counter-example.

Theorem 3.8. LetP be a parameterized program and let 〈H ,W 〉
be a regular well-founded proof space. If every ultimately periodic
program trace π · ρω ∈ L(P) is included in ω(H ,W), then every
program trace τ ∈ L(P) is included in ω(H ,W). ⌟

Proof. For any set of traces L ⊆
⋃
N Σ(N)ω , we define UP(L) to

be the set of ultimately periodic traces that belong to L:
UP(L) = {τ ∈ L : ∃π, ρ ∈ Σ(N)∗.τ = πρω)} .

We must prove that if UP(L(P)) ⊆ ω(H ,W) then L(P)) ⊆
ω(H ,W). We suppose that UP(L(P)) ⊆ ω(H ,W) and (re-
calling the definition L(P) =

⋃
N L(P (N))) prove that for all

N ∈ N, the inclusion L(P (N)) ⊆ ω(H ,W) holds.
Let N be an arbitrary natural number. Since UP(L(P (N))) ⊆

UP(L(P)) ⊆ ω(H ,W) we have
UP(L(P (N))) ∩ Σ(N)ω ⊆ ω(H ,W) ∩ Σ(N)ω .

Since (by definition) L(P (N)) ⊆ Σ(N)ω , we can simplify:
UP(L(P (N))) ⊆ ω(H ,W) ∩ Σ(N)ω . (1)

It is a well known fact that if L1 and L2 are ω-regular languages
(over a finite alphabet), then UP(L1) ⊆ L2 implies L1 ⊆ L2.
The language L(P (N)) is ω-regular by definition, so if we can
show that ω(H ,W) ∩ Σ(N)ω is ω-regular, then Inclusion (1)
implies L(P (N)) ⊆ ω(H ,W) ∩ Σ(N)ω and thus the desired
result L(P (N)) ⊆ ω(H ,W).

It remains only to show that ω(H ,W) ∩ Σ(N)ω is ω-regular.
Here we will sketch the intuition why there exists a Büchi automa-
ton that recognizes ω(H ,W)∩Σ(N)ω . Since 〈H ,W 〉 is regular,

every Hoare triple in H is well-formed: this can be proved by in-
duction on the derivation of the triple from the (well-formed) basis.
As a result, there are only finitely many program assertions that
are relevant to the acceptance condition of a trace τ ∈ Σ(N)ω

in ω(H ,W). Intuitively, we can construct from this finite set of
relevant assertions the finite state space of a Büchi automaton that
recognizes ω(H ,W) ∩ Σ(N)ω .

Discussion of Theorem 3.8. The example program above shows
that it would not be sound to prove program termination by proving
termination of only its ultimately periodic program traces. How-
ever, it is sound to check sufficiency of a candidate regular well-
founded proof space by inspecting only the ultimately periodic pro-
gram traces. This soundness boils down to the fact that each infinite
execution involves only finitely many threads; more technically, the
premise of our proof rule (the inclusion between two sets of traces
over an infinite alphabet) is equivalent to the validity of an infi-
nite number of inclusions between ω-regular languages over finite
alphabets.

4. Checking Proof Spaces
The previous section defines a new proof rule for proving termi-
nation of parameterized programs: given a parameterized program
P , if there is some well-founded proof space 〈H ,W 〉 such that
ω(H ,W) contains every trace of P , then P terminates. This sec-
tion addresses two problems: (1) how can we verify that the premise
of the proof rule holds?, and (2) how can we generate an ultimately
periodic counter-example if it does not? The key idea in this sec-
tion is to reduce the problem of checking the premise (an inclusion
problem for sets of infinite traces over an unbounded alphabet) to a
non-reachability problem for a particular type of abstract machine
(namely, quantified predicate automata).

The first step in our reduction to non-reachability is to reduce
the inclusion L(P) ⊆ ω(H ,W) to an inclusion problem on finite
traces. By Theorem 3.8, we know that it is sufficient to check that
the ultimately periodic traces of L(P) are included in ω(H ,W).
Ultimately periodic traces can be represented as finite traces which
we call lassos. A lasso is a finite trace of the form τ$ρ, where
τ, ρ ∈ Σ(N)∗ (for some N) and $ is a special character not ap-
pearing in Σ(N). A lasso τ$ρ can be seen as a finite representation
of the ultimately periodic trace τ · ρω . Note, however, that the cor-
respondence between lassos and ultimately periodic traces is not
one-to-one: an ultimately periodic trace τρω is represented by in-
finitely many lassos, for example τ$ρ, τ$ρρ, τρ$ρ, and so on.

For a set of traces L, we define its lasso language as
$(L) = {τ$ρ : τ · ρω ∈ L}

It is easy to show (using Theorem 3.8) that the inclusion L(P) ⊆
ω(H ,W) holds if and only if $(L(P)) ⊆ $(ω(H ,W)). How-
ever, it is not easy to give a direct definition of $(ω(H ,W)) that
lends itself to recognition by an automaton of some variety. Instead,
we give an alternate lasso language $(H ,W) that is not exactly
equal to $(ω(H ,W)), but (as we will see in the following) is suit-
able for our purpose:

Definition 4.1. Let 〈H ,W 〉 be a well-founded proof space. De-
fine $(H ,W) to be the set of lassos τ$ρ such that there is some
N ∈ N so that τ, ρ ∈ Σ(N)∗ and there exists some assertion ϕ and
some ranking formula w ∈ W such that:
i) {true} τ {ϕ} ∈H

ii) {ϕ ∧
∧
x∈Var(N) old(x) = x} τ {w} ∈H ⌟

Note that $(H ,W) is neither a subset nor a superset of the
set of lassos $(ω(H ,W)) that correspond to ultimately periodic
words in ω(H ,W). In fact, $(H ,W) may even contain lassos
τ$ρ such that τ · ρω is feasible: consider for example the lasso

〈y = 1 : 1〉$〈x = x - y : 1〉〈y = -1 : 1〉: a well-founded proof
space can prove that x decreases across the loop of this lasso, but
this holds only for the first iteration of the loop, and says nothing
of subsequent iterations. Despite this, if the inclusion $(L(P)) ⊆
$(H ,W) holds, then every trace of P is proved infeasible by
the well-founded proof space 〈H ,W 〉. The intuition behind this
argument is that if the inclusion $(L(P)) ⊆ $(H ,W) holds, then
for any ultimately periodic trace τ ·ρω ofL(P) every representation
of τ · ρω as a lasso is included in $(L(P)), and thus in $(H ,W).

Theorem 4.2 (Inclusion Soundness). Let P be a parameterized
program, and let 〈H ,W 〉 be a regular well-founded proof space.
If $(L(P)) ⊆ $(H ,W), then L(P) ⊆ ω(H ,W). ⌟

Proof. Suppose that the inclusion $(L(P)) ⊆ $(H ,W) holds. By
Theorem 3.8, it is sufficient to prove that every ultimately periodic
trace of L(P) is in ω(H ,W). So let τ · ρω ∈ L(P), and we will
prove that τ · ρω ∈ ω(H ,W)).

Since τρω ∈ L(P), we must have τρn$ρk ∈ $(L(P)) ⊆
$(H ,W) for all naturals n and positive naturals k. From the mem-
bership of τρn$ρk in $(H ,W) and the definition of $(H ,W),
there must exist some program assertion ϕn,k and some ranking
formula wn,k ∈ W such that:

{true} τρn {ϕn,k} ∈H , and

{ϕn,k ∧
∧

x∈Var(N)

old(x) = x} ρk {wn,k} ∈H

Define an equivalence relation ∼ on the set of pairs (n,m) ∈
N2 such that n < m by defining (n,m) ∼ (n′,m′) iff the
ranking formulas wn,m−n and wn′,m′−n′ are equal. Since the set
of ranking formulas {wn,k ∈ W : n, k ∈ N ∧ k ≥ 1} is finite
(following the same reasoning as in the proof of Theorem 3.8), the
equivalence relation ∼ has finite index. We use [w] to denote the
equivalence class consisting of all (n,m) such that wn,m−n = w.
By Ramsey’s theorem [27], there is some ranking formula w and
some infinite set of naturalsD ⊆ N such that for all d, d′ ∈ D with
d < d′, we have (d, d′) ∈ [w].

We conclude that τρω ∈ ω(H ,W) by observing (c.f. Defi-
nition 3.3) that there is an infinite sequence of naturals {αi}i∈N
defined by

αi = |τ |+ di · |ρ|
(where di is the ith smallest element of D) such that the following
hold:

i) For any i ∈ N, since (by definition) di < di+1, we have
αi = |τ |+ di · |ρ| < |τ |+ di+1 · |ρ| = αi+1

ii) Let i ∈ N, and define
n = (αi − |τ |)/|ρ|
k = (αi+1 − αi)/|ρ| .

Observe that:
τρω[1, αi] = τ · ρn

τρω[αi + 1, αi+1] = ρk .

Recalling that w = wn,k, it holds that

{true} τρn {ϕn,k} ∈H

{ϕn,k ∧
∧

x∈Var(N)

old(x) = x} ρk {wn,k} ∈H

Remark 4.3. We note that the reverse of the Inclusion Soundness
theorem does not hold: if L(P) ⊆ ω(H ,W), it is not necessarily
the case that $(L(P)) ⊆ $(H ,W). ⌟

4.1 Quantified Predicate Automata
The previous section establishes that a sufficient condition for ver-
ifying the premise L(P) ⊆ ω(H ,W) of our proof rule (an in-
clusion problem for sets of infinite traces) is to verify the inclu-
sion $(L(P)) ⊆ $(H ,W) (an inclusion problem for sets of finite
traces). In this section, we define quantified predicate automata,
a class of automata that are capable of recognizing the difference
$(L(P)) \ $(H ,W). This allows us to characterize the problem
of checking the inclusion $(L(P)) ⊆ $(H ,W) as a safety prob-
lem: non-reachability of an accepting configuration in a quantified
predicate automaton (that is, the emptiness problem).

Quantified predicate automata (QPA) are infinite-state and rec-
ognize finite traces. QPAs extend predicate automata ([16]) with
quantification, enabling them to recognize the lasso language
$(L(P)). Predicate automata are themselves an infinite-state gen-
eralization of alternating finite automata [4, 6]. Our presentation of
QPA will follow the presentation of predicate automata from [16].

Fix an enumeration {i0, i1, ...} of variable symbols. Every
quantified predicate automaton is equipped with a finite relational
vocabulary 〈Q, ar〉, consisting of a finite set of predicate symbols
Q and a function ar : Q → N that maps each predicate symbol to
its arity. We use F(Q, ar) to denote the set of positive first-order
formulas over the vocabulary 〈Q, ar〉, defined as follows:

ϕ,ψ ∈ F(Q, ar) ::= q(ij1 , ..., ijar(q)) | ij = ik | ij 6= ik

| ϕ ∧ ψ | ϕ ∨ ψ | ∀ij .ϕ | ∃ij .ϕ
Quantified predicate automata are defined as follows:

Definition 4.4 (Quantified predicate automata). A quantified
predicate automaton (QPA) is a 6-tupleA = 〈Q, ar,Σ, δ, ϕstart, F 〉
where
• 〈Q, ar〉 is a finite relational vocabulary,
• Σ is a finite alphabet,
• ϕstart ∈ F(Q, ar) is a sentence over the vocabulary 〈Q, ar〉,
• F ⊆ Q is a set of accepting predicate symbols, and
• δ : Q×Σ→ F(Q, ar) is a transition function that satisfies the

property that for any q ∈ Q and σ ∈ Σ, the free variables of the
formula δ(q, σ) belong to the set {i0, ..., iar(q)}. The transition
function δ can be seen as a symbolic rewrite rule

q(i1, ..., iar(q))
〈σ:i0〉−−−−→ δ(q, σ) ,

so the free variable restriction enforces that all variables on the
right-hand-side are bound on the left-hand-side. ⌟

A QPA A = 〈Q, ar,Σ, δ, ϕstart, F 〉 defines an infinite-state
non-deterministic transition system, with transitions labeled by in-
dexed commands. The configurations of the transition system are
the set of finite structures over the vocabulary 〈Q, ar〉. That is, a
configuration C of A consists of a finite universe UC ⊆fin N (where
UC should be interpreted as a set of thread identifiers) along with an
interpretation qC ⊆ (UC)ar(q) for each predicate symbol q ∈ Q. A
configuration C is initial C |= ϕstart, and accepting if for all q /∈ F ,
qC = ∅. Given A-configurations C and C′, σ ∈ Σ, and k ∈ UC , C
transitions to C′ on reading 〈σ : k〉, written C σ:k−−→ C′, if C and C′

have the same universe (UC = UC
′
), and for all predicate symbols

q ∈ Q and all 〈i1, ..., iar(q)〉 ∈ qC , we have
C′ |= δ(q, σ)[i0 7→ k, i1 7→ i1, ..., iar(q) 7→ iar(q)] .

For a concrete example of a transition, suppose that
δ(p, a) = p(i1, i2) ∨ (i0 6= i1 ∧ q(i2)) .

To make variable binding more explicit, we will write this rule in
the form

δ(p(i, j), 〈a : k〉) = p(i, j) ∨ (k 6= i ∧ q(j)) .
For example, if C is a configuration with C |= p(3, 4), then a transi-
tion C a:1−−→ C′ is possible only when C′ |= p(3, 4) ∨ (1 6= 3 ∧ q(4)).

QPAs read input traces from right to left. A trace
τ = 〈σ1 : i1〉· · · 〈σn : in〉

is accepted by A if there is a sequence of configurations Cn, ..., C0
such that Cn is initial, C0 is accepting, and for each r ∈ {1, ..., n},
we have Cr

σr :ir−−−→ Cr−1. We define L(A) to be the set all traces
that are accepted by A.

Recall that the goal stated at the beginning of this section was to
develop a class of automaton capable of recognizing the difference
$(L(P)) \ $(H ,W) (for any given parameterized program P and
regular well-founded proof space 〈H ,W 〉), and thereby arrive at
a sufficient automata-theoretic condition for checking the premise
of the proof rule established in Section 3. The following theorem
states that quantified predicate automata achieve this goal.

Theorem 4.5. Let P be a parameterized program and a let
〈H ,W 〉 be a regular well-founded proof space. Then there is a
QPA that accepts $(L(P)) \ $(H ,W). ⌟

The proof of this theorem proceeds in three steps: (I) $(L(P))
is recognizable by a QPA (Proposition 4.6), (II) $(H ,W) is rec-
ognizable by a QPA (Proposition 4.6), and (III) QPAs are closed
under Boolean operations (Proposition 4.8). Starting with step (I),
we need the following proposition.

Proposition 4.6. Let P be a parameterized program. Then there
is a QPA A(P) that accepts $(L(P)). ⌟

Proof. Let P = 〈Loc,Σ, `init, src, tgt〉 be a parameterized pro-
gram. For a word τ ∈ Σ(N)∗ and a thread i, define τ |i to be
a the sub-sequence of τ consisting of the commands executed by
thread i. A word τ$ρ is a lasso of P if for each thread i, (1) τ |i
corresponds to a path in P , and (2) ρ|i corresponds to a loop in P .
We construct the QPA A(P) = 〈Q, ar,Σ, δ, ϕstart, F 〉 as follows:

• Q = Loc ∪ (Loc× Loc) ∪ {$}, where $ is a nullary predicate
symbol and the rest are monadic. The intuitive interpretation of
propositions over this vocabulary are as follows:

A trace is accepted starting from a configuration C with
C |= $ if the next letter is not $. This predicate is used to
enforce the condition that the loop of a lasso is not empty.
For each ` ∈ Loc and each thread i, a trace τ is accepted
starting from a configuration C with C |= `(i) if τ |i corre-
sponds to a path in P ending at `.
For each `1, `2 ∈ Loc and each thread i, a trace τ$ρ is ac-
cepted starting from a configuration C with C |= 〈`1, `2〉(i)
if τ |i corresponds to a path in P ending at `1 and ρ|i corre-
sponds to a path in P from `1 to `2.

• ϕstart = $ ∧ ∀i.
∨
`∈Loc〈`, `〉(i)

• F = {`init} (the automaton accepts when every thread returns
to the initial location)

The transition function δ is defined as follows.
For any location `1, command σ, and thread i, if tgt(σ) = `1

and i is at `1, then reading 〈σ : i〉 causes thread i to move from `1
to src(σ) while other threads stay put:
δ(〈`1, `2〉(i), 〈σ : j〉) = (i = j ∧ 〈tgt(σ), `2〉(i))

∨ (i 6= j ∧ 〈`1, `2〉(i))
δ(`1(i), 〈σ : j〉) = (i = j ∧ tgt(σ)(i)) ∨ (i 6= j ∧ `1(i))

For any location `1, command σ, and thread i, if thread i is at `1
and `1 6= tgt(σ), then the automaton rejects when it reads 〈σ : i〉,
but stays put when executing the command of another thread:

δ(〈`1, `2〉(i), 〈σ : j〉) = (i 6= j ∧ 〈`1, `2〉(i))
δ(`1(i), 〈σ : j〉) = (i 6= j ∧ `1(i)) .

Upon reading $, the automaton transitions from 〈`1, `1〉(i) to `1(i):
δ(〈`1, `1〉(i), 〈$: j〉) = `1(i) ;

but for `1 6= `2, the automaton rejects:
δ(〈`1, `2〉(i), 〈$: j〉) = false .

Finally, the nullary predicate $ ensures that the next letter in the
word is not $:

δ($, 〈$: j〉) = false

δ($, 〈σ : j〉) = true .

Moving on to step (II):

Proposition 4.7. Let 〈H ,W 〉 be a regular well-founded proof
space with basis 〈H,W 〉. Then there is a QPA A(H,W) that
accepts $(H ,W). ⌟

The construction is similar to the construction of a predicate
automaton from a proof space [16]. Intuitively, each Hoare triple in
the basis of a regular proof space corresponds to a transition of a
QPA. For example, the Hoare triple

{d(1) > 0 ∧ old(x) = x} 〈x=x-d : 1〉 {old(x) > x}
corresponds to the transition
δ([old(x) > x], 〈x=x-d : i〉) = [d(1) > 0](i) ∧ [old(x) = x] .

Details can be found in the appendix.
Finally, we conclude with step (III):

Proposition 4.8. QPA languages are closed under Boolean oper-
ations (intersection, union, and complement). ⌟

The constructions follow the classical ones for alternating finite
automata. Again, details can be found in the appendix.

4.2 QPA Emptiness
We close this section with a discussion of the emptiness prob-
lem for quantified predicate automata. First, we observe that the
emptiness problem for QPA is undecidable in the general case,
since emptiness is undecidable even for quantifier-free predicate
automata [16]. In this respect, our method parallels incremental ter-
mination provers for sequential programs: the problem of checking
whether a candidate termination argument is sufficient is reduced
to a safety problem that is undecidable. Although the emptiness
problem is undecidable, safety is a relatively well-studied problem
for which there are existing logics and algorithmic techniques. In
particular, inductive invariants for QPA can serve as certificates of
their emptiness. In the remainder of this section we detail emptiness
certificates, which formalize this idea.

Intuitively, an emptiness certificate for a QPA is a positive for-
mula that is entailed by the initial condition, inductive with respect
to the transition relation, and that has no models that are accepting
configurations. A problem with this definition is that the transition
relation is infinitely-branching (we must verify that the emptiness
certificate is inductive with respect to the transition relation labeled
with any indexed command, of which there are infinitely many). So
first we define a symbolic post-condition operator that gives a finite
representation of these infinitely many transitions.

Given a QPA A = 〈Q, ar,Σ, δ, ϕstart, F 〉, we define a symbolic
post-condition operator δ̂ : F(Q, ar)×Σ→ F(Q, ar) as follows:

δ̂(ϕ, σ) = ∃i.δ̂(ϕ, 〈σ : i〉),
where i is a fresh variable symbol not appearing inϕ and δ̂(ϕ, 〈σ : i〉)
is the result of substituting each proposition q(j1, ..., jar(q)) that ap-
pears in ϕ with

δ(q, σ)[i0 7→ i, i1 7→ j1, ..., iar(q) 7→ jar(q)] .

We may now formally define emptiness certificates:

Definition 4.9. Let A = 〈Q, ar,Σ, δ, ϕstart, F 〉 be a QPA. An
emptiness certificate for A is a positive first-order formula ϕ ∈

F(Q, ar) along with proofs of the following entailments:
1. Initialization: ϕstart ` ϕ
2. Consecution: For all σ ∈ Σ, δ̂(ϕ, σ) ` ϕ
3. Rejection: ϕ `

∨
q∈Q\F ∃i1, ..., iar(q).q(i1, ..., iar(q)). ⌟

The following result establishes that that emptiness certificates
are a sound proof system for verifying emptiness of a QPA.

Theorem 4.10. Let A = 〈Q, ar,Σ, δ, ϕstart, F 〉 be a QPA. If
there is an emptiness certificate for A, then L(A) is empty. ⌟

5. Beyond Termination
In the last two sections presented a technique that uses well-
founded proof spaces to prove that parameterized programs ter-
minate. This section extends the technique so that it may be used
to prove that parameterized programs satisfy general liveness prop-
erties. The class of liveness properties we consider are those that
are definable in (thread) quantified linear temporal logic (QLTL),
which extends linear temporal logic with thread quantifiers to ex-
press properties of parameterized systems.

Given a finite alphabet Σ, a QLTL(Σ) formula is built using the
connectives of first-order and linear temporal logic, where quanti-
fiers may not appear underneath temporal modalities, and where
every proposition is either i = j (for some thread variables i, j) or
〈σ : i〉 (for some σ ∈ Σ and thread variable i). A satisfaction rela-
tion |= defines when a trace τ satisfies a QLTL(Σ) formula, using
a map µ to interpret free variables:

τ, µ |= i = j ⇐⇒ µ(i) = µ(j)

τ, µ |= 〈σ : i〉 ⇐⇒ τ1 = 〈σ : µ(i)〉
τ, µ |= ϕUψ ⇐⇒ ∃k ∈ N.(∀i < k.τ [i, ω], µ |= ϕ)

∧ (τ [k, ω], µ |= ψ)

τ, µ |= Xϕ ⇐⇒ τ [2, ω] |= ϕ

τ, µ |= ∃i.ϕ ⇐⇒ ∃i ∈ {1, ..., N}.τ, µ[i 7→ i] |= ϕ

τ, µ |= ϕ ∧ ψ ⇐⇒ τ, µ |= ϕ ∧ τ, µ |= ψ

τ, µ |= ¬ϕ ⇐⇒ τ, µ 6|= ϕ

The rest of the connectives are defined by the usual equivalences
(∀i.ϕ ≡ ¬∃i.¬ϕ, Fϕ ≡ trueUϕ, Gϕ ≡ ¬F¬ϕ, ϕ ∨ ψ ≡
¬(¬ϕ ∧ ¬ψ)). For a concrete example, the following formula
expresses the liveness property of the ticket protocol (Figure 1), “if
every thread executes infinitely often, then no thread is starved”:(

∀i.GF
∨
σ∈Σ

〈σ : i〉
)
⇒
(
∀i.GF〈[m<=s] : i〉

)
The theorem enabling well-founded proof spaces to verify

QLTL(Σ) properties is the following:

Theorem 5.1. Let Σ be a finite alphabet, and let ϕ be a QLTL(Σ)
sentence. There is a QPA A(ϕ) that recognizes the language:

$(L(ϕ)) = {τ$ρ ∈
⋃
N

Σ(N)ω : τρω |= ϕ} ⌟

Proof. See appendix.

This theorem allows us to employ a classical idea for temporal
verification [32]: to show that every execution of a program satisfies
a QLTL property ϕ, we show that every program trace that violates
ϕ is infeasible. Thus, we have the following proof rule: given a
QLTL sentence ϕ and a parameterized program P , if there exists
regular well-founded proof space 〈H ,W 〉with basis 〈H,W 〉 such
that the language L(A(P)∧A(¬ϕ)∧¬A(H,W)) is empty, then
P satisfies ϕ.

Example 5.2. To illustrate the idea behind Theorem 5.1, we give
a manual construction of a QPA for the (negated) liveness property

of the ticket protocol. The negated liveness property can be written
as a conjunction of a fairness constraint and a negated liveness
constraint:(

∀i.GF
∨
σ∈Σ

〈σ : i〉
)
∧
(
∃i.FG¬〈[m<=s] : i〉

)
Given a lasso τ$ρ, the ultimately periodic word τρω satisfies

the above property iff each thread executes some command along
ρ (left conjunct) and there is some thread that does not execute
[m<=s] along ρ (right conjunct). We construct a QPA with two
monadic predicates exec and enter and one nullary predicate $ such
that
• τ$ρ is accepted from a configuration C with C |= exec(i) iff ρ

contains a command of thread i,
• τ$ρ is accepted from a configuration C with C |= enter(i) iff ρ

does not contain 〈[m<=s] : i〉, and
• τ is accepted from a configuration C with C |= $ iff τ does not

contain 〈$: i〉 for any thread i.
The initial formula of the QPA is (∀i.exec(i)) ∧ (∃i.enter(i)) and
the only accepting predicate symbol is $. The transition relation of
the QPA is as follows:

δ(enter(i), 〈[m<=s] : j〉) = i 6= j ∧ enter(i)

δ(enter(i), 〈$: j〉) = $

δ(enter(i), 〈m=t++ : j〉) = enter(i)

δ(enter(i), 〈s++ : j〉) = enter(i)

δ(enter(i), 〈[m>s] : j〉) = enter(i)

δ(exec(i), 〈$: j〉) = false

δ($, 〈$: j〉) = false
and for all σ 6= $,

δ(exec(i), 〈σ : j〉) = i = j ∨ exec(i)

δ($, 〈σ : j〉) = $. ⌟

6. Discussion
Although well-founded proof spaces are designed to prove ter-
mination of parameterized concurrent programs, a natural ques-
tion is how they relate to existing methods for proving termina-
tion of sequential programs. This section investigates this question.
We will compare with the method of disjunctively well-founded
transition invariants, as exemplified by Terminator [7], and the
language-theoretic approach, as used by Automizer [19].

Terminator, Automizer, and our approach using well-founded
proof spaces employ the same high-level tactic for proving termi-
nation. The termination argument is constructed incrementally in
a sample-synthesize-check loop: first, sample a lasso of the pro-
gram, then synthesize a candidate termination argument (using a
ranking function for that lasso), then check if the candidate argu-
ment applies to the whole program. However, they are based on
fundamentally different proof principles.

i = pos()
if(0 ≤ i ≤ 1):
i = 2*i - 1
// i is either 1 or -1
while(x>0 ∧ z>0):
x = x + i
z = z - i

Terminator is based on the principle
of disjunctively well-founded transition
invariants. Terminator proves termina-
tion by showing that the transitive clo-
sure of a program’s transition relation
is contained inside the union of a finite
number of well-founded relations. As a concrete example, consider
the program to the right. Assuming that we restrict ourselves to lin-
ear ranking functions, well-founded proof spaces (and Automizer)
cannot prove that this program terminates, because there is no lin-
ear term that decreases at every loop iteration. Terminator can prove
this program terminates by showing that no matter how many iter-
ations of the loop are executed, x decreases or z decreases.

flag = true
while(z > 0):

if(flag):
x = z
z = pos()

else:
z = x - 1
x = pos()

flag = ¬flag

Like well-founded proof spaces, Automizer
is based on a language-theoretic view of ter-
mination. Automizer proves termination by
exhibiting a family of Büchi automata, each
of which recognizes a language of traces that
terminate “for the same reason” (some given
ranking function decreases infinitely often),
and such that every trace of the program is
recognized by one of the automata. Assuming that we restrict our-
selves to linear ranking functions, Terminator cannot prove the
program to the right terminates because there is no linear disjunc-
tively well-founded relation that includes the odd loop iterations.
Automizer (and well-founded proof spaces) can prove the program
terminates using the linear ranking function z, which decreases in-
finitely often along any infinite trace (at every even loop iteration).

In the case of non-parameterized concurrent programs, well-
founded proof spaces are equivalent in power to Automizer. Sup-
pose that P is a program that is intended to be executed by a fixed
number of threads N (i.e., we are interested only proving that ev-
ery trace in P (N) terminates). In this case, the premise of the proof
rule (L(P) ⊆ ω(H ,W)) can be checked effectively using algo-
rithms for Büchi automata, due to the fact that both L(P (N)) and
ω(H ,W) ∩ Σ(N)ω are ω-regular.

To cope with parameterized programs in which the number of
threads is arbitrary, Section 4 describes a lasso variation of the
proof rule (wherein we check $(L(P)) ⊆ $(H ,W) as a means
to prove that L(P) ⊆ ω(H ,W)). The lasso proof rule is strictly
weaker than Automizer’s, and the above program cannot be veri-
fied for the same reason that Terminator fails: there is no ranking
function that decreases after odd iterations of the loop. That is, we
cannot construct a well-founded proof space such that $(H ,W)
contains τ$ρi for odd i (where τ represents the stem flag = true
and ρ represents one iteration of the while loop). There is an inter-
esting connection between the lasso variant of well-founded proof
spaces and disjunctively well-founded transition invariants. Termi-
nator checks that the transitive closure of the transition relation
is contained inside a given disjunctively well-founded relation by
proving safety of a transformed program. The transformed program
executes as the original, but (at some point) non-deterministically
saves the program state and jumps to another (disconnected) copy
of the program, in which at every loop iteration the program asserts
that the “saved” and “current” state are related by the disjunctively
well-founded relation. Intuitively, this jump corresponds to exactly
the $ marker in lasso languages: the traces that perform the jump in
the transformed program can be put in exact correspondence with
the traces of the lasso language $(L(P)).

Thus, well-founded proof spaces relate to both the Terminator
and Automizer proof rules. Section 3 is aligned with the language-
theoretic view of program termination used by Automizer. Sec-
tion 4 mirrors the program transformation employed by Terminator
to cope with transitive closure.

7. Conclusion
This paper introduces well-founded proof spaces, a formal founda-
tion for automated verification of liveness properties for parameter-
ized programs. Well-founded proof spaces extend the incremental
termination proof strategy pioneered in [7, 8] to the case of concur-
rent programs with unboundedly many threads. This paper investi-
gates a logical foundation of an automated proof strategy. We leave
for future work the problem of engineering heuristic techniques to
make the framework work in practice.

References
[1] P. A. Abdulla, Y. Chen, G. Delzanno, F. Haziza, C. Hong, and

A. Rezine. Constrained monotonic abstraction: a CEGAR for param-

eterized verification. In CONCUR, pages 86–101, 2010.
[2] P. A. Abdulla, B. Jonsson, M. Nilsson, J. d’Orso, and M. Saksena.

Regular model checking for LTL(MSO). STTT, 14(2):223–241, 2012.
[3] A. R. Bradley, Z. Manna, and H. B. Sipma. Linear ranking with

reachability. In CAV, pages 491–504, 2005.
[4] J.A. Brzozowski and E. Leiss. On equations for regular languages,

finite automata, and sequential networks. Theoretical Computer Sci-
ence, 10(1):19 – 35, 1980.

[5] H. Calbrix, M. Nivat, and A. Podelski. Ultimately periodic words of
rational ω-languages. In MFPS, pages 554–566, 1994.

[6] A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. J.
ACM, 28(1):114–133, January 1981.

[7] B. Cook, A. Podelski, and A. Rybalchenko. Abstraction refinement
for termination. In SAS, pages 87–101, 2005.

[8] B. Cook, A. Podelski, and A. Rybalchenko. Termination proofs for
systems code. In PLDI, pages 415–426, 2006.

[9] B. Cook, A. Podelski, and A. Rybalchenko. Proving thread termina-
tion. In PLDI, pages 320–330, 2007.

[10] B. Cook, A. See, and F. Zuleger. Ramsey vs. lexicographic termination
proving. In TACAS, pages 47–61, 2013.

[11] J. Corbet. Ticket spinlocks. https://lwn.net/Articles/
267968/.

[12] P. Cousot and R. Cousot. An abstract interpretation framework for
termination. In POPL, pages 245–258, 2012.

[13] A. Durand-Gasselin, J. Esparza, P. Ganty, and R. Majumdar.
Model checking parameterized asynchronous shared-memory sys-
tems. CoRR, abs/1505.06588, 2015.

[14] Y. Fang, N. Piterman, A. Pnueli, and L. D. Zuck. Liveness with
incomprehensible ranking. In TACAS, pages 482–496, 2004.

[15] Y. Fang, N. Piterman, A. Pnueli, and L. D. Zuck. Liveness with
invisible ranking. In VMCAI, pages 223–238, 2004.

[16] A. Farzan, Z. Kincaid, and A. Podelski. Proof spaces for unbounded
parallelism. In POPL, pages 407–420, 2015.

[17] A. Gupta, T. A. Henzinger, R. Majumdar, A. Rybalchenko, and R.-G.
Xu. Proving non-termination. In POPL, pages 147–158, 2008.

[18] M. Heizmann, J. Hoenicke, J. Leike, and A. Podelski. Linear ranking
for linear lasso programs. In ATVA, pages 365–380, 2013.

[19] M. Heizmann, J. Hoenicke, and A. Podelski. Termination analysis by
learning terminating programs. In CAV, pages 797–813, 2014.

[20] J. Jaffar and A. E. Santosa. Recursive abstractions for parameterized
systems. In FM, pages 72–88. 2009.

[21] A. Kaiser, D. Kroening, and T. Wahl. Lost in abstraction: Monotonic-
ity in multi-threaded programs. In CONCUR, pages 141–155, 2014.

[22] J. Ketema and A. F. Donaldson. Automatic termination analysis for
GPU kernels. In Workshop on Termination, pages 50–55, 2014.

[23] W. Lee, B.-Y. Wang, and K. Yi. Termination analysis with algorithmic
learning. In CAV, pages 88–104, 2012.

[24] A. Pnueli, S. Ruah, and L. D. Zuck. Automatic deductive verification
with invisible invariants. In TACAS, pages 82–97, 2001.

[25] A. Podelski and A. Rybalchenko. A complete method for the synthesis
of linear ranking functions. In VMCAI, pages 239–251, 2004.

[26] C. Popeea and A. Rybalchenko. Compositional termination proofs for
multi-threaded programs. In TACAS, pages 237–251, 2012.

[27] F. P. Ramsey. On a problem of formal logic. In Proc. London Math.
Soc., volume 30, pages 264–285, 1930.

[28] A. Sánchez and C. Sánchez. Parametrized verification diagrams. In
TIME, pages 132–141, 2014.

[29] A. Sanchez, S. Sankaranarayanan, C. Sánchez, and B-Y. E. Chang.
Invariant generation for parametrized systems using self-reflection. In
SAS, pages 146–163. Springer, 2012.

[30] M. Segalov, T. Lev-Ami, R. Manevich, R. Ganesan, and M. Sagiv.
Abstract transformers for thread correlation analysis. In APLAS, pages
30–46, 2009.

[31] C. Urban. Function: An abstract domain functor for termination
- (competition contribution). In Christel Baier and Cesare Tinelli,
editors, TACAS, pages 464–466, 2015.

[32] M. Y. Vardi and P. Wolper. An automata-theoretic approach to auto-
matic program verification. In LICS, pages 322–331, 1986.

[33] M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Inf.
Comput., 115(1):1–37, November 1994.

https://lwn.net/Articles/267968/
https://lwn.net/Articles/267968/

A. Proofs
Theorem 3.4 (Soundness). Let 〈H ,W 〉 be a well-founded proof
space. Then every infinite trace in ω(H ,W) is infeasible. ⌟

Proof. For a contradiction, suppose that there is an execution

s0
〈σ1:i1〉−−−−→ s1

〈σ2:i2〉−−−−→· · ·
such that 〈σ1 : i1〉〈σ2 : i2〉· · · ∈ ω(H ,W). Then there is a se-
quence of naturals {αk}k∈N and a ranking formula w ∈ W which
satisfy the conditions of Definition 3.3. It is straightforward to show
that {sαk}k∈N is an infinite descending sequence of program states
in the order w, contradicting the fact that w defines a well-founded
order.

Proposition 4.6. Let P be a parameterized program. Then there
is a QPA A(P) that accepts $(L(P)). ⌟

Proof. Let P = 〈Loc,Σ, `init, src, tgt〉 be a parameterized pro-
gram.

Intuitively, we can recognize that τ$ρ is a lasso of the program
P (reading τ$ρ from right to left) as follows:

• While reading the loop ρ, we keep track of the control location
of every thread, but also “remember” the control location in
which each thread started. This is accomplished with unary
predicates of the form 〈`1, `2〉(i) (with `1, `2 ∈ Loc), so that
〈`1, `2〉(i) holds when thread i is at location `1 and started in
location `2
• When reading the separator symbol $, we verify that each

thread is in a loop by transitioning from 〈`1, `2〉(i) to `1(i) if
`1 = `2 (i.e., thread i is currently at the same location it started
in), and otherwise rejecting by transitioning to false.
• When reading the stem τ , we track the control location of each

thread using unary predicates of the form `(i).
• To verify that after reading τ$ρ every thread is in the initial

control location (equivalently, no thread is at a location other
than the initial one) by making every predicate symbol except
`init rejecting.

Formally, we construct the QPAA(P) = 〈Q, ar,Σ, δ, ϕstart, F 〉
as follows:

• Q = Loc ∪ (Loc× Loc) ∪ {∆, $, loc}. Intuitively,
∆(i) stands for the disjunction

∨
`∈Loc〈`, `〉(i)

loc(i) stands for the disjunction
∨
`∈Loc `(i)

$ is used to enforce the condition that the loop of a lasso
may not be empty (i.e., $ does not appear at the end of an
accepted word)

• The arity of each predicate symbol is 1, except $ which has arity
0.
• ϕstart = $ ∧ ∀i.∆(i) (i.e., initially every thread is currently

where it started)
• F = {`init, loc}

The transition function δ is defined as follows:
δ(〈`1, `2〉(i), 〈σ : j〉) ={

if i = j then 〈src(σ), `2〉(i) else 〈`1, `2〉(i) if tgt(σ) = `1
i 6= j ∧ 〈`1, `2〉(i) otherwise

δ(`(i), 〈σ : j〉) ={
if i = j then src(σ)(i) else `(i) if tgt(σ) = `

i 6= j ∧ `(i) otherwise

δ(∆(i), 〈σ : j〉) = if i = j then 〈src(σ), tgt(σ)〉(i) else ∆(i)

δ(loc(i), 〈σ : j〉) = if i = j then src(σ)(i) else loc(i)

δ($, 〈σ : j〉) = true

δ(〈`1, `2〉(i), $) =

{
`1(i) if `1 = `2
false otherwise

δ(`(i), $) = false

δ(∆(i), $) = loc(i)

δ(loc(i), $) = false

δ($, $) = false

Proposition 4.7. Let 〈H ,W 〉 be a regular well-founded proof
space with basis 〈H,W 〉. Then there is a QPA A(H,W) that
accepts $(H ,W). ⌟

Proof. Our construction follows a similar structure to the construc-
tion of a (quantifier-free) predicate automaton from a proof space
[16]. Let 〈H ,W 〉 be a regular well-founded proof space, and let
〈H,W 〉 be a basis for 〈H ,W 〉.

The intuition behind the construction of a QPAA(H,W) which
recognizes $(H ,W) is that the predicate symbols in A corre-
spond to program assertions inH , and the transition function corre-
sponds to the Hoare triples in H . More explicitly, we define a QPA
A(H,W) = 〈Q, ar,Σ, δ, ϕstart, F 〉 as follows.

The set of predicate symbols Q is the set of canonical names
for the assertions which appear in H . A canonical name is a repre-
sentation of an equivalence class of program assertions, where two
assertions ϕ and ψ are equivalent if there is a permutation of thread
identifiers π : N → N so that ϕ[π] = ψ. For example, the asser-
tions m(4) < m(2) and m(2) < m(9) are both represented by the
same canonical assertion, which we write as [m(2) < m(9)]. The
arity of a predicate symbol is the number of distinct thread indices
which appear in it (e.g., ar([m(2) < m(9)]) = 2).

Each Hoare triple in H corresponds to a transition rule of
A(H,W). For example, the Hoare triple

{m(1) < t} 〈m=t++ : 2〉 {m(1) < m(2)}
corresponds to the transition
δ([m(1) < m(2)](i, j), 〈m=t++ : k〉) = k = j ∧ [m(1) < t](i)

If there are multiple Hoare triples with the same command and
canonical post-condition, then the transition rules are combined via
disjunction. For example, if the following Hoare triple also belongs
to the basis:

{m(2) < m(1)} 〈m=t++ : 3〉 {m(2) < m(1)}
then the transition rule is:
δ([m(1) < m(2)](i, j), 〈m=t++ : k〉) = k = j ∧ [m(1) < t](i)

∨k 6= i ∧ k 6= j ∧ [m(1) < m(2)](i, j)
For any global variable g, by reading $ we may transition from

[old(g) = g] to true (and similarly for local variables l):
δ([old(g) = g], 〈$: i0〉) = true

δ([old(l(1)) = l(1)](i1), 〈$: i0〉) = true

For all other predicate symbols q, reading $ has no effect:
δ(q(i1, ..., iar(q)), 〈$: i0〉) = q(i1, ..., iar(q))

The initial formula of A(H,W) expresses the desired post-
condition that the some ranking formula decreases. Formally, ϕinit

is defined as follows:
ϕinit =

∨
w∈W

∃~i.w(~i)

Lastly, there are no accepting predicate symbols (F = ∅), which
expresses the desired pre-condition true.

Proposition 4.8. QPA languages are closed under Boolean oper-
ations (intersection, union, and complement). ⌟

Proof. Let A and A′ be PAs. We form their intersection A ∩A′ by
taking the vocabulary to be the disjoint union of the vocabularies
of A and A′, and define the transition relation and accepting predi-
cates accordingly. The initial formula is obtained by conjoining the
initial formulas ofA andA′. The unionA∪A′ is formed similarly,
except the initial formula is the disjunction of the initial formulas
of A and A′.

Given a PAA = 〈Q, ar,Σ, δ, ϕinit, F 〉, we form its complement
A = 〈Q, ar,Σ, N, δ, ϕinit, F 〉 as follows. We define the vocabulary
(Q, ar) to be a “negated copy” of (Q, ar): Q = {q : q ∈ Q}
and ar(q) = ar(q). The set of accepting predicate symbols is the
(negated) set of rejecting predicate symbols fromA: F = {q ∈ Q :
q ∈ Q\F}. For any formula ϕ inF(Q, ar) in the vocabulary ofA,
we use ϕ to denote the “De Morganization” of ϕ in the vocabulary
of A, defined recursively by:

q(ij1 , ..., ijar(q)) = q(ij1 , ..., ijar(q))

ij = ik = (i 6= j)

ϕ ∧ ψ = ϕ ∨ ψ
∃i.ϕ = ∀i.ϕ

ij 6= ik = (i = j)

ϕ ∨ ψ = ϕ ∧ ψ
∀i.ϕ = ∃i.ϕ

We define the transition function and initial formula of A by
De Morganization: δ(q, σ) is defined to be δ(q, σ) and the initial
formula is defined to be ϕinit.

Theorem 4.10. Let A = 〈Q, ar,Σ, δ, ϕstart, F 〉 be a QPA. If
there is an emptiness certificate for A, then L(A) is empty. ⌟

Proof. Let A = 〈Q, ar,Σ, δ, ϕstart, F 〉 be a QPA and let ϕ be an
emptiness certificate for A. Intuitively, the Initialization and Con-
secution conditions for ϕ express that ϕ is an inductive invariant
for the transition system on A-configurations, while the Rejection
condition expresses that no model of ϕ is accepting.

The non-standard part of argument is proving the soundness
of the consecution condition, since the consecution condition ex-
presses that ϕ is inductive under δ̂ rather than the transition rela-
tion on A-configurations. In other words, we must establish that if
C, C′ are A-configurations, σ ∈ Σ and k ∈ N so that that C |= ϕ

and C σ:k−−→ C′, then C′ |= δ̂(ϕ, σ). This property can be proved by
induction on ϕ.

Theorem 5.1. Let Σ be a finite alphabet, and let ϕ be a QLTL(Σ)
sentence. There is a QPA A(ϕ) that recognizes the language:

$(L(ϕ)) = {τ$ρ ∈
⋃
N

Σ(N)ω : τρω |= ϕ} ⌟

Proof. Any QLTL(Σ) formula is equivalent to one written as a
disjunction of QLTL(Σ) formulas of the form

Q1i1.Q2i2, ...Qkik.
(∧
j 6=j′

ij 6= ij′
)
∧ ϕm(i1, ..., ik) ,

where eachQj is either ∃ or ∀, andϕm(i1, ..., ik) is quantifier-free.
It is sufficient to construct the QPA for a single disjunct of this form,
since QPA languages are closed under union (Proposition 4.8).

Since the formula ϕm[i1 7→ 1, . . . , ik 7→ k] is equivalent to an
LTL formula, the the set of all infinite traces τ ∈ Σ(k + 1)ω such
that

τ |= ϕm[i1 7→ 1, . . . , ik 7→ k]

can be recognized by a Büchi automaton [33]. Let Aω(ϕm) denote
this Büchi automaton. From Aω(ϕm), we may derive a determin-
istic finite automaton A$(ϕm) = 〈Qm,Σ(k + 1), δm, sm, Fm〉
which recognizes $(L(Aω(ϕ))), following the construction from
[5]. From A$(ϕm), we may construct a QPA

A(ϕ) = 〈Q, ar,Σ, δ, ϕstart, F 〉
which recognizes the language

$(L(Q1i1.Q2i2, ...Qkik.
(∧
j 6=j′

ij 6= ij′
)
∧ ϕm(i1, ..., ik)))

as follows:

• Q = Qm
• For each predicate symbol q ∈ Q, define ar(q) = k
• ϕinit = Q1i1.· · · Qkik.

(∧
j 6=j′ ij 6= ij′

)
∧
(∨

q∈Fm
q(i1, ..., ik)

)
• For every q ∈ Qm and σ ∈ Σ ∪ {$}, δ is defined by:
δ(q(~i), 〈σ : i0〉) = i0 = i1 ∧

(∨
{q′(~i) : δm(q′, 〈σ : 1〉) = q}

)
...

∨i0 = ik ∧
(∨
{q′(~i) : δm(q′, 〈σ : k〉) = q}

)
∨
∧k
j=1 i0 6= ij ∧

(∨
{q′(~i) : δm(q′, 〈σ : k + 1〉) = q}

)
• F = {q0}

	Introduction
	Related work

	Parameterized Program Termination
	Well-founded Proof Spaces
	Overview
	Formal definition of Well-founded proof spaces
	Ultimately periodic traces

	Checking Proof Spaces
	Quantified Predicate Automata
	QPA Emptiness

	Beyond Termination
	Discussion
	Conclusion
	Proofs

