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Abstract. This paper presents a technique for computing numerical
loop summaries. The method synthesizes a rational vector addition sys-
tem with resets (Q-VASR) that simulates the action of an input loop, and
then uses the reachability relation of that Q-VASR to over-approximate
the behavior of the loop. The key technical problem solved in this pa-
per is to automatically synthesize a Q-VASR that is a best abstraction
of a given loop in the sense that (1) it simulates the loop and (2) it is
simulated by any other Q-VASR that simulates the loop. Since our loop
summarization scheme is based on computing the exact reachability re-
lation of a best abstraction of a loop, we can make theoretical guarantees
about its behavior. Moreover, we show experimentally that the technique
is precise and performant in practice.

1 Introduction

Modern software verification techniques employ a number of heuristics for rea-
soning about loops. While these heuristics are often effective, they are unpre-
dictable. For example, an abstract interpreter may fail to find the most precise
invariant expressible in the language of its abstract domain due to imprecise
widening, or a software-model checker might fail to terminate because it gen-
erates interpolants that are insufficiently general. This paper presents a loop
summarization technique that is capable of generating loop invariants in an
expressive and decidable language and provides theoretical guarantees about
invariant quality.

The key idea behind our technique is to leverage reachability results of vector
addition systems (VAS) for invariant generation. Vector addition systems are a
class of infinite-state transition systems with decidable reachability, classically
used as a model of parallel systems [12]. We consider a variation of VAS, rational
VAS with resets (Q-VASR), wherein there is a finite number of rational-typed
variables and a finite set of transitions that simultaneously update each variable
in the system by either adding a constant value or (re)setting the variable to
a constant value. Our interest in Q-VASRs stems from the fact that there is
(polytime) procedure to compute a linear arithmetic formula that represents a
Q-VASR’s reachability relation [8].

Since the reachability relation of a Q-VASR is computable, the dynamics
of Q-VASR can be analyzed without relying on heuristic techniques. However,
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there is a gap between Q-VASR and the loops that we are interested in summa-
rizing. The latter typically use a rich set of operations (memory manipulation,
conditionals, non-constant increments, non-linear arithmetic, etc) and cannot be
analyzed precisely. We bridge the gap with a procedure that, for any loop, syn-
thesizes a Q-VASR that simulates it. The reachability relation of the Q-VASR
can then be used to over-approximate the behavior of the loop. Moreover, we
prove that if a loop is expressed in linear rational arithmetic (LRA), then our
procedure synthesizes a best Q-VASR abstraction, in the sense that it simulates
any other Q-VASR that simulates the loop. That is, imprecision in the analysis
is due to inherent limitations of the Q-VASR model, rather heuristic algorithmic
choices.

One limitation of the model is that Q-VASRs over-approximate multi-path
loops by treating the choice between paths as non-deterministic. We show that
Q-VASRS, Q-VASR extended with control states, can be used to improve our
invariant generation scheme by encoding control flow information and inter-
path control dependencies that are lost in the Q-VASR abstraction. We give an
algorithm for synthesizing a Q-VASRS abstraction of a given loop, which (like
our Q-VASR abstraction algorithm) synthesizes best abstractions under certain
assumptions.

Finally, we note that our analysis techniques extend to complex control struc-
tures (such as nested loops) by employing summarization compositionally (i.e.,
“bottom-up”). For example, our analysis summarizes a nested loop by first sum-
marizing its inner loops, and then uses the summaries to analyze the outer loop.
As a result of compositionality, our analysis can be applied to partial programs,
is easy to parallelize, and has the potential to scale to large code bases.

The main contributions of the paper are as follows:

– We present a procedure to synthesize Q-VASR abstractions of transition for-
mulas. For transition formulas in linear rational arithmetic, the synthesized
Q-VASR abstraction is a best abstraction.

– We present a technique for improving the precision of our analysis by using
Q-VASR with states to capture loop control structure.

– We implement the proposed loop summarization techniques and show that
their ability to verify user assertions is comparable to software model check-
ers, while at the same time providing theoretical guarantees of termination
and invariant quality.

1.1 Outline

This section illustrates the high-level structure of our invariant generation scheme.
The goal is to compute a transition formula that summarizes the behavior of a
given program. A transition formula is a formula over a set of program variables
Var along with primed copies Var′, representing the state of the program before
and after executing a computation (respectively). For any given program P , a
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procedure enqueue(elt):

back := cons(elt,back)

size := size + 1

procedure dequeue():

if (front == nil) then
// Reverse back, append to front

while (back != nil) do
front := cons(head(back),front)

back := tail(back)

result := head(front)

front := tail(front)

size := size - 1

return result

(a) Persistent queue

procedure enqueue():

back len := back len + 1

mem ops := mem ops + 1

size := size + 1

procedure dequeue():

if (front len == 0) then
while (back len != 0) do

front len := front len + 1

back len := back len - 1

mem ops := mem ops + 3

size := size - 1

front len := front len - 1

mem ops := mem ops + 2

procedure harness():

nb ops := 0

while nondet() do
nb ops := nb ops + 1
if (size > 0 && nondet())

enqueue()
else

dequeue()

(b) Integer model & harness

Fig. 1: A persistent queue and integer model. back len and front len models
the lengths of the lists front and back; mem ops counts the number of memory
operations in the computation.

transition formula TFJP K can be computed by recursion on syntax:1

TFJx := eK , x′ = e ∧
∧

y6=x∈Var

y′ = y

TFJif c then P1 else P2K , (c ∧TFJP1K) ∨ (¬c ∧TFJP2K)

TFJP1;P2K , ∃X ∈ Z.TFJP1K[Var′ 7→ X] ∧TFJP2K[Var 7→ X]

TFJwhile c do P K , (c ∧TFJP K)? ∧ (¬c[Var 7→ Var′])

where (−)? is a function that computes an over-approximation of the transitive
closure of a transition formula. The contribution of this paper is a method for
computing this (−)? operation, which is based on first over-approximating the
input transition formula by a Q-VASR, and then computing the (exact) reach-
ability relation of the Q-VASR.

We illustrate the analysis on an integer model of a persistent queue data
structure, pictured in Figure 1. The example consists of two operations (enqueue
and dequeue), as well as a test harness (harness) that non-deterministically
executes enqueue and dequeue operations. The queue achieves O(1) amortized
memory operations (mem ops) in enqueue and queue by implementing the queue

1 This style of analysis can be extended from a simple block-structured language to
one with control flow and recursive procedures using the framework of algebraic
program analysis [23, 13].
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as two lists, front and back (whose lengths are modeled as front len and
back len, respectively): the sequence of elements in the queue is the front list
followed by the reverse of the back list. We will show that the queue functions
use O(1) amortized memory operations by finding a summary for harness that
implies a linear bound on mem ops (the number of memory operations in the com-
putation) in terms of nb ops (the total number of enqueue/dequeue operations
executed in some sequence of operations).

We analyze the queue compositionally, in “bottom-up” fashion (i.e., start-
ing from deeply-nested code and working our way back up to a summary for
harness). There are two loops of interest, one in dequeue and one in harness.
Since the dequeue loop is nested inside the harness loop, dequeue is analyzed
first. We start by computing a transition formula that represents one execution
of the body of the dequeue loop:

Bodydeq = back len > 0 ∧


front len′ = front len + 1
∧back len′ = back len− 1
∧mem ops′ = mem ops + 3
∧size′ = size


Observe that each variable in the loop is incremented by a constant value. As a
result, the loop update can be captured faithfully by a vector addition system.
In particular, we see that this loop body formula is simulated by the Q-VASR
Vdeq (below), where the correspondence between the state-space of Bodydeq and

Vdeq is given by the identity transformation (i.e., each dimension of Vdeq simply
represents one of the variables of Bodydeq).

w
x
y
z

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



front len

back len

mem ops

size

 ; Vdeq =



w
x
y
z

→

w + 1
x− 1
y + 3
z


 .

A formula representing the reachability relation of a vector addition system can
be computed in polytime. For the case of Vdeq, a formula representing k steps of
the Q-VASR is simply

w′ = w + k ∧ x′ = x− k ∧ y′ = y + 3k ∧ z′ = z . (†)
To capture information about the pre-condition of the loop, we can project

the primed variables to obtain back len > 0; similarly, for the post-condition, we
can project the unprimed variables to obtain back len′ ≥ 0. Finally, combining
(†) (translated back into the vocabulary of the program) and the pre/post-
condition, we form the following approximation of the dequeue loop’s behavior:

∃k.k ≥ 0∧


front len′ = front len + k
∧back len′ = back len− k
∧mem ops′ = mem ops + 3k
∧size′ = size

∧(k > 0⇒
(

back len > 0
∧back len′ ≥ 0)

))
.

Using this summary for the dequeue loop, we proceed to compute a transition
formula for the body of the harness loop (omitted for brevity). Just as with the
dequeue loop, we analyze the harness loop by synthesizing a Q-VASR that
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simulates it, Vhar (below), where the correspondence between the state space of
the harness loop and Vhar is given by the transformation Shar:

v
w
x
y
z

 =


0 0 0 1 0
0 1 0 0 0
0 3 1 0 0
1 1 0 0 0
0 0 0 0 1


︸ ︷︷ ︸

Shar


front len

back len

mem ops

size

nb ops

 ; i.e.,


size = v
∧ back len = w
∧ mem ops + 3back len = x
∧ back len + front len = y
∧ nb ops = z

 .

Vhar =




v
w
x
y
z

→

v + 1
w + 1
x+ 4
y + 1
z + 1


︸ ︷︷ ︸

enqueue

,


v
w
x
y
z

→

v − 1
w

x+ 2
y − 1
z + 1


︸ ︷︷ ︸

dequeue fast

,


v
w
x
y
z

→

v − 1

0
x+ 2
y − 1
z + 1


︸ ︷︷ ︸

dequeue slow


Unlike the dequeue loop, we do not get an exact characterization of the

dynamics of each changed variable. In particular, in the slow dequeue path
through the loop, the value of front len, back len, and mem ops change by
a variable amount. Since back len is set to 0, its behavior can be captured
by a reset. The dynamics of front len and mem ops cannot be captured by
a Q-VASR, but (using our dequeue summary) we can observe that the sum
of front len + back len is decremented by 1, and the sum of mem ops +
3back len is incremented by 2.

We compute the following formula that captures the reachability relation
of Vhar (taking k1 steps of enqueue, k2 steps of dequeue fast, and k3 steps of
dequeue slow) under the inverse image of the state correspondence Shar:

size′ = size + k1 − k2 − k3

∧((k3 = 0 ∧ back len′ = back len + k1) ∨ (k3 > 0 ∧ 0 ≤ back len′ ≤ k1))
∧mem ops′ + 3back len′ = mem ops + 3back len + 4k1 + 2k2 + 2k3

∧front len′ + back len′ = front len + back len + k1 − k2 − k3

∧nb ops′ = nb ops + k1 + k2 + k3


From the above formula (along with pre/post-condition formulas), we obtain
a summary for the harness loop (omitted for brevity). Using this summary
we can prove (supposing that we start in a state where all variables are zero)
that mem ops is at most 4 times nb ops (i.e., enqueue and dequeue use O(1)
amortized memory operations).

2 Background

The syntax of ∃LIRA, the existential fragment of linear integer/rational arith-
metic, is given by the following grammar:

s, t ∈ Term ::= c | x | s+ t | c · t
F,G ∈ Formula ::= s < t | s = t | F ∧G | F ∨G | ∃x ∈ Q.F | ∃x ∈ Z.F
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where x is a (rational sorted) variable symbol and c is a rational constant. Ob-
serve that (without loss of generality) formulas are free of negation. ∃LRA (linear
rational arithmetic) refers to the fragment of ∃LIRA that omits quantification
over the integer sort.

A transition system is a pair (S,→) where S is a (potentially infinite) set
of states and →⊆ S × S is a transition relation. For a transition relation →, we
use →∗ to denote its reflexive, transitive closure.

A transition formula is a formula F (x,x′) whose free variables range over
x = x1, ..., xn and x′ = x′1, ..., x

′
n (we refer to the number n as the dimension

of F ); these variables designate the state before and after a transition. In the
following, we assume that transition formulas are defined over ∃LIRA. For a
transition formula F (x,x′) and vectors of terms s and t, we use F (s, t) to denote
the formula F with each xi replaced by si and each x′i replaced by ti. A transition
formula F (x,x′) defines a transition system (SF ,→F ), where the state space SF
is Qn and which can transition u→F v iff F (u,v) is valid.

For two rational vectors a and b of the same dimension d, we use a · b to
denote the inner product a ·b =

∑d
i=1 aibi and a∗b to denote the pointwise (aka

Hadamard) product (a∗b)i = aibi. For any natural number i, we use ei to denote
the standard basis vector in the ith direction (i.e., the vector consisting of all
zeros except the ith entry, which is 1), where the dimension of ei is understood
from context. We use In to denote the n× n identity matrix.

Definition 1. A rational vector addition system with resets (Q-VASR)
of dimension d is a finite set V ⊆ {0, 1}d×Qd of transformers. Each transformer
(r,a) ∈ V consists of a binary reset vector r, and a rational addition vector a,
both of dimension d. V defines a transition system (SV ,→V ), where the state
space SV is Qd and which can transition u →V v iff v = r ∗ u + a for some
(r,a) ∈ V .

Definition 2. A rational vector addition system with resets and states
(Q-VASRS) of dimension d is a pair V = (Q,E), where Q is a finite set of
control states, and E ⊆ Q × {0, 1}d × Qd × Q is a finite set of edges labeled
by (d-dimensional) transformers. V defines a transition system (SV ,→V), where
the state space SV is Q×Qn and which can transition (q1,u)→V (q2,v) iff there
is some edge (q1, (r,a), q2) ∈ E such that v = r ∗ u + a.

Our invariant generation scheme is based on the following result, which is a
simple consequence of the work of Haase and Halfon:

Theorem 1 ([8]). There is a polytime algorithm which, given a d-dimensional
Q-VASRS V = (Q,E), computes an ∃LIRA transition formula reach(V) such
that for all u,v ∈ Qd, we have (p,u)→∗V (q,v) for some control states p, q ∈ Q
if and only if u→reach(V) v.

Note that Q-VASR can be realized as Q-VASRS with a single control state,
so this theorem also applies to Q-VASR.



Loop Summarization with Rational Vector Addition Systems 7

3 Approximating loops with vector addition systems

In this section, we describe a method for over-approximating the transitive clo-
sure of a transition formula using a Q-VASR. This procedure immediately ex-
tends to computing summaries for programs (including programs with nested
loops) using the method outlined in Section 1.1.

The core algorithmic problem that we answer in this section is: given a tran-
sition formula, how can we synthesize a (best) abstraction of that formula’s dy-
namics as a Q-VASR? We begin by formalizing the problem: in particular, we
define what it means for a Q-VASR to simulate a transition formula and what
it means for an abstraction to be “best.”

Definition 3. Let A = (Qn,→A) and B = (Qm,→B) be transition systems
operating over rational vector spaces. A linear simulation from A to B is a
linear transformation S : Qm×n such that for all u,v ∈ Qn for which u →A v,
we have Su →B Sv. We use A 
S B to denote that S is a linear simulation
from A to B.

Suppose that F (x,x′) is an n-dimensional transition formula, V is a d-
dimensional Q-VASR, and S : Qd×n is linear transformation. The key property
of simulations that underlies our loop summarization scheme is that if F 
S V ,
then reach(V )(Sx, Sx′) (i.e., the reachability relation of V under the inverse im-
age of S) over-approximates the transitive closure of F . Finally, we observe that
simulation F 
S V can equivalently be defined by the validity of the entailment
F |= γ(S, V ), where

γ(S, V ) ,
∨

(r,a)∈V

Sx′ = r ∗ Sx + a

is a transition formula that represents the transitions that V simulates under
transformation S.

Our task is to synthesize a linear transformation S and a Q-VASR V such
that F 
S V . We call a pair (S, V ), consisting of a rational matrix S ∈ Qd×n
and a d-dimensional Q-VASR V , a Q-VASR abstraction. We say that n is the
concrete dimension of (S, V ) and d is the abstract dimension. If F 
S V , then
we say that (S, V ) is a Q-VASR abstraction of F . A transition formula may
have many Q-VASR abstractions; we are interested in computing a Q-VASR
abstraction (S, V ) that results in the most precise over-approximation of the
transitive closure of F . Towards this end, we define a preorder � on Q-VASR
abstractions, where (S1, V 1) � (S2, V 2) iff there exists a linear transformation
T ∈ Qe×d such that V 1 
T V 2 and TS1 = S2 (where d and e are the abstract
dimensions of (S1, V 1) and (S2, V 2), respectively). Observe that if (S1, V 1) �
(S2, V 2), then reach(V 1)(S1x, S1x′) |= reach(V 2)(S2x, S2x′).

Thus, our problem can be stated as follows: given a transition formula F ,
synthesize a Q-VASR abstraction (S, V ) of F such that (S, V ) is best in the

sense that we have (S, V ) � (S̃, Ṽ ) for any Q-VASR abstraction (S̃, Ṽ ) of F . A
solution to this problem is given in Algorithm 1.
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Algorithm 1: abstract-VASR(F)

input : Transition formula F of dimension n
output: Q-VASR abstraction of F ; Best Q-VASR abstraction if F in ∃LRA

1 Skolemize existentials of F ;
2 (S, V )← (In, ∅); // (In, ∅) is least in � order

3 Γ ← F ;
4 while Γ is satisfiable do
5 Let M be a model of Γ ;
6 C ← cube of the DNF of F with M |= C;
7 (S, V )← (S, V ) t α̂(C);
8 Γ ← Γ ∧ ¬γ(S, V )

9 return (S, V )

Algorithm 1 follows the familiar pattern of an AllSat-style loop. The algo-
rithm takes as input a transition formula F . It maintains a Q-VASR abstraction
(S, V ) and a formula Γ , whose models correspond to the transitions of F that
are not simulated by (S, V ). The idea is to build (S, V ) iteratively by sampling
transitions from Γ , augmenting (S, V ) to simulate the sample transition, and
then updating Γ accordingly. We initialize (S, V ) to be (In, ∅), the canonical
least Q-VASR abstraction in � order, and Γ to be F (i.e., (In, ∅) does not sim-
ulate any transitions of F ). Each loop iteration proceeds as follows. First, we
sample a model M of Γ (i.e., a transition that is allowed by F but not simulated
by (S, V )). We then generalize that transition to a set of transitions by using M
to select a cube C of the DNF of F that contains M . Next, we use the procedure
described in Section 3.1 to compute a Q-VASR abstraction α̂(C) that simulates
the transitions of C. We then update the Q-VASR abstraction (S, V ) to be the
least upper bound of (S, V ) and α̂(C) (w.r.t. � order) using the procedure de-
scribed in Section 3.2 (line 7). Finally, we block any transition simulated by the
least upper bound (including every transition in C) from being sampled again
by conjoining ¬γ(S, V ) to Γ . The loop terminates when Γ is unsatisfiable, in
which case we have that F 
S V . Theorem 2 gives the correctness statement for
this algorithm.

Theorem 2. Given a transition formula F , Algorithm 1 computes a simulation
S and Q-VASR V such that F 
S V . Moreover, if F is in ∃LRA, Algorithm 1
computes a best Q-VASR abstraction of F .

The proof of this theorem as well as the proofs to all subsequent theorems,
lemmas, and propositions are in the extended version of this paper [20].

3.1 Abstracting conjunctive transition formulas

This section shows how to compute a Q-VASR abstraction for a consistent con-
junctive formula. When the input formula is in ∃LRA, the computed Q-VASR
abstraction will be a best Q-VASR abstraction of the input formula. The intu-
ition is that, since ∃LRA is a convex theory, a best Q-VASR abstraction consists
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of a single transition. For ∃LIRA formulas, our procedure produces a Q-VASR
abstract that is not guaranteed to be best, precisely because ∃LIRA is not con-
vex.

Let C be consistent, conjunctive transition formula. Observe that the set
ResC , {〈s, a〉 : C |= s · x′ = a}, which represents linear combinations of vari-
ables that are reset across C, forms a vector space. Similarly, the set IncC =
{〈s, a〉 : C |= s ·x′ = s ·x + a}, which represents linear combinations of variables
that are incremented across C, forms a vector space. We compute bases for both
ResC and IncC , say {〈s1, a1〉, ..., 〈sm, am〉} and {〈sm+1, am+1〉, ..., 〈sd, ad〉}, re-
spectively. We define α̂(C) to be the Q-VASR abstraction α̂(C) , (S, {(r,a)}),
where

S ,

s1

...
sd

 r , [ 0 · · · 0︸ ︷︷ ︸
m times

(d−m) times︷ ︸︸ ︷
1 · · · 1 ] a ,

a1

...
ad

 .
Example 1. Let C be the formula x′ = x + y ∧ y′ = 2y ∧ w′ = w ∧ w =
w + 1 ∧ z′ = w. The vector space of resets has basis {〈

[
0 0 −1 1

]
, 0〉} (rep-

resenting that z − w is reset to 0). The vector space of increments has basis
{〈
[
1 −1 0 0

]
, 0〉, 〈

[
0 0 1 0

]
, 0〉, 〈

[
0 0 −1 1

]
, 1〉} (representing that the difference

x − y does not change, the difference z − w increases by 1, and the variable w
does not change). A best abstraction of C is thus the four-dimensional Q-VASR

V =





0
1
1
1

 ,


0
0
0
1



 , S =


0 0 −1 1
1 −1 0 0
0 0 1 0
0 0 −1 1

 .
In particular, notice that since the term z −w is both incremented and reset, it
is represented by two different dimensions in α̂(C). ⌟

Proposition 1. For any consistent, conjunctive transition formula C, α̂(C) is
a Q-VASR abstraction of C. If C is expressed in ∃LRA, then α̂(C) is best.

3.2 Computing least upper bounds

This section shows how to compute least upper bounds w.r.t. the � order.
By definition of the � order, if (S, V ) is an upper bound of (S1, V 1) and

(S2, V 2), then there must exist matrices T 1 and T 2 such that T 1S1 = S = T 2S2,
V 1 
T 1 V , and V 2 
T 2 V . As we shall see, if (S, V ) is a least upper bound,
then it is completely determined by the matrices T 1 and T 2. Thus, we shift our
attention to computing simulation matrices T 1 and T 2 that induce a least upper
bound.

In view of the desired equation T 1S1 = S = T 2S2, let us consider the
constraint T 1S1 = T 2S2 on two unknown matrices T 1 and T 2. Clearly, we have
T 1S1 = T 2S2 iff each (T 1

i , T
2
i ) belongs to the set T , {(t1, t2) : t1S1 = t2S2}.

Observe that T is a vector space, so there is a best solution to the constraint
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T 1S1 = T 2S2: choose T 1 and T 2 so that the set of all row pairs (T 1
i , T

2
i ) forms

a basis for T . In the following, we use pushout(S1, S2) to denote a function that
computes such a best (T 1, T 2).

While pushout gives a best solution to the equation T 1S1 = T 2S2, it is
not sufficient for the purpose of computing least upper bounds for Q-VASR
abstractions, because T 1 and T 2 may not respect the structure of the Q-VASR
V 1 and V 2 (i.e., there may be no Q-VASR V such that V 1 
T 1 V and V 2 
T 2 V ).
Thus, we must further constrain our problem by requiring that T 1 and T 2 are
coherent with respect to V 1 and V 2 (respectively).

Definition 4. Let V be a d-dimensional Q-VASR. We say that i, j ∈ {1, ..., d}
are coherent dimensions of V if for all transitions (r,a) ∈ V we have ri = rj
(i.e., every transition of V that resets i also resets j and vice versa). We denote
that i and j are coherent dimensions of V by writing i ≡V j, and observe that ≡V
forms an equivalence relation on {1, ..., d}. We refer to the equivalence classes
of ≡V as the coherence classes of V .

A matrix T ∈ Qe×d is coherent with respect to V if and only if each of
its rows have non-zero values only in the dimensions corresponding to a single
coherence class of V .

For any d-dimensional Q-VASR V and coherence class C = {c1, ..., ck} of
V , define ΠC to be the k × d dimensional matrix whose rows are ec1 , ..., eck .
Intuitively, ΠC is a projection onto the set of dimensions in C.

Coherence is a necessary and sufficient condition for linear simulations be-
tween Q-VASR in a sense described in Lemmas 1 and 2.

Lemma 1. Let V 1 and V 2 be Q-VASR (of dimension d and e, respectively),
and let T ∈ Qe×d be a matrix such that V 1 
T V 2. Then T must be coherent
with respect to V 1.

Let V be a d-dimensional Q-VASR and let T ∈ Qe×d be a matrix that is
coherent with respect to V and has no zero rows. Then there is a (unique) e-
dimensional Q-VASR image(V , T ) such that its transition relation →image(V ,T )

is equal to {(Tu, Tv) : u→V v} (the image of V ’s transition relation under T ).
This Q-VASR can be defined by:

image(V , T ) , {(T � r, Ta) : (r,a) ∈ V }
where T � r is the reset vector r translated along T (i.e., (T � r)i = rj where
j is an arbitrary choice among dimensions for which Tij is non-zero—at least
one such j exists because the row Ti is non-zero by assumption, and the choice
of j is arbitrary because all such j belong to the same coherence class by the
assumption that T is coherent with respect to V ).

Lemma 2. Let V be a d-dimensional Q-VASR and let T ∈ Qe×d be a matrix
that is coherent with respect to V and has no zero rows. Then the transition
relation of image(V , T ) is the image of V ’s transition relation under T (i.e.,
→image(V ,T ) is equal to {(Tu, Tv) : u→V v}).
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Algorithm 2: (S1, V 1) t (S2, V 2)

input : Normal Q-VASR abstractions (S1, V 1) and (S2, V 2) of equal concrete
dimension

output: Least upper bound (w.r.t. �) of (S1, V 2) and (S1, V 2)
1 S, T 1, T 2 ← empty matrices;
2 foreach coherence class C1 of V 1 do
3 foreach coherence class C2 of V 2 do
4 (U1, U2)← pushout(ΠC1S1, ΠC2S2);

5 S ←
[

S
U1ΠC1S1

]
; T 1 ←

[
T 1

U1ΠC1

]
; T 2 ←

[
T 2

U2ΠC2

]
;

6 V ← image(V 1, T 1) ∪ image(V 2, T 2);
7 return (S, V )

Finally, prior to describing our least upper bound algorithm, we must define
a technical condition that is both assumed and preserved by the procedure:

Definition 5. A Q-VASR abstraction (S, V ) is normal if there is no non-zero
vector z that is coherent with respect to V such that zS = 0 (i.e., the rows of S
that correspond to any coherence class of V are linearly independent).

Intuitively, a Q-VASR abstraction that is not normal contains information that
is either inconsistent or redundant.

We now present a strategy for computing least upper bounds of Q-VASR ab-
stractions. Fix (normal) Q-VASR abstractions (S1, V 1) and (S2, V 2). Lemmas 1

and 2 together show that a pair of matrices T̃ 1 and T̃ 2 induce an upper bound
(not necessarily least) on (S1, V 1) and (S2, V 2) exactly when the following con-

ditions hold: (1) T̃ 1S1 = T̃ 2S2, (2) T̃ 1 is coherent w.r.t. V 1, (3) T̃ 2 is coherent

w.r.t. V 2, and (4) neither T̃ 1 nor T̃ 2 contain zero rows. The upper bound induced

by T̃ 1 and T̃ 2 is given by

ub(T̃ 1, T̃ 2) , (T̃ 1S1, image(V 1, T̃ 1) ∪ image(V 2, T 2)) .

We now consider how to compute a best such T̃ 1 and T̃ 2. Observe that conditions
(1),(2), and (3) hold exactly when for each row i, (T̃ 1

i , T̃
2
i ) belongs to the set

T , {(t1, t2) : t1S1 = t2S2 ∧ t1coherent w.r.t.V 1 ∧ t1coherent w.r.t.V 2} .
Since a row vector ti is coherent w.r.t V i iff its non-zero positions belong to the
same coherence class of V i (equivalently, ti = t̄iΠCi for some coherence class
Ci and vector t̄i), we have T =

⋃
C1,C2 T (C1, C2), where the union is over all

coherence classes C1 of V 1 and C2 of V 2, and

T (C1, C2) , {(t̄i,1ΠC1 , t̄i,1ΠC2) : t̄i,1ΠC1S1 = t̄i,1ΠC2S2} .
Observe that each T (C1, C2) is a vector space, so we can compute a pair of
matrices T 1 and T 2 such that the rows (T 1

i , T
2
i ) collectively form a basis for each

T (C1, C2). Since (S1, V 1) and (S2, V 2) are normal (by assumption), neither T 1

nor T 2 may contain zero rows (condition (4) is satisfied). Finally, we have that
ub(T 1, T 2) is the least upper bound of (S1, V 1) and (S2, V 2). Algorithm 2 is a
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straightforward realization of this strategy.

Proposition 2. Let (S1, V 1) and (S2, V 2) be normal Q-VASR abstractions of
equal concrete dimension. Then the Q-VASR abstraction (S, V ) computed by
Algorithm 2 is normal and is a least upper bound of (S1, V 2) and (S2, V 2).

4 Control Flow and Q-VASRS

In this section, we give a method for improving the precision of our loop summa-
rization technique by using Q-VASRS; that is, Q-VASR extended with control
states. While Q-VASRs over-approximate control flow using non-determinism,
Q-VASRSs allow us to analyze phenomena such as oscillating and multi-phase
loops.

We begin with an example that demonstrates the precision gained by Q-
VASRS. The loop in Figure 2a oscillates between (1) incrementing variable i by
1 and (2) incrementing both variables i and x by 1. Suppose that we wish to
prove that, starting with the configuration x = 0∧ i = 1, the loop maintains the
invariant that 2x ≤ i. The (best) Q-VASR abstraction of the loop, pictured in
Figure 2b, over-approximates the control flow of the loop by treating the condi-
tional branch in the loop as a non-deterministic branch. This over-approximation
may violate the invariant 2x ≤ i by repeatedly executing the path where both
variables are incremented. On the other hand, the Q-VASRS abstraction of the
loop pictured in Figure 2c captures the understanding that the loop must oscil-
late between the two paths. The loop summary obtained from the reachability
relation of this Q-VASRS is powerful enough to prove the invariant 2x ≤ i holds
(under the precondition x = 0 ∧ i = 1).

int x = 0; i = 1

while (*) do
if i%2 == 0 then

i := i + 1

else
i := i + 1

x := x + 1

(a) Oscillating loop


[
i
x

]
7→
[
i+ 1
x+ 1

]
,[

i
x

]
7→
[
i+ 1
x

]


(b) Q-VASR abstraction.

i%2 == 0 i%2 == 1

[
i
x

]
7→
[
i+ 1
x

]

[
i
x

]
7→
[
i+ 1
x+ 1

]
(c) Q-VASRS abstraction.

Fig. 2: An oscillating loop and its representation as a Q-VASR and Q-VASRS.

4.1 Technical details

In the following, we give a method for over-approximating the transitive closure
of a transition formula F (x,x′) using a Q-VASRS. We start by defining predi-
cate Q-VASRS, a variation of Q-VASRS with control states that correspond to
disjoint state predicates (where the states intuitively belong to the transition
formula F rather than the Q-VASRS itself). We extend linear simulations and
best abstractions to predicate Q-VASRS, and give an algorithm for synthesizing
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best predicate Q-VASRS abstractions (for a given set of predicates). Finally, we
give an end-to-end algorithm for over-approximating the transitive closure of a
transition formula.

Definition 6. A predicate Q-VASRS over x is a Q-VASRS V = (P,E), such
that each control state is a predicate over the variables x and the predicates in
P are pairwise inconsistent (for all p 6= q ∈ P , p ∧ q is unsatisfiable).

We extend linear simulations to predicate Q-VASRS as follows:

– Let F (x,x′) be an n-dimensional transition formula and let V = (P,E) be
an m-dimensional Q-VASRS over x. We say that a linear transformation
S : Qm×n is a linear simulation from F to V if for all u,v ∈ Qn such that
u→F v, (1) there is a (unique) p ∈ P such that p(u) is valid (2) there is a
(unique) q ∈ P such that q(v) is valid, and (3) (p, Su)→V (q, Sv).

– Let V1 = (P 1, E1) and V2 = (P 2, E2) be predicate Q-VASRSs over x (for
some x) of dimensions d and e, respectively. We say that a linear transforma-
tion S : Qe×d is a linear simulation from V1 to V2 if for all p1, q1 ∈ P 1 and for
all u,v ∈ Qd such that (p1,u)→V1 (q1,v), there exists (unique) p2, q2 ∈ P 2

such that (1) (p2, Su)→V2 (q2, Sv), (2) p1 |= p2, and (3) q1 |= q2.

We define a Q-VASRS abstraction over x = x1, ..., xn to be a pair (S,V)
consisting of a rational matrix S ∈ Qd×n and a predicate Q-VASRS of dimension
d over x. We extend the simulation preorder � to Q-VASRS abstractions in the
natural way. Extending the definition of “best” abstractions requires more care,
since we can always find a “better” Q-VASRS abstraction (strictly smaller in �
order) by using a finer set of predicates. However, if we consider only predicate
Q-VASRS that share the same set of control states, then best abstractions do
exist and can be computed using Algorithm 3.

Algorithm 3: abstract-VASRS(F, P )

input : Transition formula F (x,x′), set of pairwise-disjoint predicates P over
x such that for all u,v with u→F v, there exists p, q ∈ P with p(u)
and q(v) both valid

output: Best Q-VASRS abstraction of F with control states P
1 For all p, q ∈ P , let (Sp,q, Vp,q)← abstract-VASR(p(x) ∧ F (x,x′) ∧ q(x′));
2 (S, V )← least upper bound of all (Sp,q, Vp,q);
3 For all p, q ∈ P , let Tp,q ← the simulation matrix from (Sp,q, Vp,q) to (S, V );
4 E = {(p, r,a, q) : p, q ∈ P, (r,a) ∈ image(Vp,q, Tp,q)};
5 return (S, (P,E))

Algorithm 3 works as follows: first, for each pair of formulas p, q ∈ P , compute
a best Q-VASR abstraction of the formula p(x) ∧ F (x,x′) ∧ q(x′) and call it
(Sp,q, V p,q). (Sp,q, V p,q) over-approximates the transitions of F that begin in a
program state satisfying p and end in a program state satisfying q. Second, we
compute the least upper bound of all Q-VASR abstractions (Sp,q, V p,q) to get
a Q-VASR abstraction (S, V ) for F . As a side-effect of the least upper bound
computation, we obtain a linear simulation Tp,q from (Sp,q, Vp,q) to (S, V ) for
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each p, q. A best Q-VASRS abstraction of F (x,x′) with control states P has S
as its simulation matrix and has the image of Vp,q under Tp,q as the edges from
p to q.

Proposition 3. Let F (x,x′) be a transition formula and let P be a set of pair-
wise inconsistent control states over x such that for each transition u →F v,
there exists a control states p, q ∈ P such that u |= p and v |= q. Algorithm 3
computes a predicate Q-VASRS abstraction of F with control states P . Moreover,
if F is in ∃LRA, algorithm 3 computes a best predicate Q-VASRS abstraction of
F with control states P .

We now describe iter-VASRS (Algorithm 4), which uses Q-VASRS to over-
approximate the transitive closure of transition formulas. Towards our goal of
predictable program analysis, we desire the analysis to be monotone in the
sense that if F and G are transition formulas such that F entails G, then
iter-VASRS(F ) entails iter-VASRS(G). A sufficient condition to guarantee mono-
tonicity of the overall analysis is to require that the set of control states that
we compute for F is at least as fine as the set of control states we compute for
G. We can achieve this by making the set of control states P of input transi-
tion formula F (x,x′) equal to the set of connected regions of the topological
closure of ∃x′.F (lines 1-4). Note that this set of predicates may fail the contract
of abstract-VASRS: there may exist a transition u →F v such that v 6|=

∨
P

(this occurs when there is a state of F with no outgoing transitions). As a result,
(S,V) = abstract-VASRS(F, P ) does not necessarily approximate F ; however, it
does over-approximate F ∧

∨
P (x′). An over-approximation of the transitive clo-

sure of F can easily be obtained from reach(V)(Sx, Sx′) (the over-approximation
of the transitive closure of F ∧

∨
P (x′) obtained from the Q-VASRS abstraction

(S,V)) by sequentially composing with the disjunction of F and the identity
relation (line 6).

Algorithm 4: iter-VASRS(F )

input : Transition formula F (x,x′)
output: Over-approximation of the transitive closure of F

1 P ← topological closure of DNF of ∃x′.F (see [17]);
2 /* Compute connected regions */

3 while ∃p1, p2 ∈ P with p1 ∧ p2 satisfiable do
4 P ← (P \ {p1, p2}) ∪ {p1 ∨ p2}
5 (S,V)← abstract-VASRS(F, P );
6 return reach(V)(Sx, Sx′) ◦ (x′ = x ∨ F )

Precision improvement The abstract-VASRS algorithm uses predicates to infer
the control structure of a Q-VASRS, but after computing the Q-VASRS abstrac-
tion, iter-VASRS makes no further use of the predicates (i.e., the predicates are
irrelevant in the computation of reach(V)). Predicates can be used to improve
iter-VASRS as follows: the reachability relation of a Q-VASRS is expressed by
a formula that uses auxiliary variables to represent the state at which the com-
putation begins and ends [8]. These variables can be used to encode that the
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pre-state of the transitive closure must satisfy the predicate corresponding to
the begin state and the post-state must satisfy the predicate corresponding to
the end state. As an example, consider the Figure 2 and suppose that we wish
to prove the invariant x ≤ 2i under the pre-condition i = 0 ∧ x = 0. While this
invariant holds, we cannot prove it because there is counter example if the com-
putation begins at i%2 == 1. By applying the above improvement, we can prove
that the computation must begin at i%2 == 0, and the invariant is verified.

5 Evaluation

The goals of our evaluation is the answer the following questions:

– Are Q-VASR sufficiently expressive to be able to generate accurate loop
summaries?

– Does the Q-VASRS technique improve upon the precision of Q-VASR?
– Are the Q-VASR/Q-VASRS loop summarization algorithms performant?

We implemented our loop summarization procedure and the compositional
whole-program summarization technique described in Section 1.1. We ran on a
suite of 165 benchmarks, drawn from the C4B [2] and HOLA [4] suites, as well
as the safe, integer-only benchmarks in the loops category of SV-Comp 2019
[22]. We ran each benchmark with a time-out of 5 minutes, and recorded how
many benchmarks were proved safe by our Q-VASR-based technique and our Q-
VASRS-based technique. For context, we also compare with CRA [14] (a related
loop summarization technique), as well as SeaHorn [7] and UltimateAutomizer
[9] (state-of-the-art software model checkers). The results are shown in Figure 3.

The number of assertions proved correct using Q-VASR is comparable to
both SeaHorn and UltimateAutomizer, demonstrating that Q-VASR can indeed
model interesting loop phenomena. Q-VASRS-based summarization significantly
improves precision, proving the correctness of 93% of assertions in the svcomp
suite, and more than any other tool in total. Note that the most precise tool for
each suite is not strictly better than each of the other tools; in particular, there
is only a single program in the HOLA suite that neither Q-VASRS nor CRA can
prove safe.

CRA-based summarization is the most performant of all the compared tech-
niques, followed by Q-VASR and Q-VASRS. SeaHorn and UltimateAutomizer
employ abstraction-refinement loops, and so take significantly longer to run the
test suite.

Q-VASR Q-VASRS CRA SeaHorn UltAuto
#safe time #safe time #safe time #safe time #safe time

C4B 35 21 37.9 31 35.4 27 33.1 23 2434.4 25 3881.6
HOLA 46 32 57.2 39 73.0 40 56.0 35 2115.0 36 2995.9
svcomp19-int 84 68 86.9 78 184.5 76 91.9 62 3038.0 64 6923.5

Fig. 3: Experimental results.
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6 Related work

Compositional analysis Our analysis follows the same high-level structure as
compositional recurrence analysis (CRA) [5, 14]. Our analysis differs from CRA
in the way that it summarizes loops: we compute loop summaries by over-
approximating loops with vector addition systems and computing reachability
relations, whereas CRA computes loop summaries by extracting recurrence re-
lations and computing closed forms. The advantage of our approach is that is
that we can use Q-VASR to accurately model multi-path loops and can make
theoretical guarantees about the precision of our analysis; the advantage of CRA
is its ability to generate non-linear invariants.

Vector addition systems Our invariant generation method draws upon Haase and
Halfon’s polytime procedure for computing the reachability relation of integer
vector addition systems with states and resets [8]. Generalization from the integer
case to the rational case is straightforward. Continuous Petri nets [3] are a related
generalization of vector addition systems, where time is taken to be continuous
(Q-VASR, in contrast, have rational state spaces but discrete time). Reachability
for continuous Petri nets is computable polytime [6] and definable in ∃LRA [1].

Sinn et al. present a technique for resource bound analysis that is based
on modeling programs by lossy vector addition system with states [21]. Sinn et
al. model programs using vector addition systems with states over the natural
numbers, which enables them to use termination bounds for VASS to compute
upper bounds on resource usage. In contrast, we use VASS with resets over the
rationals, which (in contrast to VASS over N) have a ∃LIRA-definable reacha-
bility relation, enabling us to summarize loops. Moreover, Sinn et al.’s method
for extracting VASS models of programs is heuristic, whereas our method gives
precision guarantees.

Affine and polynomial programs The problem of polynomial invariant generation
has been investigated for various program models that generalize Q-VASR, in-
cluding solvable polynomial loops [19], (extended) P-solvable loops [15, 11], and
affine programs [10]. Like ours, these techniques are predictable in the sense that
they can make theoretical guarantees about invariant quality. The kinds invari-
ants that can be produced using these techniques (conjunctions of polynomial
equations) is incomparable with those generated by the method presented in this
paper (∃LIRA formulas).

Symbolic abstraction The main contribution of this paper is a technique for
synthesizing the best abstraction of a transition formula expressible in the lan-
guage of Q-VASR (with or without states). This is closely related to the symbolic
abstraction problem, which computes the best abstraction of a formula within
an abstract domain. The problem of computing best abstractions has been un-
dertaken for finite-height abstract domains [18], template constraint matrices
(including intervals and octagons) [16], and polyhedra [24, 5]. Our best abstrac-
tion result differs in that (1) it is for a disjunctive domain and (2) the notion of
“best” is based on simulation rather than the typical order-theoretic framework.
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7 Proofs

Proposition 1. For any consistent, conjunctive transition formula C, α̂(C) is
a Q-VASR abstraction of C. If C is expressed in ∃LRA, then α̂(C) is best.

Proof. Let C be a consistent, conjunctive transition formula and let (S, V ) =
α̂(C) be a Q-VASR abstraction. Clearly we have that C 
S V—it remains to

show that α̂(C) is best. Suppose that (S̃, Ṽ ) is a Q-VASR abstraction such that

C 
S̃ Ṽ . We must show that there exists a linear simulation T such that V 
T Ṽ

and S̃ = TS.
First, we show that there is a single transition (r̃, ã) ∈ Ṽ that simulates

C (i.e., C 
S̃ {(r̃, ã)}). This follows essentially from the fact that linear ra-
tional arithmetic is a convex theory; for completeness, we make an explicit ar-
gument. By the well-ordering principle, it is sufficient to prove that if Ṽ =
{(r̃1, ã1), ..., (r̃n, ãn)} is a Q-VASR such that C 
S̃ Ṽ and if there is no proper

subset U of Ṽ such that C 6
S̃ U , then we must have n = 1. For a contradiction,
suppose n > 1, and let U1 = {(r̃1, ã1)} and U2 = {(r̃2, ã2), ..., (r̃n, ãn)}. Since

C 6
S̃ U1, there is a transition u1 →C v1 such that S̃u1 6→U1
S̃v1. Since C 6
S̃ U2

there is a transition u2 →C v2 such that S̃u2 6→U2 S̃v2. Geometrically, C forms
a convex polyhedron to which the points (u1,v1) and (u2,v2) belong. By con-
vexity, every point on the line segment from (u1,v1) and (u2,v2) belongs to C;
that is, for all k ∈ [0, 1] we have (ku1 + (1− k)u2)→C (kv1 + (1− k)v2). Since
there are infinitely many transitions along the line segment and each one must
have a corresponding transition in Ṽ that simulates it, there must exist some
i ∈ {1, ..., n} such that the set Ai of transitions that are simulated by transition
(r̃i, ãi),

Ai = {(u,v) : S̃u→(r̃i,ãi) S̃v} = {(u,v) : S̃v = r̃i ∗ S̃u + ãi} ,
contains at least two points on the line segment. Since Ai is an affine space and
contains at least two points on the line segment, it must contain all points on
the entire line that connects (u1,v1) and (u2,v2) (and in particular the points

(u1,v1) and (u2,v2) themselves). Since S̃u1 →(r̃i,ãi)
S̃v1 and (by construction)

S̃u1 6→U1
S̃v1, we cannot have i = 1. Since S̃u2 →(r̃i,ãi) S̃v2 and (by construc-

tion) S̃u2 6→U2
S̃v2 we also cannot have i 6= 1, a contradiction.

Next we construct a matrix T such that TS = S̃ and that V 
T Ṽ . Recall
that α̂(C) is defined to be (S, {(r,a)}), with

S ,

s1

...
sd

 r , [ 0 · · · 0︸ ︷︷ ︸
m times

(d−m) times︷ ︸︸ ︷
1 · · · 1 ] a ,

a1

...
ad


and where {〈s1, a1〉, ..., 〈sm, am〉} is a basis for the vector space ResC , {〈s, a〉 :
C |= s · x′ = a} and {〈sm+1, am+1〉, ..., 〈sd, ad〉} is a basis for the vector space
IncC = {〈s, a〉 : C |= s·x′ = s·x+a}. We form the ith row of the matrix T , Ti, as
follows. Suppose that r̃i = 0 (the case for r̃i = 1 is similar). Since C 
S̃ {(r̃, ã)},
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we have (using S̃j to denote the jth row of S̃)

C |= S̃x′ = r̃ ∗ S̃x + ã

≡
d′∧
j=1

S̃j · x′ = r̃jS̃
′
j · x + ãj

|= S̃i · x′ = r̃iS̃ · x + ãi

= S̃i · x′ = ãi

and thus we may conclude that 〈S̃i, ãi〉 ∈ ResC . It follows that there exist unique

t1, ..., tm ∈ Q such that t1〈S1,a1〉 + · · · + tm〈Sm,am〉 = 〈S̃i, ãi〉. We take Ti =[
t1 ... tm 0 ... 0

]
, and observe that TiS = S̃i. Since this holds for all i, we have

TS = S̃. For V 
T Ṽ , we suppose that u →V v and prove that Tu →Ṽ Tv.
First, note that Ti � r = 0 = r̃i. Next observe that Tia = ãi. For each i,
Tiv = Ti(r ∗ u + a) = Ti(r ∗ u) + Tia = (Ti � r)(Tiu) + Tia, and therefore

Tiv = r̃i(Tiu) + ãi. It follows that Tv = r̃∗Tu+ ã, and since (r̃, ã) ∈ Ṽ we have
Tu→Ṽ Tv.

Lemma 1. Let V 1 and V 2 be Q-VASR (of dimension d and e, respectively),
and let T ∈ Qe×d be a matrix such that V 1 
T V 2. Then T must be coherent
with respect to V 1.

Proof. Let V 1 and V 2 be Q-VASR (of dimension d and e, respectively) and let
T ∈ Qe×d. Assume that T is not coherent with respect to V 1. Then there exist
some i, j, k such that Tij and Tik are non-zero and j 6≡V 1 k. The matrix defined
by the ith row of T is incoherent with respect to V 1 and forms a linear simulation
from V 1 to the projection of V 2 onto its ith coordinate. Thus, without loss of
generality, we may assume that e = 1 and i = 1.

Since j 6≡V 1 k there is some (r,a) ∈ V 1 such that rj 6= rk. Without loss
of generality, assume rj = 1 and rk = 0. We will show that there must be
a transition 0 →V 2 z for all z ∈ Q; this is a contradiction because →V 2 is
the transition relation of a Q-VASR and therefore finitely branching. Let z ∈
Q be arbitrary. Let ej and ek denote the unit vectors in directions j and k,
respectively. Since Tej = T1j and Tek = T1k; both are non-zero by assumption.
Let u = z−Ta

Tej
ej + Ta−z

Tek
ek, and let v = r∗u + a. Since u→V 1 v and V 1 
T V 2,

we must have Tu→V 2 Tv. Finally, calculate:
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Tu = T

(
z − Ta

Tej
ej +

Ta− z
Tek

ek

)
=
z − Ta

Tej
Tej +

Ta− z
Tek

Tek

= 0

Tv = T (r ∗ u + a)

= T

(
r ∗
(
z − Ta

Tej
ej +

Ta− z
Tek

ek

)
+ a

)
= T

(
z − Ta

Tej
rjej +

Ta− z
Tek

rkek + a

)
= T

(
z − Ta

Tej
ej + a

)
=
z − Ta

Tej
Tej + Ta

= z

Lemma 2. Let V be a d-dimensional Q-VASR and let T ∈ Qe×d be a matrix
that is coherent with respect to V and has no zero rows. Then the transition
relation of image(V , T ) is the image of V ’s transition relation under T (i.e.,
→image(V ,T ) is equal to {(Tu, Tv) : u→V v}).

Proof. Suppose u →V v. Then there exists a transformer (r,a) ∈ V such that
v = r∗u+a. It follows that Tv = T (r∗u+a) = T (r∗u)+Ta = (T�r)∗(Tu)+Ta.
Since (T � r, Ta) ∈ image(V , T ), Tu →image(V ,T ) Tv. The other direction is
symmetric.

Proposition 2. Let (S1, V 1) and (S2, V 2) be normal Q-VASR abstractions of
equal concrete dimension. Then the Q-VASR abstraction (S, V ) computed by
Algorithm 2 is normal and is a least upper bound of (S1, V 2) and (S2, V 2).

Proof. Algorithm 2 takes as input (S1, V 1) and (S2, V 2) and constructs matrices
T 1 and T 2 such that V 1 |=T 1 V , V 2 |=T 2 V , and T 1S1 = S = T 2S2. Clearly,
(S, V ) is an upper bound of (S1, V 1) and (S2, V 2) in the � order. We proceed
by showing that (S, V ) is a least upper bound of (S1, V 1) and (S2, V 2) (during
which we also show (S, V ) is normal).

Let (S̃, Ṽ ) be a Q-VASR abstraction that is an upper bound of (S1, V 1) and
(S2, V 2) in the � order. By definition of �, there exist linear transformations

T̃ 1 and T̃ 2 such that T̃ 1S1 = S̃ = T̃ 2S2. Furthermore, by Lemma 1, T̃ 1 must
be coherent with respect to V 1 and T̃ 2 must be coherent with respect to V 2. To
prove that (S, V ) is a least upper bound, we need to show that (S, V ) � (S̃, Ṽ ).

Recall that (S, V ) � (S̃, Ṽ ) is defined by existence of a linear transformation T

such that (1) TS = S̃ and (2) for all u →V v, we have that Tu →Ṽ Tv. We

show that (S, V ) � (S̃, Ṽ ) by constructing a matrix T such that TT 1 = T̃ 1 and
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TT 2 = T̃ 2.

Let us first reason about why constructing a matrix T such that TT 1 = T̃ 1

and TT 2 = T̃ 2 is sufficient to prove that (S, V ) � (S̃, Ṽ ). First, recall that

T 1S1 = S and that T̃ 1S1 = S̃. Thus, TS = TT 1S1 and by substituting TT 1

with T̃ 1, we arrive at TS = T̃ 1S1 = S̃. Next, we show that if u →V v then
Tu →Ṽ Tv. Observe that V is constructed as the union of the image of V 1

under T 1 together with the image of V 2 under T 2. Lemma 2 informs us that if
u→V v, then there must exist a ū and a v̄ such that either T 1ū = u, T 1v̄ = v,
and ū→V 1 v̄ (note also that in this case u→V v can be equivalently expressed
T 1ū→V T 1v̄), or T 2ū = u, T 2v̄ = v, and ū→V 2 v̄ (note also that in this case

u→V v can be equivalently expressed T 2ū→V T 2v̄). Since (S̃, Ṽ ) is an upper

bound of (S1, V 1) and (S2, V 2), the former case implies that T̃ 1ū→Ṽ T̃ 1v̄ (and

by substitution with TT 1 = T̃ 1, we have that TT 1ū →Ṽ TT 1v̄) and the latter

case implies that T̃ 2ū →Ṽ T̃ 2v̄ (and by substitution with TT 2 = T̃ 2, we have
that TT 2ū→Ṽ TT 2v̄). Thus, Tu→Ṽ Tv.

We now show how to construct a matrix T such that TT 1 = T̃ 1 and TT 2 =
T̃ 2. We construct T on a row by row level, showing that for each row i of T̃ 1

(T̃ 2 is the same size), there is a vector ti such that tiT 1 = T̃ 1
i and tiT 2 = T̃ 2

i .
Ti is then simply equal to ti.

We proceed by reasoning about coherence classes. Recall that a linear simu-
lation of a Q-VASR must be coherent with respect to that Q-VASR (if the result

of the simulation is a new Q-VASR). So, T̃ 1
i is a row vector that is coherent with

respect to V 1 and T̃ 2
i is a row vector that is coherent with respect to V 2. Thus,

there is a coherence class Ci,1 of V 1 and a coherence class Ci,2 of V 2 such that
T̃ 1
i = t̃i,1ΠCi,1 and T̃ 2

i = t̃i,2ΠCi,2 for some vectors t̃i,1 and t̃i,2. Observe that

T (Ci,1, Ci,1) , {(t̃i,1ΠCi,1 , t̃i,2ΠCi,2) : t̃i,1ΠCi,1S1 = t̃i,2ΠCi,2S2}
is a vector space. For each coherence class Ci,1 of V 1 and Ci,2 of V 2, there
is a set C(i,1),(i,2) such that (1) the rows of ΠC(i,1),(i,2)S forms a basis for the
intersection of the rowspace ofΠCi,1S1 with the rowspace ofΠCi,2S2 (this follows
directly from the pushout procedure used in the algorithm) and (2) C(i,1),(i,2) is
a coherence class of V . To see that C(i,1),(i,2) is a coherence class of V , observe
that (1) for a Q-VASR V̄ constructed as the image of another Q-VASR V̂ under a
coherent linear transformation T̂ with no zero rows, j ≡V̄ k if and only if T̂j and

T̂k both act on (contain non-zero values exclusively in columns corresponding
to) the same coherence class of V̂ ; and (2) the coherence classes of a Q-VASR
constructed as the union of two Q-VASRs V̂ and V̄ is equal to the pairwise
intersection of each coherence class of V̂ with each coherence class of V̄ .

Note then that (1) for each coherence class C of V , the rows of ΠCS form a
basis for a vector space and thus (S, V ) is normal; and (2) there exists a ti and a t̄i

such that tiS = tiT 1S1 = T̃ 1
i S

1, tiS = tiT 2S2 = T̃ 2
i S

2, and ti = t̄iΠC(i,1),(i,2) .
This implies that there exists ti,1 and ti,2 such that tiT 1 = ti,1ΠCi,1 and tiT 2 =
ti,2ΠCi,2 . Both ΠC1S1 and ΠC2S2 are invertible and thus we use these equations
together with the fact that T̃ 1

i = t̃i,1ΠCi,1 and T̃ 2
i = t̃i,2ΠCi,2 to arrive at
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tiT 1 = T̃ 1
i and tiT 2 = T̃ 2

i .

Theorem 2. Given a transition formula F , Algorithm 1 computes a simulation
S and Q-VASR V such that F 
S V . Moreover, if F is in ∃LRA, Algorithm 1
computes a best Q-VASR abstraction of F .

Proof. We break this proof into three steps. We first show that the output of
Algorithm 1, (S, V ), is a Q-VASR abstraction of its input transition formula
F at termination. We next show that Algorithm 1 always terminates. And we
finally show that (S, V ) is a best abstraction of F when F is in ∃LRA.

1. Supposing that Algorithm 1 terminates, its output is a Q-VASR abstraction
of F . Recall that Algorithm 1 terminates when F ∧¬γ(S, V ) is unsatisfiable.

We prove this by contradiction. Assume that the algorithm terminated and
that there exists a u and v such that u →F v and Su 6→V Sv. Then
u→F∧¬γ(S,V ) v; the algorithm would not have terminated yet.

2. Next, we prove Algorithm 1 always terminates. Let (Sk, V k) denote the
Q-VASR abstraction obtained just before Algorithm 1 enters its kth loop it-
eration and let Γ k denote the formula Γ obtained at the same point in time.
Recall that Γ is the transition formula whose models are the transitions of
F that are not simulated by (S, V ). Algorithm 1 will only enter the kth loop
iteration if Γ k is satisfiable. If Γ k is satisfiable, then there must exist some
model M of Γ k and some cube C of the DNF of F such that M |= C. Algo-
rithm 1 sets (Sk+1, V k+1) equal to (Sk, V k)t α̂(C). By Proposition 1, α̂(C)
is a Q-VASR abstraction of C. For any formula C, a Q-VASR abstraction
that is a least upper bound of a Q-VASR abstraction of C together with any
other Q-VASR abstraction must also be a Q-VASR abstraction of C. Thus,
there will never be a model M of Γ k

′
for any k′ > k such that M |= C. Tran-

sition formulas are finite in size and have a finite number of cubes. Since a
new cube must be witnessed on each iteration, Algorithm 1 must terminate.

3. We now prove that (S, V ) is a best abstraction of F when F is in ∃LRA.

Assume that F is in ∃LRA and let (S̃, Ṽ ) be a Q-VASR abstraction of F .

We show that (S, V ) � (S̃, Ṽ ) via induction on the number of loop iterations
in Algorithm 1.

Initially, (S, V ) = (I, ∅). (I, ∅) is less in the � order than any Q-VASR

abstraction of the same concrete dimension. So clearly (I, ∅) � (S̃, Ṽ ).

Let (Sk, V k) denote the Q-VASR abstraction obtained just before Algo-
rithm 1 enters its kth loop iteration. Assume as the induction hypothesis that
(Sk, V k) � (S̃, Ṽ ). Let the C denote the ∃LRA cube of the DNF of F se-
lected on the kth iteration of the loop. Then (Sk+1, V k+1) = (Sk, V k)tα̂(C).

Since C |= F and F 
S̃ Ṽ , it must be the case that C 
S̃ Ṽ . By Proposi-
tion 1, α̂(C) is a Q-VASR best abstraction for C when C is in ∃LRA. Thus,

α̂(C) � (S̃, Ṽ ). By induction hypothesis, (Sk, V k) � (S̃, Ṽ ). Therefore, by

Proposition 2, (Sk+1, V k+1) � (S̃, Ṽ ). Thus, (S, V ) is a best abstraction of
F .



Loop Summarization with Rational Vector Addition Systems 23

Proposition 3. Let F (x,x′) be a transition formula and let P be a set of pair-
wise inconsistent control states over x such that for each transition u →F v,
there exists a control states p, q ∈ P such that u |= p and v |= q. Algorithm 3
computes a predicate Q-VASRS abstraction of F with control states P . Moreover,
if F is in ∃LRA, algorithm 3 computes a best predicate Q-VASRS abstraction of
F with control states P .

Proof. Let (S,V) = (S, (P,E)) be the Q-VASRS abstraction computed by Al-
gorithm 3 with input transition formula F and input control states P . We first
show that (S,V) is a Q-VASRS abstraction of F .

Define Ep,q(E) = {(r,a) : (p, (r,a), q) ∈ E}. Intuitively, (S, Ep,q(E)) is the
Q-VASR abstraction derived from the transformers that go from control state p
to control state q in the Q-VASRS abstraction (S, (P,E)). Observe that for any

Q-VASRS abstraction (S̃, (P, Ẽ)) of F with control states P , we have that F 
S̃
(P, Ẽ) when (exactly when in ∃LRA case) for each pair p, q ∈ P , there exists

a linear simulation T̃ p,q such that V
p,q

T̃p,q Ep,q(Ẽ) and T̃ p,qS

p,q
= S̃, where

(S
p,q
, V

p,q
) = abstract-VASR(p(x) ∧ F (x,x′) ∧ q(x′)). Algorithm 3 constructs

(S,V) by letting S equal the same simulation matrix in the Q-VASR abstraction⊔
p,q∈P (S

p,q
, V

p,q
) and letting Ep,q(E) be the image of V

p,q
under the simulation

matrix T p,q (here a simulation from (S
p,q
, V

p,q
) to

⊔
p,q∈P (S

p,q
, V

p,q
)). So clearly

(S,V) is a Q-VASRS abstraction of F .

We proceed by showing that if F is in ∃LRA, then for any other Q-VASRS
abstraction (S̃, Ṽ) = (S̃, (P, Ẽ)) of F (with the same set of control states P ),

(S, (P,E)) � (S̃, (P, Ẽ)). It is sufficient to prove that there exists a T such that

TS = T̃ and for each pair p, q ∈ P , Ep,q(E) 
T Ep,q(Ẽ).

From this point forward this proof is fairly similar the proof of Proposition 2.
Let T p,q be a simulation from (S

p,q
, V

p,q
) to (S, Ep,q(E)) and let T̃ p,q be a

simulation from (S
p,q
, V

p,q
) to (S̃, Ep,q(Ẽ)) (recall that T̃ p,q must exist since F

is ∃LRA). We construct T such that for any pair p, q ∈ P , we have that TT p,q =

T̃ p,q. Observe that Ep,q(E) 
T Ep,q(Ẽ) and TS = S̃ naturally follow from such
a construction: If u →Ep,q(E) v, then by Lemma 2 there is some ū and some v̄
such that T p,qū = u, T p,qv̄ = v, and ū →V

p,q v̄. Then, by definition of linear

simulation, we must have T̃ p,qū→Ep,q(Ẽ) T̃
p,qū. From here, substitution gives us

to Tu→Ep,q(Ẽ) Tu. Substitution also gives us TS = TT p,qS
p,q

= T̃ p,qS
p,q

= S̃.

We are ultimately just reasoning about matrix multiplication and so we can
reason row by row. We show that for each row i of T̃ p,q there exists a vector ti

such that for all p, q ∈ P we have that tiT p,q = T̃ p,qi . We prove that such a ti

exists by simultaneously reason about coherence classes of the Q-VASRes V
p,q

for all p, q ∈ P . For notational simplicity, we henceforth write a pair p, q ∈ P as
an element of the cartesian product of P with itself, P×P , and we let |P×P | = n.

For any j ∈ P × P , we have that T̃ jS
j

= S̃. Thus, for a fixed row i of S̃, S̃i,

we have that T̃ ji S
j

= S̃i. We can rewrite T̃ ji S
j

as t̃i,jΠCi,jS
j

for some coherence
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class Ci,j of V
j

and some vector t̃i,j . Observe that

T (Ci,1, ...Ci,n) , {(t̃i,1ΠCi,1 , ..., t̃i,nΠCi,n) : t̃i,1ΠCi,1S1 = ... = t̃i,nΠCi,nSn}
is a vector space.

So there exists a set C(i,1),...,(i,n) such that (1) ΠC(i,1),...,(i,n)S is a basis for
(∩j∈P×P the rowspace of ΠCi,jSj) and (2) C(i,1),...,(i,n) is a coherence class of
(S,V). To witness this fact, recall that the simulation matrix of (S,V) is equal

to the simulation matrix of
⊔
j∈P×P (S

j
, V

j
) and observe that the coherence

classes of (S,V) are equal to the coherence classes of
⊔
j∈P×P (S

j
, V

j
). See the

proof of Proposition 2 for a better understanding of why a basis for (∩j∈P×P
the rowspace of ΠCi,jSj) forms rows of S belonging to the same coherence class

of
⊔
j∈P×P (S

j
, V

j
) .

Thus, there exist some vector ti and some vector t̄i such that, ti = t̄iΠC(i,1),...,(i,n)

and such that for all j ∈ P × P , we have tiS = T̃ ji S
j
. The first statement taken

together with the fact that tiS = tiT jS
j

for all j ∈ P × P implies that there

exists a t̄i,j such that tiT j = t̄i,jΠCi,j . Recall that for all j ∈ P × P , ΠCi,jS
j

is invertible (abstract-VASR produces normal Q-VASR). Recall also that we

can rewrite T̃ ji as t̃i,jΠCi,j . So t̄i,jΠCi,jS
j

= t̃i,jΠCi,jS
j

and from this we can

deduce that tiT j = T̃ ji .


