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Model Checking Problem: given a Kripke structure K and an LTL for-
mula ϕ, do we have K |= ϕ?

Model Checking, as an algorithmic discipline: exhaustively explore all
possible behaviours of the system, searching for a violation. Many tools for
doing this efficiently (SPIN, nuSMV).

1 Automata over infinite words

Fix a set of propositions P .

• For any Kripke structure K, define L(K) = {L(π) : π ∈ Path(K)}

• For any LTL formula ϕ, define L(ϕ) , {π ∈ (2P )ω : π |= ϕ} to be the
set of paths that satisfy ϕ.

Idea: K |= ϕ exactly when L(K) ⊆ L(ϕ).
If K is finite, then the model checking problem is decidable by reduction

to inclusion testing for Büchi automata: there is a Büchi automaton that
recognizes both L(K) and L(ϕ), and inclusion checking is decidable.

Definition 1.1 (Büchi automaton). A (non-deterministic) Büchi automaton
A = 〈Q,Σ,∆, I, F 〉 where

• Q is a finite set of states

• Σ is a finite alphabet

• ∆ ⊆ Q× Σ×Q is a transition relation
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• I ⊆ Q is a set of initial states

• F ⊆ Q is a set of final states

A word w = w0w1w2... ∈ Σω is accepted by a Büchi automaton A =
〈Q,Σ,∆, I, F 〉 if there exists an accepting run q0q1q2... consisting of an infinite
sequence of states such that:

• q0 ∈ Q is initial

• for each i, 〈qi, wi, qi+1〉 ∈ ∆

• The set {i : qi ∈ F} is infinite

Proposition 1.2. Let K be a Kripke structure. There is a Büchi automaton
A(K) such that L(A(K)) = L(K).

Proof. Let K = 〈KS, KI , KR, KL〉 be a Kripke structure over a set of proposi-
tions P (for simplicity, supposeKR is total). DefineA(K) = {AK , AΣ, A∆, AI , AF}
where

• AQ = KS

• AΣ = 2P

• A∆ = {〈s,KL(s), t〉 : s KR t}

• AI = KI

• AF = KS

Proposition 1.3. For any Büchi automata A and B, there is an automaton
that recognizes L(A) ∩ L(B).

Proof. Construct as follows:

• Q = AQ ×BQ × {A,B}

• Σ = AΣ

• The transition relation ∆ is defined to be the set of all 〈(a, b, c), σ, (a′, b′, c)〉
such that:
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– 〈a, σ, a′〉 ∈ ∆A,

– 〈b, σ, b′〉 ∈ ∆B,

– c = A, a ∈ AF implies c′ = B

– c = B, b ∈ BF implies c′ = A

– c = A ∧ a /∈ AF or c = B ∧ b /∈ BF implies c′ = c.

– AI = {(a, b, A) : a ∈ AI , b ∈ BI}
– AF = {〈a, b, B〉 : b ∈ F}

Proposition 1.4. For any Büchi automaton A, there is an automaton that
recognizes (LA)

• However, this is complicated and can be avoided: rather than checking
L(A(K)) ∩ L(A(ϕ)) = ∅, we check L(A(K)) ∩ L(A(¬ϕ)) = ∅.

2 LTL tableaux

Automata are local in the sense that they make decisions based on the next
letter of the sequence. Let’s localize LTL semantics so that satisfaction π |= ϕ
is expressed only in terms of π, π0, and π[1...]. Most are already local:

π |= p ⇐⇒ π0 |= p

π |= ϕ ∨ ψ ⇐⇒ π |= ϕ ∨ π |= ψ

π |= ¬ϕ ⇐⇒ π 6|= ϕ

π |= Xϕ ⇐⇒ π[1...] |= ϕ

The one that is not is ϕ U ψ. However, we can take

π |= ϕ U ψ ⇐⇒ π |= ψ or π |= (ϕ ∧ (ϕ U ψ))

Thus, the evaluation of an LTL formula can be expressed in terms of its
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sub-formulas:

sub(p) = {p}
sub(ϕ1 ∨ ϕ2) = {ϕ1 ∨ ϕ2} ∪ sub(ϕ1) ∪ sub(ϕ2)

sub(¬ϕ) = {¬ϕ} ∪ sub(ϕ)

sub(Xϕ) = {Xϕ} ∪ sub(ϕ)

sub(ϕ U ψ) = {ϕ U ψ,X(ϕ U ψ)} ∪ sub(ϕ) ∪ sub(ψ)

Note: |sub(ϕ)| ≤ 2|ϕ|.

Definition 2.1. A set Φ ⊆ sub(ϕ) is consistent if:

• for all ϕ1 ∨ ϕ2 ∈ sub(ϕ), ϕ1 ∨ ϕ2 ∈ Φ ⇐⇒ ϕ1 ∈ sub(ϕ) or ϕ2 ∈ Φ

• for all ¬ψ ∈ sub(ϕ), ¬ψ ∈ Φ ⇐⇒ ψ /∈ Φ

• for all ψ1 U ψ2 ∈ sub(ϕ), ψ1 U ψ2 ∈ Φ ⇐⇒ ψ2 ∈ Φ or both ψ1 ∈ Φ
and X(ψ1 U ψ2) ∈ Φ.

Definition 2.2 (Generalized Büchi automaton). A Generalized Büchi au-
tomaton (GBA) is a Büchi automaton equipped with a set F of sets of final
states. A word is accepted by a GBA if there is an accepting run such that
each F ∈ F is visited infinitely often.

Proposition 2.3. For any generalized Büchi automaton A, there is a Büchi
automaton that accepts the same language.

Proof. The construction is similar to the one for intersection. Let A =
〈AQ, AΣ, A∆, AI , AF〉 be a GBA. Write AF as AF = {F0, ..., Fn}
• Q = AQ × {0, ..., n}
• Σ = AΣ

• ∆ = {〈(a, i), σ, (a′, i′)〉 : 〈a, σ, a′〉 ∈ ∆A, i
′ = i + 1a∈Fi

mod (n + 1)}

where 1a∈Fi
=

{
1 if a ∈ Fi
0 otherwise

• AI = {(a, 0) : a ∈ AI}
• AF = {〈a, n〉 : a ∈ Fn}
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Definition 2.4 (LTL tableau). Let ϕ be an LTL formula. Its tableau is a
generalized Büchi automaton A(ϕ) = 〈Q,Σ,∆, I,F〉 where

• Q = {Φ ∈ 2sub(ϕ) : Φ is consistent}
• Σ = 2P

• ∆ = {〈Φ, σ,Ψ〉 : ∀Xϕ ∈ sub(ϕ),Xϕ ∈ Φ ⇐⇒ ϕ ∈ Ψ, σ = P ∩ Φ}
• I = {Φ ∈ Q : ϕ ∈ I}
• For each ϕ U ψ ∈ sub(ϕ), define FϕUψ , {Φ ∈ Q : ϕ U ψ /∈ Φ∨ψ ∈ Φ}.

Define F = {FϕUψ : ϕ U ψ ∈ sub(ϕ)}.

Theorem 2.5. L(ϕ) = L(A(ϕ)).

Proof. For any path π, define satϕ(π) , {ψ ∈ sub(ϕ) : π |= ϕ}. Clearly,
satϕ(π) is consistent for any π.

“L(ϕ) ⊆ L(A(ϕ))”. Prove that for any π ∈ L(ϕ) we have π ∈ L(A(ϕ)).
We want to show that

satϕ(π)satϕ(π[1...])satϕ(π[2...])

is an accepting run. To show that this is a run of A(ϕ), we must show
that for any π, 〈satϕ(π), π0, satϕ(π[1...])〉 ∈ ∆. This follows directly from
the definitions. To show that this is an accepting run, we must show that it
meets each Fψ1Uψ2 infinitely often. It must be the case that either

• ψ1 U ψ2 is satisfied infinitely often, and so ψ2 must also be satisfied
infinitely often (and so satϕ(π[i...]) contains ψ2 infinitely often), or

• ψ1 U ψ2 is not satisfied infinitely often (and so satϕ(π[i...]) doesn’t
contain ψ1 U ψ2 infinitely often).

“L(A(ϕ)) ⊆ L(ϕ)” We prove that for all ψ ∈ sub(ϕ), for all consistent
Φ and all π ∈ L(Φ), ψ ∈ Φ ⇐⇒ π |= ψ. Since the accepting states of
A(ϕ) all contain ϕ this implies that L(A(ϕ)) ⊆ L(ϕ). We prove the result
by induction on ψ. Let Φ be a consistent set and let π ∈ L(Φ).

• Case p ∈ P : π ∈ L(Φ) implies that π0 = P ∩ Φ (by def’n of ∆).
π |= p ⇐⇒ π0 |= p ⇐⇒ p ∈ Φ.

• Case ψ1∨ψ2: By consistency, ψ1∨ψ2 ∈ Φ ⇐⇒ ψ1 ∈ Φ∨ψ2 ∈ Φ. By the
induction hypothesis, ψ1 ∈ Φ ⇐⇒ π |= ψ1 and ψ2 ∈ Φ ⇐⇒ π |= ψ2,
so ψ1 ∨ ψ2 ∈ Φ ⇐⇒ π |= ψ1 ∨ π |= ψ2 ⇐⇒ π |= ψ1 ∨ ψ2.
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• Case ¬ψ: By consistency, ¬ψ ∈ Φ ⇐⇒ ψ /∈ ϕ. By induction hypothe-
sis, ψ /∈ Φ ⇐⇒ π 6|= ϕ. So 6 ψ ∈ Φ ⇐⇒ π /∈ ϕ ⇐⇒ π |=6 ϕ.

• Case Xψ: Since π ∈ L(Φ), there is some Φ′ such that π[1...] ∈ L(Φ′)
and 〈Φ, π0,Φ

′〉 ∈ ∆. By def’n, Xψ ∈ Φ ⇐⇒ ψ ∈ Φ′ By the induction
hypothesis, π[1...] ∈ L(Φ′) entails that ϕ ∈ Φ′ ⇐⇒ π[1...] |= ψ. So
Xψ ∈ Φ ⇐⇒ π |= Xψ.

• Case ψ1 U ψ2: Let Φ0Φ1... be an accepting run for π.

– π |= ψ1 U ψ2: There exists some least i such that π[j...] |= ψ2 and
π[i...] |= ψ1 for all j < i. By the induction hypothesis, ψ2 ∈ Φi and
ψ1 ∈ Φj for all j < i. We may prove by induction that ψ1 U ψ2 ∈ Φj

for all j ≤ i, so ψ1 U ψ2 ∈ Φ.

– π 6|= ψ1 U ψ2:

∗ Case π[i...] |= ψ1 for all i, and π[i...] 6|= ψ2 for all i. By IH, ψ1 ∈
Φi for all i and ψ2 /∈ Φi for all i. For a contradiction, suppose
that ψ1 U ψ2 ∈ Φ. Prove by induction that ψ1 U ψ2 ∈ Φi for
all i. This contradicts the fact that infinitely many Φi must be
in Fψ1Uψ2 .

∗ Case there exists some least i such that π[i...] 6|= ψ1, π[i...] 6|= ψ2,
and π[j...] |= ψ1 for all j < i. By the induction hypothesis,
ψ1 ∈ Φj for all j < i, and ψ1, ψ2 /∈ Φj. Prove by induction that
for all j ≤ i, ψ1 U ψ2 /∈ Φj.
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