Lecture 3: Model checking

Zak Kincaid

September 26, 2016

Model Checking Problem: given a Kripke structure K and an LTL formula φ , do we have $K \models \varphi$?

Model Checking, as an algorithmic discipline: exhaustively explore all possible behaviours of the system, searching for a violation. Many tools for doing this efficiently (SPIN, nuSMV).

1 Automata over infinite words

Fix a set of propositions P.

- For any Kripke structure K, define $\mathcal{L}(K) = \{L(\pi) : \pi \in Path(K)\}$
- For any LTL formula φ , define $\mathcal{L}(\varphi) \triangleq \{\pi \in (2^P)^{\omega} : \pi \models \varphi\}$ to be the set of paths that satisfy φ .

Idea: $K \models \varphi$ exactly when $\mathcal{L}(K) \subseteq \mathcal{L}(\varphi)$.

If K is finite, then the model checking problem is decidable by reduction to inclusion testing for Büchi automata: there is a Büchi automaton that recognizes both $\mathcal{L}(K)$ and $\mathcal{L}(\varphi)$, and inclusion checking is decidable.

Definition 1.1 (Büchi automaton). A (non-deterministic) Büchi automaton $A = \langle Q, \Sigma, \Delta, I, F \rangle$ where

- Q is a finite set of states
- Σ is a finite alphabet
- $\Delta \subseteq Q \times \Sigma \times Q$ is a transition relation

- $I \subseteq Q$ is a set of initial states
- $F \subseteq Q$ is a set of final states

A word $w = w_0 w_1 w_2 \dots \in \Sigma^{\omega}$ is accepted by a Büchi automaton $A = \langle Q, \Sigma, \Delta, I, F \rangle$ if there exists an *accepting run* $q_0 q_1 q_2 \dots$ consisting of an infinite sequence of states such that:

- $q_0 \in Q$ is initial
- for each $i, \langle q_i, w_i, q_{i+1} \rangle \in \Delta$
- The set $\{i : q_i \in F\}$ is infinite

Proposition 1.2. Let K be a Kripke structure. There is a Büchi automaton A(K) such that $\mathcal{L}(A(K)) = \mathcal{L}(K)$.

Proof. Let $K = \langle K_S, K_I, K_R, K_L \rangle$ be a Kripke structure over a set of propositions P (for simplicity, suppose K_R is total). Define $A(K) = \{A_K, A_\Sigma, A_\Delta, A_I, A_F\}$ where

- $A_Q = K_S$
- $A_{\Sigma} = 2^P$
- $A_{\Delta} = \{ \langle s, K_L(s), t \rangle : s K_R t \}$
- $A_I = K_I$
- $A_F = K_S$

Proposition 1.3. For any Büchi automata A and B, there is an automaton that recognizes $\mathcal{L}(A) \cap \mathcal{L}(B)$.

Proof. Construct as follows:

- $Q = A_Q \times B_Q \times \{A, B\}$
- $\Sigma = A_{\Sigma}$
- The transition relation Δ is defined to be the set of all $\langle (a, b, c), \sigma, (a', b', c) \rangle$ such that:

$$- \langle a, \sigma, a' \rangle \in \Delta_A,$$

$$- \langle b, \sigma, b' \rangle \in \Delta_B,$$

$$- c = A, a \in A_F \text{ implies } c' = B$$

$$- c = B, b \in B_F \text{ implies } c' = A$$

$$- c = A \land a \notin A_F \text{ or } c = B \land b \notin B_F \text{ implies } c' = c.$$

$$- A_I = \{(a, b, A) : a \in A_I, b \in B_I\}$$

$$- A_F = \{\langle a, b, B \rangle : b \in F\}$$

Proposition 1.4. For any Büchi automaton A, there is an automaton that recognizes $(\mathcal{L}A)$

• However, this is complicated and can be avoided: rather than checking $\mathcal{L}(A(K)) \cap \overline{\mathcal{L}(A(\varphi))} = \emptyset$, we check $\mathcal{L}(A(K)) \cap \mathcal{L}(A(\neg \varphi)) = \emptyset$.

2 LTL tableaux

Automata are *local* in the sense that they make decisions based on the next letter of the sequence. Let's localize LTL semantics so that satisfaction $\pi \models \varphi$ is expressed only in terms of π , π_0 , and $\pi[1...]$. Most are already local:

$$\pi \models p \iff \pi_0 \models p$$
$$\pi \models \varphi \lor \psi \iff \pi \models \varphi \lor \pi \models \psi$$
$$\pi \models \neg \varphi \iff \pi \not\models \varphi$$
$$\pi \models \mathbf{X}\varphi \iff \pi[1...] \models \varphi$$

The one that is not is $\varphi \mathbf{U} \psi$. However, we can take

$$\pi \models \varphi \mathbf{U} \psi \iff \pi \models \psi \text{ or } \pi \models (\varphi \land (\varphi \mathbf{U} \psi))$$

Thus, the evaluation of an LTL formula can be expressed in terms of its

sub-formulas:

$$\begin{aligned} sub(p) &= \{p\} \\ sub(\varphi_1 \lor \varphi_2) &= \{\varphi_1 \lor \varphi_2\} \cup sub(\varphi_1) \cup sub(\varphi_2) \\ sub(\neg \varphi) &= \{\neg \varphi\} \cup sub(\varphi) \\ sub(\mathbf{X}\varphi) &= \{\mathbf{X}\varphi\} \cup sub(\varphi) \\ sub(\varphi \mathbf{U} \ \psi) &= \{\varphi \mathbf{U} \ \psi, \mathbf{X}(\varphi \mathbf{U} \ \psi)\} \cup sub(\varphi) \cup sub(\psi) \end{aligned}$$

Note: $|sub(\varphi)| \leq 2|\varphi|$.

Definition 2.1. A set $\Phi \subseteq sub(\varphi)$ is consistent if:

- for all $\varphi_1 \lor \varphi_2 \in sub(\varphi), \ \varphi_1 \lor \varphi_2 \in \Phi \iff \varphi_1 \in sub(\varphi) \text{ or } \varphi_2 \in \Phi$
- for all $\neg \psi \in sub(\varphi), \ \neg \psi \in \Phi \iff \psi \notin \Phi$
- for all $\psi_1 \mathbf{U} \psi_2 \in sub(\varphi)$, $\psi_1 \mathbf{U} \psi_2 \in \Phi \iff \psi_2 \in \Phi \text{ or both } \psi_1 \in \Phi$ and $\mathbf{X}(\psi_1 \mathbf{U} \psi_2) \in \Phi$.

Definition 2.2 (Generalized Büchi automaton). A Generalized Büchi automaton (GBA) is a Büchi automaton equipped with a set \mathcal{F} of sets of final states. A word is accepted by a GBA if there is an accepting run such that each $F \in \mathcal{F}$ is visited infinitely often.

Proposition 2.3. For any generalized Büchi automaton A, there is a Büchi automaton that accepts the same language.

Proof. The construction is similar to the one for intersection. Let $A = \langle A_Q, A_\Sigma, A_\Delta, A_I, A_F \rangle$ be a GBA. Write A_F as $A_F = \{F_0, ..., F_n\}$

- $Q = A_Q \times \{0, ..., n\}$
- $\Sigma = A_{\Sigma}$
- $\Delta = \{ \langle (a,i), \sigma, (a',i') \rangle : \langle a, \sigma, a' \rangle \in \Delta_A, i' = i + 1_{a \in F_i} \mod (n+1) \}$ where $1_{a \in F_i} = \begin{cases} 1 & \text{if } a \in F_i \\ 0 & \text{otherwise} \end{cases}$
- $A_I = \{(a, 0) : a \in A_I\}$
- $A_F = \{ \langle a, n \rangle : a \in F_n \}$

Definition 2.4 (LTL tableau). Let φ be an LTL formula. Its tableau is a generalized Büchi automaton $A(\varphi) = \langle Q, \Sigma, \Delta, I, \mathcal{F} \rangle$ where

- $Q = \{ \Phi \in 2^{sub(\varphi)} : \Phi \text{ is consistent} \}$
- $\Sigma = 2^P$
- $\bullet \ \Delta = \{ \langle \Phi, \sigma, \Psi \rangle : \forall \mathbf{X} \varphi \in sub(\varphi), \mathbf{X} \varphi \in \Phi \iff \varphi \in \Psi, \sigma = P \cap \Phi \}$
- $I = \{ \Phi \in Q : \varphi \in I \}$
- For each $\varphi \mathbf{U} \psi \in sub(\varphi)$, define $F_{\varphi \mathbf{U}\psi} \triangleq \{ \Phi \in Q : \varphi \mathbf{U} \psi \notin \Phi \lor \psi \in \Phi \}$. Define $\mathcal{F} = \{ F_{\varphi \mathbf{U}\psi} : \varphi \mathbf{U} \psi \in sub(\varphi) \}$.

Theorem 2.5. $\mathcal{L}(\varphi) = \mathcal{L}(A(\varphi)).$

Proof. For any path π , define $sat_{\varphi}(\pi) \triangleq \{\psi \in sub(\varphi) : \pi \models \varphi\}$. Clearly, $sat_{\varphi}(\pi)$ is consistent for any π .

" $\mathcal{L}(\varphi) \subseteq \mathcal{L}(A(\varphi))$ ". Prove that for any $\pi \in \mathcal{L}(\varphi)$ we have $\pi \in \mathcal{L}(A(\varphi))$. We want to show that

$$sat_{\varphi}(\pi)sat_{\varphi}(\pi[1...])sat_{\varphi}(\pi[2...])$$

is an accepting run. To show that this is a run of $A(\varphi)$, we must show that for any π , $\langle sat_{\varphi}(\pi), \pi_0, sat_{\varphi}(\pi[1...]) \rangle \in \Delta$. This follows directly from the definitions. To show that this is an *accepting* run, we must show that it meets each $F_{\psi_1 \mathbf{U} \psi_2}$ infinitely often. It must be the case that either

- $\psi_1 \mathbf{U} \psi_2$ is satisfied infinitely often, and so ψ_2 must also be satisfied infinitely often (and so $sat_{\varphi}(\pi[i...])$ contains ψ_2 infinitely often), or
- $\psi_1 \mathbf{U} \psi_2$ is not satisfied infinitely often (and so $sat_{\varphi}(\pi[i...])$ doesn't contain $\psi_1 \mathbf{U} \psi_2$ infinitely often).

" $\mathcal{L}(A(\varphi)) \subseteq \mathcal{L}(\varphi)$ " We prove that for all $\psi \in sub(\varphi)$, for all consistent Φ and all $\pi \in \mathcal{L}(\Phi)$, $\psi \in \Phi \iff \pi \models \psi$. Since the accepting states of $A(\varphi)$ all contain φ this implies that $\mathcal{L}(A(\varphi)) \subseteq \mathcal{L}(\varphi)$. We prove the result by induction on ψ . Let Φ be a consistent set and let $\pi \in \mathcal{L}(\Phi)$.

- Case $p \in P$: $\pi \in \mathcal{L}(\Phi)$ implies that $\pi_0 = P \cap \Phi$ (by def'n of Δ). $\pi \models p \iff \pi_0 \models p \iff p \in \Phi.$
- Case $\psi_1 \lor \psi_2$: By consistency, $\psi_1 \lor \psi_2 \in \Phi \iff \psi_1 \in \Phi \lor \psi_2 \in \Phi$. By the induction hypothesis, $\psi_1 \in \Phi \iff \pi \models \psi_1$ and $\psi_2 \in \Phi \iff \pi \models \psi_2$, so $\psi_1 \lor \psi_2 \in \Phi \iff \pi \models \psi_1 \lor \pi \models \psi_2 \iff \pi \models \psi_1 \lor \psi_2$.

- Case $\neg \psi$: By consistency, $\neg \psi \in \Phi \iff \psi \notin \varphi$. By induction hypothesis, $\psi \notin \Phi \iff \pi \not\models \varphi$. So $\psi \in \Phi \iff \pi \notin \varphi \iff \pi \models \varphi$.
- Case $\mathbf{X}\psi$: Since $\pi \in \mathcal{L}(\Phi)$, there is some Φ' such that $\pi[1...] \in \mathcal{L}(\Phi')$ and $\langle \Phi, \pi_0, \Phi' \rangle \in \Delta$. By def'n, $\mathbf{X}\psi \in \Phi \iff \psi \in \Phi'$ By the induction hypothesis, $\pi[1...] \in \mathcal{L}(\Phi')$ entails that $\varphi \in \Phi' \iff \pi[1...] \models \psi$. So $\mathbf{X}\psi \in \Phi \iff \pi \models \mathbf{X}\psi$.
- Case $\psi_1 \mathbf{U} \psi_2$: Let $\Phi_0 \Phi_1 \dots$ be an accepting run for π .
 - $-\pi \models \psi_1 \mathbf{U} \psi_2$: There exists some *least i* such that $\pi[j...] \models \psi_2$ and $\pi[i...] \models \psi_1$ for all j < i. By the induction hypothesis, $\psi_2 \in \Phi_i$ and $\psi_1 \in \Phi_j$ for all j < i. We may prove by induction that $\psi_1 \mathbf{U} \psi_2 \in \Phi_j$ for all $j \leq i$, so $\psi_1 \mathbf{U} \psi_2 \in \Phi$.
 - $-\pi \not\models \psi_1 \mathbf{U} \psi_2$:
 - * Case $\pi[i...] \models \psi_1$ for all i, and $\pi[i...] \not\models \psi_2$ for all i. By IH, $\psi_1 \in \Phi_i$ for all i and $\psi_2 \notin \Phi_i$ for all i. For a contradiction, suppose that $\psi_1 \mathbf{U} \psi_2 \in \Phi$. Prove by induction that $\psi_1 \mathbf{U} \psi_2 \in \Phi_i$ for all i. This contradicts the fact that infinitely many Φ_i must be in $F_{\psi_1 \mathbf{U} \psi_2}$.
 - * Case there exists some *least i* such that $\pi[i...] \not\models \psi_1, \pi[i...] \not\models \psi_2$, and $\pi[j...] \models \psi_1$ for all j < i. By the induction hypothesis, $\psi_1 \in \Phi_j$ for all j < i, and $\psi_1, \psi_2 \notin \Phi_j$. Prove by induction that for all $j \leq i, \psi_1 \mathbf{U} \psi_2 \notin \Phi_j$.