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Abstract. This paper introduces Semi-Linear Integer Vector Addition
Systems with Resets (SVASR). A SVASR is a labeled transition sys-
tem in which the states are finite-dimensional integer-valued vectors and
which transitions from one state to another by applying an orthogonal
projection followed by a translation drawn from a semi-linear set. We
give a polynomial-time reduction of SVASR reachability to that of Inte-
ger Vector Addition Systems with Resets.

We then consider the use of SVASRs for over-approximating the reach-
ability relation of transition systems in which the transition relation is
a semi-linear set. We show that any semi-linear transition system has a
“best” SVASR that simulates its behavior, called its SVASR-reflection.
The dimension of the SVASR-reflection of a semi-linear transition system
T with states is exponential in the number of states; however, we show
that the over-approximate reachability induced by T ’s SVASR-reflection
can be computed in polynomial time.

Keywords: Vector Addition Systems · Linear Integer Arithmetic

1 Introduction

Vector Addition Systems (VAS) are a widely-studied class of infinite-state tran-
sition systems. Classically, states of these systems are finite vectors over the
naturals and transitions increment the state by a translation vector over the
integers drawn from a finite set. Haase and Halfon initiated the study of integer
VAS, in which states are integer-valued vectors, and showed that the reachabil-
ity relation for integer VAS is definable in linear integer arithmetic even in the
presence of states and resets [3]. In a separate line of work, Piskac and Kunčak
showed that linear integer arithmetic is effectively closed under star—i.e., if F (x)
is a linear integer arithmetic formula, then the set {∑n

i=1 mi : n ∈ N,∀i.mi |= F}
is LIA-definable [9].

In this paper, we study a common generalization of these two lines of work:
integer vector addition systems with resets in which the set of translation vectors
is infinite but LIA-definable, or equivalently a semi-linear set. We refer to such
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transition systems as Semi-Linear Integer VAS with Resets (SVASR). We show
that that reachability of SVASR reduces to that of integer VAS with resets
(VASR).

Next, we consider the application of SVASRs to over-approximate the reach-
ability relation of semi-linear transition systems—transition systems for which
the transition relation is a semi-linear set (or equivalently LIA-definable). The
reachability problem for this class of transition system is undecidable, since
it generalizes counter machines. Following the strategy of [8,10], we can over-
approximate the reachability relation of a semi-linear transition system by (1)
computing a SVASR that simulates it and (2) computing the inverse image of
the reachability relation of this SVASR under the simulation. We show that
every semi-linear transition system has a best abstraction as a SVASR called its
SVASR reflection. It is best in the sense that the reflection’s transition relation
over-approximates the semi-linear transition system’s at least as precisely as any
other SVASR.

The dimension of the SVASR-reflection of a semi-linear transition system is
exponential in the size of its alphabet, so a direct attempt to compute over-
approximate reachability via the SVASR-reflection results in an exponential-
space algorithm. We show that we can compute an equivalent formula in poly-
nomial time by avoiding explicit computation of the SVASR reflection.

In summary, we introduce a new extension of vector addition systems, the
SVASR, and show that its reachability reduces to that of VASR. We then propose
a practical technique to computing over-approximate reachability of semi-linear
transition systems using its SVASR reflection; the salient feature of this tech-
nique is that the computed over-approximation is guaranteed to be at least as
precise as that induced by any other SVASR abstraction.

2 Background

A semi-linear set [7] in a Z-module V is the finite union of linear sets in V . A
linear set S in V is generated by a base point b in V and a sequence of periods
p1, . . . , pn in V :

S � {b + λ1p1 + · · · + λnpn : λ1, . . . , λn ∈ N}
The generator representation of a semi-linear set is not unique. For conve-

nience, we assume that every semi-linear set has a canonical generator which we
refer to as a basis. A basis over vector space V is an element of (V × (V )∗)∗.
Each element of this representation is the generator representation of a linear
set; that is, a base pointer followed by a sequence of periods. Let B(S) refer to
the canonical generator representation of semilinear set S and let S(B) be the
semilinear set defined by basis B.

A labeled transition system1 T over a set of variables X and alphabet Σ is
a pair

〈
Z

X ,→T

〉
where Z

X is a state space and →T ⊆ Z
X ×Σ ×Z

X is a labeled
transition relation. We use the following notation:
1 We restrict our attention to transition systems in which the state space is a finite-

dimensional module over the integers.
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– For a character s ∈ Σ, write ρ
s−→T ρ′ if 〈ρ, s, ρ′〉 belongs to →T

– For a word s1 . . . sn ∈ Σ∗, write ρ
s1...sn−−−−→T ρ′ if there exists a sequence of

states ρ0 . . . ρn such that ρ = ρ0
s1−→T . . .

sn−→T ρn = ρ′

– For a language L ⊆ Σ∗, write ρ
L−→T ρ′ if ρ

w−→T ρ′ for some word w ∈ L

Various control features can be encoded using reachability constrained to a
given language of paths. For instance, the reachability relation of a vector addi-
tion system with states (or with a pushdown stack) corresponds to the reacha-
bility relation of a vector addition system constrained to a regular language (or
context-free language).

A linear simulation between labeled transition systems T =
〈
Z

X ,→T

〉
and

U =
〈
Z

Y ,→U

〉
over the same alphabet Σ is a linear function f : Z

X → Z
Y

such that for any ρ, ρ′ ∈ Z
X , if ρ

s−→T ρ′ then f(ρ) s−→U f(ρ′). For any language
L, if we can compute the L-reachability relation L−→U of U , then we can over-
approximate the L-reachability relation of T as

{
〈ρ, ρ′〉 : f(ρ) L−→U f(ρ′)

}
(which

must contain L−→T ).
A labeled integer vector addition system with resets (VASR) over variables

X and alphabet Σ is a labeled transition system V =
〈
Z

X ,→V
〉

such that
for each character s ∈ Σ there is an offset vector os ∈ Z

X and a reset vector
rs ∈ {0, 1}X such that ρ

s−→V ρ′ if and only if
∧

x∈X ρ′(x) = rs(x)ρ(x)+os(x). Let
RV (V, s) and OV (V, s) denote rs and os respectively. Note that →V is uniquely
determined by RV (V, s) and OV (V, s) for all s.

A labeled semi-linear integer vector addition system with resets (SVASR)
over variables X and alphabet Σ is a labeled transition system SV =

〈
Z

X ,→SV
〉
.

For each symbol s ∈ Σ there is an offset semi-linear set Ss ⊆ Z
X and a reset

vector rs ∈ {0, 1}X such that ρ
s−→SV ρ′ if and only if

∧
x∈X ρ′(x) = rs(x)ρ(x) +

v(x) for some v ∈ Ss. Let RV (SV, s) and OS(SV, s) denote rs and Ss respectively.
Note that →SV is uniquely determined by RV (SV, s) and OS(SV, s) for all s.

A semi-linear transition system over variables X is a labeled transition system
T =

〈
Z

X ,→T

〉
such that s−→T ⊆ Z

X ×Z
X is a semi-linear set. This class can also

be thought of as the set of transition systems for which transitions are definable in
LIA. Since counter machines are semi-linear transition systems, the reachability
problem of semi-linear transition systems is undecidable.

A transition formula F over variables X is a linear integer arithmetic formula
over free variables X and primed copies X ′. For two states ρ, ρ′ ∈ Z

X , we write
[ρ, ρ′] |= F if F holds when all x ∈ X are replaced with ρ(x) and all x′ ∈ X ′ are
replaced with ρ′(x). TF(X) denotes the set of all transition formulas over X.

3 SVASR Reachability Relations in Polynomial Time

The reachability problem for VASRs has been widely studied in the literature.
Specifically, it has been shown that the reachability relation L−→V is LIA-definable
when L ⊆ Σ∗ is a regular language [3], a communication-free Petri net language
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[2], and a context-free language [8]. Given a VASR V over variables X and alpha-
bet Σ and a language L in the above classes, these works compute a transition
formula F ∈ TF(X) such that [ρ, ρ′] |= F if and only if ρ

L−→V ρ′ in polynomial
time. Thus, these algorithms amount to polynomial-time reductions from VASR
reachability to satisfiability of existential LIA formulas.

We show that regular reachability of SVASR can be reduced to regular reach-
ability of VASR. Our reduction creates VASR transitions representing the gener-
ator representations of the semi-linear sets of the SVASR transitions and encodes
the structure of these sets as a regular language over these transitions. A SVASR
transition resets some part of the state then adds a vector from a semi-linear
set; our key insight is that this is equivalent to a VASR transition applying the
same reset and adding one of the base points of the semi-linear set followed by
an arbitrary number of VASR transitions adding one of the associated periods.

Consider a SVASR SV =
〈
Z

X ,→SV
〉

over alphabet Σ and a language L ⊆ Σ∗.
Define a new alphabet ΣSV ⊆ {0, 1}X × Z

X to be the least set such that:

– For all s ∈ Σ, for all 〈b;P 〉 ∈ B(OS(SV, s)), we have 〈RV (SV, s), b〉 ∈ ΣSV
– For all s ∈ Σ, for all 〈b; p1 . . . pn〉 ∈ B(OS(SV, s)), we have 〈λx.1, pi〉 ∈ ΣSV

for all i ∈ [1, n]

Define a VASR V(SV) �
〈
Z

X ,→V(SV)

〉
over variables X alphabet ΣSV where

RV (V(SV), 〈r, v〉) = r OV (V(SV), 〈r, v〉) = v

Finally, for each s ∈ S, define the following regular language Rs ⊆ Σ∗
SV :

Rs �
⋃

〈b;p1,...,pn〉∈B(OS(SV,s))

〈RV (SV, s), b〉〈λx.1, p1〉∗
. . . 〈λx.1, pn〉∗

Lemma 1. Consider an SVASR SV over alphabet Σ. For all s ∈ Σ, we have:
(
ρ

s−→SV ρ′
)

⇐⇒
(
ρ

Rs−−→V(SV) ρ′
)

Proof. ( =⇒ ) Let X denote the variables of SV. Consider any states ρ, ρ′ such
that ρ

s−→SV ρ′. We have that
∧

x∈X ρ′(x) = RV (SV, s)(x)ρ(x) + v(x) for some
v ∈ OS(SV, s). Then, there must be some 〈b; p1, . . . , pn〉 ∈ B(OS(SV, s)) such
that v = b +

∑n
i=1 λipi for some λ1, . . . , λn ∈ N. Then, observe that the word

w � 〈RV (SV, s), b〉〈λx.1, p1〉λ1 . . . 〈λx.1, pn〉λn

belongs to Rs and that ρ
w−→V(SV) ρ′, and so ρ

Rs−−→V(SV) ρ′.

( ⇐= ) Consider any states ρ, ρ′ such that ρ
Rs−−→V(SV) ρ′. Then there must

be some w ∈ Rs such that ρ
w−→V(SV) ρ′. By the definition of Rs, for some

〈b; p1, . . . , pn〉 ∈ B(OS(SV, s)) we have that

w = 〈RV (SV, s), b〉〈λx.1, p1〉λ1 . . . 〈λx.1, pn〉λn
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for some λ1, . . . , λn ∈ N. By the definition of V(SV), this implies that∧
x∈X ρ′(x) = RV (SV, s)(x)ρ(x) + (b +

∑
p∈P λpp). Then, since b +

∑n
i=1 λipi ∈

OS(SV, s), we have that ρ
s−→SV ρ′.

Then, let R(L) be the language replacing all characters in Σ with their
corresponding regular languages: R(L) � {w0 . . . wn : ∃s0 . . . sn ∈ L,wi ∈ Rsi

}.

Theorem 1. For language L ⊆ Σ∗ and semi-linear VASR SV we have

(
ρ

L−→SV ρ′
)

if and only if
(

ρ
R(L)−−−→V(SV) ρ′

)

Proof. Follows from Lemma 1.

Therefore, L-reachability of SVASR reduces to R(L)-reachability of VASR.
The extended language R(L) is linearly larger than L with respect to the size
of the bases of the semi-linear sets of the SVASR. If L is regular (resp. context-
free) (resp. communication-free petri-net language), then R(L) is regular (resp.
context-free) (resp. communication-free petri-net language).

4 Best SVASR Abstractions of Semi-linear Transition
Systems

We now shift focus to computing over-approximate L-reachability for semi-linear
transition systems. This problem has a wide variety of applications, including
proving safety properties of computer programs. The following definitions for-
malize our approach to computing the best SVASR abstraction of a semi-linear
transition system for computing over-approximate reachability.

A SVASR-abstraction of labeled transition system T is a pair 〈f,SV〉 com-
posed of SVASR SV and linear simulation f from T to SV. We say that a
SVASR-abstraction 〈f,SV〉 is a SVASR-reflection of T if for any other SVASR-
abstraction

〈
f ′,SV ′〉 of T there is a linear simulation f∗ from SV to SV ′ such

that f∗ ◦ f = f ′.
L-reachability of a SVASR abstraction of T can be used to over-approximate

L-reachability of T . A SVASR-reflection 〈f,SV〉 is best because its implied over-
approximate reachability is at least as precise as any other SVASR abstraction
〈
f ′,SV ′〉, as

{
〈ρ, ρ′〉 : f(ρ) L−→SV f(ρ′)

}
⊆

{
〈ρ, ρ′〉 : f∗(f(ρ)) L−→SV′ f∗(f(ρ′))

}
.

This section shows how to compute the SVASR reflection 〈f,SV〉 of a
semi-linear transition system. We then show how it allows use to define over-
approximate L-reachability of semi-linear transition systems in LIA. However,
this formula is exponentially sized with respect to the semi-linear transition sys-
tem, making it impractical for direct usage; we show how to compute a smaller
equivalent formula in Sect. 5.
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4.1 SVASR-Reflections of Semi-linear Transition Systems

The SVASR reflection 〈f,SV〉 of a semi-linear transition system T over vari-
ables X and alphabet Σ can be computed as follows. The state space of SV is
Z

X×{0,1}Σ

. Intuitively, for each variable x and character s ∈ Σ, we must make
a choice of whether to treat s as a reset of x. Since the choice is arbitrary, we
introduce 2|Σ| copies of each variable x to encode all possible choices. Thus,
a “variable” of the SVASR reflection is a pair 〈x,C〉 ∈ X × {0, 1}Σ where x
is variable of T , and C(s) indicates whether s is to be treated as a increment
(C(s) = 1) or reset (C(s) = 0). The simulation f : ZX → Z

X×{0,1}Σ

is defined
as:

f(ρ) = λ〈x,C〉.ρ(x)

The relation →SV is defined in terms of RV (SV, s) and OS(SV, s) as:

RV (SV, s) = λ〈x,C〉.C(s)
OS(SV, s) =

{
λ〈x,C〉. if C(s) then ρ′(x) − ρ(x) else ρ′(x) : ρ

s−→T ρ′
}

A basis for OS(SV, s) can be computed from a basis for s−→T as follows. For
any t = 〈ρ, ρ′〉 ∈ Z

X × Z
X , define

t̂ � λ〈x,C〉. if C(s) then ρ′(x) − ρ(x) else ρ′(x) .

Then we define

B(OS(SV, s)) �
{〈

b̂; p̂1, . . . , p̂n

〉
: 〈b; p1, . . . , pn〉 ∈ B( s−→T )

}
.

Lemma 2. The pair 〈f,SV〉 is an abstraction of T .

Proof. Consider any states ρ, ρ′ such that ρ
s−→T ρ′. By the definition of

OS(SV, s), we have that v = (λ〈x,C〉. if C(s) then ρ′(x) − ρ(x) else ρ′(x)) ∈
OS(SV, s). We can conclude that f(ρ) s−→SV f(ρ′), since:

∧

〈x,C〉∈X×{0,1}Σ

f(ρ′)(〈x,C〉) = RV (SV, s)(x,C)f(ρ)(x,C) + v(〈x,C〉)

⇐⇒
∧

〈x,C〉∈X×{0,1}Σ ,C(s)=1

ρ′(x) = 1ρ(x) + (ρ′(x) − ρ(x))

∧
∧

〈x,C〉∈X×{0,1}Σ ,C(s)=0

ρ′(x) = 0ρ(x) + (ρ′(x))

Theorem 2. The SVASR-abstraction 〈f,SV〉 is a SVASR reflection of T .

Proof. Consider another SVASR abstraction
〈
f ′,SV ′〉 over variables Y . We will

show that the following function f∗ : ZX×{0,1}Σ → Z
Y is a simulation from SV

to SV ′.

f∗(σ) = λy.f ′(λx.σ(〈x,Cy〉))(y) with Cy = λs.RV (SV ′, s)(y)
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A piece of intuition for this definition is that 〈x,Cy〉 is the variable of SV that
abstracts the variable x of T and that experiences the same resets per-character
as y in SV ′.

First, observe that f∗ ◦ f = f ′:

f∗(f(ρ)) = λy.f ′(λx.f(ρ)(x,Cy))(y)
= λy.f ′(λx.ρ(x))(y) = f ′(ρ)

To show f∗ is a simulation from SV to SV ′, consider states σ, σ′ ∈ Z
X×{0,1}Σ

such that σ
s−→SV σ′. By the definition of OS(SV, s), there must be ρ, ρ′ such

that ρ
s−→T ρ′ and:

∧

〈x,C〉∈X×{0,1}Σ ,C(s)=1

σ′(〈x,C〉) = 1σ(〈x,C〉) + (ρ′(x) − ρ(x))

∧
∧

〈x,C〉∈X×{0,1}Σ ,C(s)=0

σ′(〈x,C〉) = 0σ(〈x,C〉) + (ρ′(x))

Thus, for all 〈x,C〉 ∈ X × {0, 1}Σ , if C(s) = 0 then σ′(〈x,C〉) = ρ′(x) and if
C(s) = 1 then σ(〈x,C〉) − σ′(〈x,C〉) = ρ′(x) − ρ(x).

Since ρ
s−→T ρ′, we have that f ′(ρ) s−→SV′ f ′(ρ′). Then, there is some v ∈

OS(SV ′, s) such that:
∧

y∈Y

f ′(ρ′)(y) = RV (SV ′, s)(y)f ′(ρ)(y) + v(y) (1)

Note that RV (SV ′, s)(y) = Cy(s) for all s. Then, for all variables y ∈ Y of
SVASR SV ′, if RV (SV ′, s)(y) = 0 then σ′(x,Cy) = ρ′(x) by previous reasoning.
In such cases:

f∗(σ′)(y) = f ′(λx.σ′(x,Cy))(y) = f ′(λx.ρ′(x))(y) = f ′(ρ′)(y)

Substituting f ′(ρ′)(y) with f∗(σ′)(y) in Eq. 1 and using RV (SV ′, s)(y) = 0, we
have that f∗(σ′)(y) = RV (SV ′, s)(y)f∗(σ)(y) + v(y).

In the other case, if RV (SV, s)(y) = 1 then Cy(s) = 1 and so σ′(x,Cy) −
σ(x,Cy) = ρ′(x) − ρ(x). Then, using the linearity of f ′, we have:

f∗(σ′)(y) − f∗(σ)(y) = f ′(λx.σ′(x,Cy))(y) − f ′(λx.σ(x,Cy))(y)
= f ′(λx.σ′(x,Cy) − σ(x,Cy))(y)
= f ′(λx.ρ′(x) − ρ(x))(y) = f ′(ρ′)(y) − f(ρ)(y)

Then, substituting f ′(ρ′)(y) − f ′(ρ)(y) with f∗(σ′)(y) − f∗(σ)(y) in (1), we
have that f∗(σ′)(y) = RV (SV ′, s)(y)f∗(σ)(y) + v(y).

Therefore, by cases, we have that:
∧

y∈Y

f∗(σ′)(y) = RV (SV ′, s)(y)f∗(σ′)(y) + v(y)

We can conclude that f∗(σ) s−→SV′ f∗(σ′), that f∗ is a simulation from SV to
SV ′, and that 〈f,SV〉 is a reflection of T .
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4.2 Over-Approximate Semi-linear Transition System Reachability

Using the contents of Sect. 3 and Subsect. 4.1, we have a procedure to compute
over-approximate L-reachability of semi-linear transition systems. Given a semi-
linear transition system T over variables X, we first compute its SVASR reflec-
tion 〈f,SV〉 over variables X ×{0, 1}Σ . We then compute an over-approximation
of the L-reachability relation of T via Sect. 3 and the following lemma:

Lemma 3. Consider a language L ⊆ Σ∗, a semi-linear transition system T and
its SVASR reflection 〈f,SV〉 as defined in Sect. 4. Let F ∈ TF (X ×{0, 1}Σ) be a
formula such that [σ, σ′] |= F if and only if σ

L−→SV σ′. Define G � F [〈x,C〉 
→ x].
Then we have

[ρ, ρ′] |= G if and only if f(ρ) L−→SV f(ρ′)

Proof. ( =⇒ ) If [ρ, ρ′] |= G then by the definition of f we have that
[f(ρ), f(ρ′)] |= F and so f(ρ) L−→SV f(ρ′). ( ⇐= ) If f(ρ) L−→SV f(ρ′) then
[f(ρ), f(ρ′)] |= F and so by the definition of f we have that [ρ, ρ′] |= G.

The formula G is an over-approximation of the L-reachability relation of T ,
as if ρ

L−→T ρ′ then f(ρ) L−→SV f(ρ′) and so [ρ, ρ′] |= G, so it can be used to prove
safety properties about T . However, it is too large to be practically useful. The
SVASR reflection of a semi-linear transition system has an exponentially larger
state space and defining SVASR reachability in LIA takes polynomial space, so
the size of G is exponential with respect to the semi-linear transition system.

5 Over-Approximate Semi-linear Transition System
Reachability in Polynomial Time

As in Subsect. 4.2, given a semi-linear transition system T , we can compute a
formula G such that [ρ, ρ′] |= G if and only if f(ρ) L−→SV f(ρ′) where 〈f,SV〉
is the SVASR-reflection of T . This formula is an over-approximation of the L-
reachability relation of T , but requires exponential space w.r.t. T because the
dimension of SV is exponential in the size of the alphabet. We show here that
we can compute a formula equivalent to G in polynomial time w.r.t. T .

The key is to never explicitly compute the SVASR-reflection 〈f,SV〉. Given
a semi-linear transition system T , let MT : Σ → (ZX×{0,1} × (ZX×{0,1})∗)∗ be
the function mapping each s ∈ Σ to a basis of the following semilinear set:

{
λ〈x, r〉. if r = 1 then ρ′(x) − ρ(x) else ρ′(x) : ρ

s−→T ρ′
}

A basis of this set can be computed from a basis of s−→T in polynomial time,
as in Sect. 4.1. Given a semi-linear transition system T over variables X, this
subsection computes G′ ∈ TF (X) such that [ρ, ρ′] |= G′ if and only if f(ρ) L−→SV
f(ρ′) in polynomial time w.r.t. MT .
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Haase and Halfon [3] recognized that the L-reachability relation of a VASR
can be computed via a counting abstraction of L; for each word in L, one must
compute the final time that each dimension of the state is reset from left to right
and compute the character counts of the subwords in between these final resets.
This information is sufficient to compute the composition of VASR transitions
along the word because the final reset nullifies the effects of all characters before
it, and the effects of all characters after it commute with respect to the counter
because they do not reset it; then, their net effect is computable from the char-
acter count after the final reset. We consider abstract trajectories, a counting
abstraction which we will use to identify final resets.

Definition 1. An d-marked abstract trajectory is a function n : (Σ × [1, 2d+
1]) → N such that for all even i we have that

∑
s∈Σ n(s, i) ≤ 1.

For a trajectory w ∈ Σ∗ and an abstract trajectory n, write w � n if and only
if there exists a decomposition w = w1w2 . . . w2d+1 such that for all i ∈ [1, 2d+1]
and s ∈ Σ, the value of n(s, i) is the number of times character s appears in
subword wi. The definition ensures that n uniquely identifies wi for all even i.
In this sense, abstract trajectories are a counting abstraction which identifies up
to d characters in order from a word and captures the character counts of the
subwords in between. We restrict our attention to languages for which the set of
abstract trajectories is LIA-definable, and use additional constraints to identify
the abstract trajectories that mark the final reset of each dimension.

Formally, we restrict our attention to languages L ⊆ Σ∗ for which we can
compute a formula AT(L, |Σ|) over free variables cs,i for all s ∈ Σ and all
i ∈ {1 . . . 2|Σ| + 1}; for any |Σ|-marked abstract trajectory n, AT(L, |Σ|) holds
when each cs,i is replaced with n(s, i) if and only if there exists some w ∈ L
such that w � n. Pimpalkhare and Kincaid [8] gave an explicit definition for
AT(L, |Σ|) in the case that L is context-free; one can adapt techniques from
the literature to compute AT(L, |Σ|) in the cases that L is regular [3] or a
communication-free Petri-net language [2].

Our approach to computing G′ is to compute a formula representing the
abstract-trajectories of L, constrain the free variables to ensure the final reset of
each dimension of the SVASR reflection occurs at an even index, and to encode
the resulting SVASR transition for all variables 〈x,C〉 of the SVASR reflection
on the corresponding variable x of T . Directly considering every variable of the
SVASR produces an exponentially sized formula. However, the final reset of
every SVASR variable will occur at the final occurrence of some character, and
at least one SVASR variable for each variable x of the semi-linear transition
system will have its final reset at the final occurrence of every character. Our
approach is then to mark the final occurrence of each symbol and to conjoin a
formula per final occurrence representing the transition of all variables which
experience their final reset there.

Leveraging techniques from the literature, we first compute AT(L, |Σ|), a
formula defining the |Σ|-marked abstract trajectories of L. We then define a
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formula WF(Σ) ensuring that our symbolic |Σ|-marked abstract trajectory
marks the final occurrence of every s ∈ Σ:

WF(Σ) =
∧

s∈Σ

⎛

⎝
2|Σ|+1∧

i=1

(
cs,i > 0 =⇒∨
even k≥i cs,k > 0

)

∧
⎛

⎝
|Σ|∑

j=1

cs,2j ≤ 1

⎞

⎠

⎞

⎠

Then, we define the formula Transition(MT , Σ) which describes the transi-
tion corresponding to the symbolic abstract trajectory value. This formula uses
the following sets of variables to symbolically pick the SVASR translation vector
corresponding to each occurrence of cs,i:

D �{ds,b,i : s ∈ Σ, 〈b, P 〉 ∈ MT (s), i ∈ [1, 2|Σ| + 1]}
E �{es,b,p,i : s ∈ Σ, 〈b, P 〉 ∈ MT (s), p ∈ P, i ∈ [1, 2|Σ| + 1]}

The following formula Corr(Σ,MT ) corresponds variables cs,i to the relevant
variables ds,b,i and es,b,p,i. The variable cs,i captures how many times s appears
in subword i - for each such appearance, we must pick a single base vector and
any number of periods.

Corr(Σ,MT ) �
∧

s∈Σ

2|Σ|+1∧

i=1

⎛

⎝
∑

〈b,P 〉∈MT (s)

ds,b,i = cs,i

⎞

⎠ ∧
∧

〈b,P 〉∈MT (s)

∧

p∈P

(es,b,p,i > 0 =⇒ ds,b,i > 0)

We define ResetAt(i, x,MT , Σ) to compute the value that x would be reset
to by the ith even subword and AddsAfter(i, x,MT , Σ) to compute the value of
the increments to x after the ith subword.

ResetAt(i, x,MT , Σ) =
∑

s∈Σ

∑

〈b,P 〉∈MT (s)

⎛

⎝ds,b,ib(〈x, 0〉) +
∑

p∈P

es,b,p,ip(〈x, 0〉)
⎞

⎠

AddsAfter(i, x,MT , Σ) =
2|Σ|+1∑

j=i+1

∑

s∈Σ

∑

〈b,P 〉∈MT (s)

(
ds,b,jb(〈x, 1〉)+∑

p∈P es,b,p,jp(〈x, 1〉)
)

And subsequently define:

Transition(X,MT , Σ) �
∧

x∈X

⎛

⎜
⎜
⎝

x′ = x + AddsAfter(0, x,MT , Σ)∧
∧|Σ|

k=1

⎛

⎝

∑
s∈Σ cs,2k > 0 =⇒

x′ = ResetAt(2k, x,MT , Σ)+
AddsAfter(2k, x,MT , Σ)

⎞

⎠

⎞

⎟
⎟
⎠

Finally, we conjoin these formulae to produce our procedure summary.

G′(X,MT , L,Σ) =

∃{cs,i ≥ 0 : s ∈ Σ, i ∈ [1, 2|Σ| + 1]}
∃{ds,b,i ≥ 0 : ds,b,i ∈ D}∃{es,b,p,i ≥ 0 : es,b,p,i ∈ E}(

Transition (X,MT , Σ) ∧ AT (L, |Σ|)
∧WF (Σ) ∧ Corr(Σ,MT )

)
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Theorem 3. Consider a semi-linear transition system T and a language L ⊆
Σ∗. Let 〈f,SV〉 be the SVASR-reflection of T defined in Sect. 4. Then,

[ρ, ρ′] |= G′(X,MT , L,Σ) ⇐⇒ f(ρ) L−→SV f(ρ′)

Proof. Firstly, note that there is a one-to-one correspondence between the ele-
ments of S(MT (s)) and OS(SV, s), as both are defined by ρ, ρ′ such that ρ

s−→T ρ′.
For each s ∈ Σ, define ψs : ZX×{0,1} → Z

X×{0,1}Σ

by ψs(v)(x,C) � v(x,C(s))
to translate between S(MT (s)) and OS(SV, s). Let ψ−1

s be a left inverse.
( =⇒ ) Consider ρ, ρ′ such that [ρ, ρ′] |= G′(X,MT , L,Σ). By its definition,

there exists a valuation A : {cs,i : s ∈ Σ, i ∈ [1, 2|Σ| + 1]} ∪ D ∪ E → N such
that (Transition(X,MT , Σ) ∧ AT(L, |Σ|) ∧ WF(Σ) ∧ Corr(Σ,MT )) holds when
each cs,i is replaced with A(cs,i), each ds,b,i is replaced with A(ds,b,i), and each
es,b,p,i is replaced with A(es,b,p,i).

Let n : (Σ × [1, 2|Σ|+1]) → N be the function mapping each 〈s, i〉 to A(cs,i).
Since this valuation satisfies AT(L, |Σ|), we have that n is a |Σ|-marked abstract
trajectory over Σ such that there exists a word w = s1 . . . s|w| ∈ L such that

w � n. We will show that f(ρ) w−→SV f(ρ′), therefore showing f(ρ) L−→SV f(ρ′).
Consider any 〈x,C〉 ∈ X × {0, 1}Σ such that RV (SV, si)(〈x,C〉) = 1 for all

si in w. Observe that the first conjunct of Transition(X,MT , Σ) ensures that
ρ′(x) = ρ(x) +

∑|w|
i=1 vi(〈x, 1〉) where each vi ∈ S(MT (si)). Since it is the case

that vi(x, 1) = ψsi
(vi)(〈x,C〉) for all i in [|w|] since C(si) = 1, we have that

f(ρ′)(〈x,C〉) = f(ρ)(〈x,C〉) +
∑|w|

i=1 ψsi
(vi)(〈x,C〉).

Consider any 〈x,C〉 ∈ X × {0, 1}Σ such that RV (SV, si)(〈x,C〉) = 0 for
some si in w. Let j be the highest index such that RV (SV, sj)(〈x,C〉) = 0.
WF (Σ) ensures that A(csj ,2k) = 1 for some k. The corresponding conjunct of
Transition(X,MT , Σ) ensures that ρ′(x) = vj(〈x, 0〉) +

∑|w|
i=j+1 vi(〈x, 1〉) where

each vi ∈ S(MT (si)). Since it is the case that vj(〈x, 0〉) = ψsj
(vj)(〈x,C〉) since

C(sj) = 0 and vi(〈x, 1〉) = ψsi
(vi)(〈x,C〉) for all i ∈ [j + 1, |w|] since C(si) = 1,

we have that f(ρ′)(〈x,C〉) = ψsj
(vj)(〈x,C〉) +

∑|w|
i=j+1 ψsi

(vi)(〈x,C〉).
Observe that for all i ∈ [1, |w|], we have ψsi

(vi) ∈ OS(SV, si). Then, by the
above casework over all 〈x,C〉, we have that f(ρ) L−→SV f(ρ′).

( ⇐= ) Consider ρ, ρ′ such that f(ρ) L−→SV f(ρ′). There exists w = s1 . . . sn ∈
L such that f(ρ) w−→SV f(ρ′). Let d be the number of unique characters in w
and let i1 . . . id be the indexes of the final occurrence of each letter; that is,
character sij

does not appear in subword sij+1 . . . sn. For all j ∈ [1, d], let word
w2j be the character sij

and let word w2j−1 be the subword sij−1+1 . . . sij−1; let
w2d+1 through w2|Σ|+1 be empty. Let n : (Σ × [1, 2|Σ|+1]) → N be the function
such that n(s, i) is the number of occurrences of s in wi. Observe that n is a
|Σ|-marked abstract trajectory and w � n.

By assumption, we have f(ρ) = σ1
s1−→SV . . .

sn−→ σn+1 = f(ρ′). For all i ∈
[1, n], let oi ∈ OS(SV, si) be the offset vector used in the transition σi

si−→ σi+1.
There exists some 〈b, P 〉 ∈ MT (si) such that ψ(oi) = b +

∑
p∈P λpp. Fix such

a representation for each oi. Let φ : (D ∪ E) → N be the function mapping
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each ds,b,i to the number of times b occurs in the representations of the oj

corresponding to all sj in wi and mapping each es,b,p,i to the sum of λp in the
representations of the oj corresponding to all sj in wi.

Finally, we can observe that G′(X,MT , L,Σ) holds when all cs,i are set
to n(s, i), all d ∈ D are set to φ(d), and all e ∈ E are set to φ(e). The
subformulas AT(L, |Σ|) ∧ WF(Σ) and Corr(Σ,MT ) hold by construction of n
and φ respectively. The first conjunct of Transition(X,MT , Σ) holds because
the transition f(ρ) w−→SV f(ρ′) implies that f(ρ′)(x, λs.1) = f(ρ)(x, λs.1) +∑n

i=1 oi(x, λs.1) or equivalently ρ′(x) = ρ(x)+
∑n

i=1 ψ(oi)(x, 1). For the remain-
der of the conjuncts, with k ∈ [1, d] the transition implies that f(ρ′)(x, λs.s =
sik

) = oik
(x, λs.s = sik

) +
∑n

j=ik+1 oj(x, λs.s = sik
) or equivalently ρ′(x) =

ψ(oik
)(x, 0) +

∑n
j=ik+1 ψ(oj)(x, 1). Therefore, Transition(X,MT , Σ) holds, and

we therefore have that G′(X,MT , L,Σ) holds.

Observe that G′(X,MT , L,Σ) is polynomially-sized with respect to MT . We
can therefore over-approximate L-reachability of a semi-linear transition system
via its exponentially sized SVASR reflection in polynomial time.

6 Related Work

Reachability for Vector Addition Systems over the naturals is decidable [6] but
non-elementary [4], prompting the study of integer VAS [3] which operate over
integral state vectors. The reachability of integer VAS with resets has been stud-
ied widely [2,3,8]; this paper extends such work by considering transition systems
in which the set of translation vectors is a potentially infinite semi-linear set.
Blondin et al. investigated the extension of integer VAS to affine transformations
beyond resets in [1]. Another line [5,9] has investigated extending linear integer
arithmetic to include a star operator, effectively computing reachability for Inte-
ger Semi-Linear Vector Addition Systems, but not considering resets as we do
in this paper. A recent line of work [8,10] has used vector addition systems to
compute logical summaries of loops and procedures in computer programs; this
work applies a similar recipe with the strictly more powerful domain of SVASRs.
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