Non-Linear Reasoning for Invariant Synthesis

Zachary Kincaid® John Cyphert? Jason Breck? Thomas Reps??

LPrinceton University ~ 2University of Wisconsin-Madison 3GrammaTech, Inc

January 12,2018 @ 15:50

The problem: generating non-linear numerical loop invariants
- Resource-bound analysis
- Side channel analysis
+ Secure information flow

while(i < n):
X =X + 1

1=1+1 KBy (=1) | 0=)
l 'u‘--.b

))

¥

Loop analyzer

EIk.kZO/\(

while(i < n):

« branching
« nested loops
« non-determinism

ok ‘ Hi=1) .

while(i < n):

« branching
« nested loops
+ non-determinism

iR =0 4 f
i" =4 -1)
JkE>0AN , 2
X

+ ki@
algebraic numbers

binary-search(A,target):
lo =1, hi = size(A), ticks =0
while (lo <= hi): \
ticks++;
mid = lo + (hi-1lo0)/2
if Almid] == target:
return mid > [og(A) times
elseif Almid] < target:
lo = mid+1
else :
hi = mid-1 y

binary-search(A,target):

lo =1, hi = size(A), ticks =0
while (1o <= hi): \
ticks++;

mid = lo + (hi-lo)/2

if Almid] == target:
return mid

elseif Almid] < target:
lo = mid+1

else :

hi = mid-1 J

ticks' = ticks + 1
Amid = lo+ (hi— lo)/2
A((A[mid] < target

Alo" = mid+ 1

Ahi = hi)

V(A[mid] > target
Alo' = lo
Abi = mid — 1))

binar;

lo
while

ticks®™ 1) = ticks® + 1

(hi — 16")*D < (hi—10)® /2 — 1

ticks++;

mid = lo + (hi-lo)/2

if Almid] == target:
return mid

elseif Almid] < target:
lo = mid+1

else :
hi = mid-1

— ticks+ 1

Am lo+ (hi—lo)/2
A((A[mi target

Alo" = mid+ 1

Ahi = hi)

V(A[mid] > target
Al = lo
Ahi = mid — 1))

binar

lo (h —10)

ticks®) = fz(As(() +l<

() h/—/()+2 0) _9

while
t%CkSH—; ' N = ticks+ 1
mid = lo + (hi-lo)/2 A lo+ (hi— l0)/2
if Almid] == target: AN(A[midP< target
return mid Al = mid+ 1
elseif Almid] < target: Ahf:fh@
1o = mid+1 V(/}[fnzd]l> target
Nlo" = lo
else : , ,
hi = mid-1 Ahi = mid — 1))

binary-search(A,target):
lo =1, hi = size(A), ticks =0
while (lo <= hi):)
ticks++;
mid = lo + (hi-1lo0)/2
if Almid] == target: Hhk?3Q _
return mid > ticks' = tzcks—ll— kk
elseif Almid] < target: (hi'—1o") < (5) (hi—lo+2)—2
lo = mid+1
else :
hi = mid-1 y

for (i = 0; i < n; i++):
for (3 =0; j <i; j+):
ticks++

for (i = 0; i < n; i++): j<i
for (j =0; j <i; j+o): y Af=j+1
ticks++ }/\ticks’zticks—kl
A =1
An =n

for (i =90; i <n; v b
for (j =0; j <i; j+t): y Af =1
ticks++ } Aticks' = ticks + 1

AN =1

ARl =n

for (i =90; i <n; v b
for (j =0; j <i; j+t): y Af =1
ticks++ } Aticks' = ticks + 1

AN =1

ARl =n

y .
for (i =0; i <n; i++): A ;/;Zn
fOf(j:@;j<i; j++): }A 7<i
ticks++ S
A (A ticks = ticks+ k
AN J=g+k

1< n
o

for (i = 0; i <n; i++): | ;/;Znﬂ
for (j = 0; j <i; j++): A f =i
ticks++ Jdk. k>0
A Aticks = ticks + k

AN =k

for (i =9; i <n;

for (j =0; j<i; -
ticks++ dk. k>0

/\tz’cks’:ticks—i-k)

N =k

ticks® = ticks® 4 k(k+1)/2 + kil
@ = {0 4 g

B _ 0

nl

for (i = 9; i < n; i++): A
for (7 =0; j <i; j++): }/\ i =1
ticks++ Jk. k>0
(Aticks = ticks—l—k)
AN =k

7
7T =N

Anl =n
fOI’ (1 = @, 1 < n, i++): /\]/:Z
for (j = 0; j <i; j++): Ik >0
i 1
ticks++ A Aticks = ticks + bk +1) + ki

AN =i+ k

Warm up: the linear case

Suppose loop body formula F(x, x') is linear.
Goal: find a linear system y’ = Ay + b + linear transformation T st

Fx,x") = (TX') = A(Tx) + b

V& Binary search: project onto ticks, (hi — lo))

Suppose loop body formula F(x, x') is linear. R
Goal: find a linear system y’ = Ay + b + linear transformation T s.t

F(x,x') E (Tx') = A(Tx) + b

Warm up: the linear case

Suppose loop body formula F(x, x') is linear.
Goal: find a linear system y’ = Ay + b + linear transformation 7' s.t

Fx,x") = (TX') = A(Tx) + b

Algorithm:

©® Compute the affine hull of F by sampling linearly independent
models of F'using an SMT solver.
Result is system of (all) equations Ax” = Bx + c entailed by F(x, x')

Warm up: the linear case

Suppose loop body formula F(x, x') is linear.
Goal: find a linear system y’ = Ay + b + linear transformation 7' s.t
Fx,x") = (TX') = A(Tx) + b

Algorithm:
©® Compute the affine hull of F by sampling linearly independent
models of F'using an SMT solver.
Result is system of (all) equations Ax” = Bx + c entailed by F(x, x')
@ Fixpoint computation:

We have: Ax’ = Bx + ¢

Linear transformation 7'

We need: y' = By +c

Warm up: the linear case

Suppose loop body formula F(x, x') is linear.
Goal: find a linear system y’ = Ay + b + linear transformation 7' s.t

Fx,x") = (TX') = A(Tx) + b

Algorithm:
©® Compute the affine hull of F by sampling linearly independent
models of F'using an SMT solver.
Result is system of (all) equations Ax” = Bx + c entailed by F(x, x')
@ Fixpoint computation:
We have: Ax' = Bx + ¢

\]
T()X/ = TQBX + T()C

We need: y' = By +c

Warm up: the linear case

Suppose loop body formula F(x, x') is linear.
Goal: find a linear system y’ = Ay + b + linear transformation 7' s.t

Fx,x") = (TX') = A(Tx) + b

Algorithm:
©® Compute the affine hull of F by sampling linearly independent
models of F'using an SMT solver.
Result is system of (all) equations Ax” = Bx + c entailed by F(x, x')
@ Fixpoint computation:

We have: Ax’ = Bx + ¢ 3
¥

Tox" = ToBx + Toc > computes best abstraction
¥
Tyx' = T'Bx + Tic

/
We need: y’ = By + ¢

Reasoning about non-linear arithmetic

) s
for (i = 0; i < n; i++): =i+l

if (¥): continue 2;,<_nn

for (j =0; j <n; j+): ticks’ = ticks
for. (k = 0; k <nj; ktt): N
ticks++ AK = Kk
A Jy > 0.

ticks’ = ticks +yx n
\/ ./
AN =y=n

Ak =n

)
for (i = 0; i < n; i++): P=i+l

if (x): continue ﬁ;/inn

for (j = 0; j <n; j+&): ticks’ = ticks
for (k = 0; k < n; k++): A§ =3
ticks++ AK' =k
A Jy > 0.

v t./icks’ =ticks+yxn
Yy=n
/

= N
@ks’ < ticks + n?

The wedge abstract domain

+ The wedge domain is an abstract domain for reasoning about
non-linear integer/rational arithmetic
+ The properties expressible by wedges correspond to the conjunctive
fragment of non-linear arithmetic (z x y, z/y, ¥, log,(y), z mod v, ...)

The wedge abstract domain

+ The wedge domain is an abstract domain for reasoning about
non-linear integer/rational arithmetic
+ The properties expressible by wedges correspond to the conjunctive
fragment of non-linear arithmetic (z x y, z/y, ¥, log,(y), z mod v, ...)

=
treat non-linear terms as
independent dimensions

ignore <, treat
non-polynomial terms as
independent dimensions

Algebraic

Polyhedron variety

The wedge abstract domain

+ The wedge domain is an abstract domain for reasoning about
non-linear integer/rational arithmetic

+ The properties expressible by wedges correspond to the conjunctive
fragment of non-linear arithmetic (z x y, z/y, ¥, log,(y), z mod v, ...)

linear equations

< .

=
treat non-linear terms as
independent dimensions

ignore <, treat
non-polynomial terms as
independent dimensions

Algebraic

Polyhedron variety

The wedge abstract domain

+ The wedge domain is an abstract domain for reasoning about
non-linear integer/rational arithmetic

+ The properties expressible by wedges correspond to the conjunctive
fragment of non-linear arithmetic (z x y, z/y, ¥, log,(y), z mod v, ...)

linear equations

=
treat non-linear terms as
independent dimensions

ignore <, treat
non-polynomial terms as
independent dimensions

Algebraic
variety

)

Congruence
closure

Polyhedron

A
A\ 4

{

Inference rules

Symbolic abstraction

i'=i+1
Al <n
An' =n
ticks’ = ticks
AN =3
Ak" =k
A dy > 0.
y ticks’ = ticks +y x n
Aj'=y=n

Ak =n

Symbolic abstraction

./ .
. . i'=i+1
i'=i+1 .
. Al < n
Al <n ,
AN =n Vv Am=n
Y) Aticks’ = ticks + sk, x n
Aticks’ = ticks y
R N} =sky,=n
N =1

AK' =n

Symbolic abstraction

./ .
= 1

i =141 S

. Al <n
Al <n ’

/ An" =n
Am=n V | Aticks’ = ticks +n xn
Aticks’ = ticks .

./ . AJ =n
A0 <nxn

A0 <nxn

Symbolic abstraction

i'=i+1

Al <n

AN =n

Aticks < ticks’ < ticks +n xn
N'=13

A0 <nxn

Extracting recurrences

Given: non-linear transition formula F(x, x")
©® Compute wedge w that over-approximates F'
@ Extract recurrences from w

Extracting recurrences

Given: non-linear transition formula F(x, x")
©® Compute wedge w that over-approximates F'
@ Extract recurrences from w

Class of extractable recurrences:

(Tx') = A(Tx) +t

Additive term t involves polynomials & exponentials.

How can we solve recurrence equations?

Operational Calculus Recurrence Solver [Berg 1967]

Operational calculus is an algebra of infinite sequences. Idea:
© Translate recurrence into equation in operational calculus
s a) =W 4 1 gr— (¢— Dap =241

@ Solve the equation

T= 129+ é
T g1

©® Translate solution back
RN R () R

Operational Calculus

Field of operators:
- Operator is a sequence with finitely many negative positions
a = ((1,72, a_q || ap, a1, az,)
b= (|| bo, b1, ba,...)
- Addition is pointwise: (a + b); £ a; + b;

- Multiplication is convolution difference:
n

n—1
(ab)n = Z aibn—i + Z aibp—i—1

i=—00 i=—00

Operational Calculus

Field of operators:

- Operator is a sequence with finitely many negative positions

a = ((1,72, a_q || ap, a1, az,)

b= (|| bo, b1, ba, ...)
- Addition is pointwise: (a + b); £ a; + b;

- Multiplication is convolution difference:
n

n—1
(ab)n = Z aibn—i + Z aibp—i—1

i=—00 =—00

- Left shift operator ¢ = (1 || 1,1,1,...)

qa = ((L,Z(lfld() || ai, az, ag,...)

Recurrence — operational calculus

Recurrences are equations in operational calculus

D = Pt o — (= Day = 2+ Ta(1)
« Think of zas an sequence (|| zo, 71, 22, ...)

Recurrence — operational calculus

Recurrences are equations in operational calculus

M = aF b qr— (= Dao = o+ Ta(Y)
« Think of zas an sequence (|| o, 1, 22, -..)
- Use left-shift operator to write recurrence as an equation

(LL’O “ x1, 2,23,)
(20 11 0,0,0,...)

(H X1, T2, I3,)

qx
(¢— 1Dz
gr— (g— 1)z

Recurrence — operational calculus

Recurrences are equations in operational calculus
A = oF 4t g — (g— Dy = o+ Ti(0)
« Think of zas an sequence (|| o, 1, 22, -..)
« Use left-shift operator to write recurrence as an equation
gz = (29 || 21, 22, 73, ...)
(¢—1Day = (20] 0,0,0,...)
qr — (q - 1)@ = (H I, T2, T3,)
Can translate any expression in the grammar
s,t € Expr(k) s=cc Q| k| c*|s+1t]st

Tils +1) = Ti(s) + Tu(?)
1

Operational Calculus — classical algebra

Ta(c) = T o) =c
Ti(ct) = Tk(t) To (ct) = T (1)

Ti(s+t) = Ti(s) + Tu(t) T s+t =T s) + T,
Tk = = T =k

Operational Calculus — classical algebra

Ti(c) = ¢ T o) =c
Ti(ct) = cTi(?) T et) = T, (2)
Tals+) = Tils) + Tu(f) Tt =T (9 + T 0)
Tulk) = i Tkl(ﬁ) =k
T (=7

Operational Calculus — classical algebra translation is not complete!

Operational Calculus — classical algebra

Ti(c) = ¢ T (o) =c
Ti(ct) = cTi(?) T et) = T, (2)
Tals+) = Tils) + Tu(f) Tt =T (9 + T 0)
Tulk) = i Tkl(ﬁ) =k
T

Operational Calleicitly interpreted function plete!

Operational Calculus — classical algebra

Tile) = ¢ T o) = o
Ti(ct) = cTr(?) T Het) = T (1)

Tals+) = Tils) + Tu(f) Tt =T (9 + T 0)
Tk = T =k

Ti(fi(k)) =t T

Operational Calleicitly interpreted function plete!

Experiments

ICRA: built on top of Z3, Apron.
Analyzes recursive procedures via [Kincaid, Breck, Boroujeni, Reps PLDI 2017]

Benchmark|[Total]| ICRA H UAut. H CPA H SEA

Suite #A || Time E#AH Time E#AH Time L#AH Time WA
HOLA 46 123.5/33| 1571.9|20|/2004.1| 11 || 259.5|38
functional 21 779/ 11| 732.8/ O || 1155.7| O || 722.3| 2
relational 10 8.1110 473/ 0 || 603.0| O 121.8| 4

Total | 77 [209.5[54[[2777.7[20]3762.8] 11 [[1103.6] 44|

Contributions:
- Wedge abstract domain

- Algorithm for extracting recurrences from loop bodies with control
flow & non-determinism

+ Recurrence solver that avoids algebraic numbers
Result: non-linear invariant generation for arbitrary loops

