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Loop summarization

The problem: given a loop, compute a formula that represents its behavior.

while(i < n):
i := i + 2
j := j + 1

∃k ∈ N.


i′ = i + 2k

∧ j′ = j + k
∧ n′ = n
∧ i′ ≥ n ∧ (k ≥ 1 ⇒ i′ ≤ n + 1)


Loop counter

Before exec
After exec

i = j = 0 ∧ n > 0∧

∧¬(2j′ = i′)

Summary can be used to answer questions about program behavior
• Is {i = j = 0 ∧ n > 0}loop{2j = i} valid?
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Today: Linear loops

while ( * ):
x := Ax

non-deterministic

A ∈ Qn×n

• In the paper: affine & solvable polynomial loops
[Rodríguez-Carbonell & Kapur, ISAAC 2004].
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• Practical applications
• Any loop can be approximated by a linear loop [KBCR POPL’18]
• Summary for the approximation gives invariants for the loop
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Approximating general loops [KBCR POPL’18]

binary-search(A,target):
lo = 1, hi = size(A), ticks = 0
while (lo <= hi):

ticks++;
mid = lo + (hi-lo)/2
if A[mid] == target:

return mid
else if A[mid] < target:

lo = mid+1
else :

hi = mid-1

Not a linear transformation

while (*):x
y
z

 :=

1 0 1

0
1

2
0

0 0 1


x

y
z





ticks
lo
hi

mid
target

A

 ∼

x
y
z

 ⇐⇒ x = ticks ∧ hi − lo ≤ y ∧ z = 1s

s′

v

v′

˜

˜ ∃k ∈ N.

 x′ = x + kz
∧y′ = (1/2)ky
∧z′ = z


∃k ∈ N.

(
ticks′ = ticks + k

∧hi′ − lo′ ≤ (1/2)k(hi − lo)

)
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Hasn’t this problem already been solved?

Given a square matrix A ∈ Qn×n, can compute Ak symbolically

Entries of Ak are exponential polynomials:

a1λk
1kd1 + · · ·+ anλ

k
nkdn

Algebraic numbers

Camille Jordan

while(*):
x := Ax ∃k ∈ N.x′ = Akx
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No.

Skolem’s problem (variant):

Given an exponential-polynomial f over the alge-
braic numbers, does there exists some n ∈ N such
that f(k) = 0?

Decidability of Skolem’s problem is unknown!
Thoraf Skolem

Essential problem: algebraic numbers.



No.

Skolem’s problem (variant):

Given an exponential-polynomial f over the alge-
braic numbers, does there exists some n ∈ N such
that f(k) = 0?

Decidability of Skolem’s problem is unknown!
Thoraf Skolem

Essential problem: algebraic numbers.



Outline

Starting point of this work: avoid algebraic numbers
1 Periodic rational matrices have closed forms over Q.

• Computable in polytime

2 All matrices have best periodic-rational approximations.
3 Exponential-polynomial arithmetic over Q is decidable.
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Closed forms for linear loops



Known:
• Eigenvalues of A are rational ⇒ Ak can be expressed in

exponential-polynomial arithmetic over Q.

• [Boigelot PhD thesis ’99]: A generates a finite monoid ⇒ Ak can be
expressed in Presburger arithmetic.

Common generalization: A matrix A is periodic rational if there is some
power p such that Ap has rational eigenvalues.

• A periodic rational ⇒ can express closed form as(
∃k ∈ N.x′ = Akx

)
≡

(
∃k ∈ N.

p−1∨
i=0

k ≡ i mod p ∧ x′ = (Ap)⌊k/p⌋Aix
)

Rational eigenvalues
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• Problem: Rational period of a matrix might be exponential in its size
• Expressing closed form takes exponential space!

• Solution: periodic rational spectral decomposition
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Periodic rational spectral decomposition (PRSD)

Let A ∈ Qn×n be a square rational matrix. A periodic rational spectral
decomposition of A is a set of triples

{⟨p1, λ1,v1⟩, ..., ⟨pm, λm,vm⟩} ⊂ N×Q×Qn

such that
• for each i, vi is a generalized eigenvector of Api , with eigenvalue λi.

• {v1, ...,vm} is linearly independent
• Informally: {v1, ...,vm} is maximal
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Let A be a matrix with PRSD {⟨p1, λ1,v1⟩, ..., ⟨pm, λm,vm⟩}.

•
(

x′ = Akx
)

takes exponential space, but

• for any i,
(

vT
i x′ = vT

i Akx
)

can be computed in polytime

• Intuition: break up period.
Each vi is an easy-to-compute projection

A is periodic rational
⇐⇒

State-space can be recovered from projections

(
x′ = Akx

)
≡

( m∧
i=1

vT
i x′ = vT

i Akx
)
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Approximating linear loops



Let A be a matrix with PRSD {⟨p1, λ1,v1⟩, ..., ⟨pm, λm,vm⟩}.

• Set V =
[
v1 v2 ... vm

]T.

• There exists a unique B ∈ Qm×m with VA = BV.
• B is periodic rational
• B simulates A, and V is a simulation:

a

a′

b

b′

V

V

A B

B is the best periodic-rational approximation of A
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Reasoning about non-linear arithmetic



Exponential-polynomial arithmetic is decidable

Two steps:
1 Eliminate all symbols except the loop counter (i.e., program variables)

• Key idea: terms are linear over the ring of exponential-polynomials.
• (2kk3 − 3kk2 + 140 · 3k)x + (4kk)y + (2k)z

• Eliminate symbols using linear q.e. [Loos & Weispfennning ’93]

2 Find a bound for the loop counter
• Key idea: exponential-polynomials are eventually dominated by the

term with largest base (and largest degree)
• E.g., 2kk3−3kk2 + 140 · 3k is eventully negative
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Consequences

Suppose A is periodic rational. The following problems are decidable:
• Is {P}{while(∗) : x := Ax}{Q} valid?

• Does (x := v;while(C) do x := Ax) terminate?

Linear rational arithmetic

Constant vector
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Experiments



Suite of 101 microbenchmarks from C4B, HOLA, and literature:

# safe

Time(s)

10k

7.5k

2.5k

0
0 10125 76

KCBR’18 PRSD

UAutomizer

SeaHorn



Contributions:
1 Periodic rational linear loops have closed forms over Q.

• Polytime computation of the summary

2 Every matrix has a best periodic-rational approximation.
3 Exponential-polynomial arithmetic over Q is decidable.
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