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The problem: generating non-linear numerical loop invariants
• Resource-bound analysis
• Side channel analysis
• Secure information flow
• ...



Loop analyzer Recurrence solver

while(i < n):
x = x + i
i = i + 1

i(k) = i(0) + k

x(k) = x(0) +
k(k − 1)

2
+ ki(0)

i(k) = i(k−1) + 1

x(k) = x(k−1) + i(k−1)

∃k.k ≥ 0 ∧

(
i′ = i+ k

x′ = x+
k(k − 1)

2
+ ki

)

• branching
• nested loops
• non-determinism

algebraic numbers



Loop analyzer Recurrence solver

while(i < n):
x = x + i
i = i + 1

i(k) = i(0) + k

x(k) = x(0) +
k(k − 1)

2
+ ki(0)

i(k) = i(k−1) + 1

x(k) = x(k−1) + i(k−1)

∃k.k ≥ 0 ∧

(
i′ = i+ k

x′ = x+
k(k − 1)

2
+ ki

)

• branching
• nested loops
• non-determinism

algebraic numbers



Loop analyzer Recurrence solver

while(i < n):
x = x + i
i = i + 1

i(k) = i(0) + k

x(k) = x(0) +
k(k − 1)

2
+ ki(0)

i(k) = i(k−1) + 1

x(k) = x(k−1) + i(k−1)

∃k.k ≥ 0 ∧

(
i′ = i+ k

x′ = x+
k(k − 1)

2
+ ki

)

• branching
• nested loops
• non-determinism

algebraic numbers



binary-search(A,target):
lo = 1, hi = size(A), ticks = 0
while (lo <= hi):

ticks++;
mid = lo + (hi-lo)/2
if A[mid] == target:

return mid
else if A[mid] < target:

lo = mid+1
else :

hi = mid-1

log(A) times

ticks′ = ticks + 1
∧mid′ = lo + (hi − lo)/2
∧((A[mid] < target

∧lo′ = mid + 1
∧hi′ = hi)

∨(A[mid] > target
∧lo′ = lo
∧hi′ = mid − 1))

ticks(k+1) = ticks(k) + 1
(hi′ − lo′)(k+1) ≤ (hi − lo)(k)/2− 1

ticks(k) = ticks(0) + k
(hi′−lo′)(k) ≤

(1
2

)k
(hi−lo+2)(0)−2

∃k.k ≥ 0
ticks′ = ticks + k
(hi′−lo′) ≤

(1
2

)k
(hi−lo+2)−2
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for (i = 0; i < n; i++):
for (j = 0; j < i; j++):

ticks++

j < i
∧j′ = j + 1
∧ticks′ = ticks + 1
∧i′ = i
∧n′ = n

ticks(k+1) = ticks(k) + 1
j(k+1) = j(k) + 1
i(k+1) = i(k)
n(k+1) = n(k)

ticks(k) = ticks(0) + k
j(k) = j(0) + k
i(k) = i(0)
n(k) = n(0)

i′ = i
∧ n′ = n
∧ j′ ≤ i

∧

 ∃k. k ≥ 0
∧ ticks′ = ticks + k
∧ j′ = j + k



i < n
∧ i′ = i + 1
∧ n′ = n
∧ j′ = i

∧

 ∃k. k ≥ 0
∧ticks′ = ticks + k
∧j′ = k



ticks(k+1) = ticks(k)+i(k)
i(k+1) = i(k) + 1
n(k+1) = n(k)

ticks(k) = ticks(0)+ k(k+1)/2+ ki(0)
i(k) = i(0) + k
n(k) = n(0)

i′ = n
∧n′ = n
∧j′ = i

∧

 ∃k.k ≥ 0

∧ticks′ = ticks + k(k + 1)

2
+ ki

∧i′ = i + k


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Warm up: the linear case

Suppose loop body formula F(x,x′) is linear.
Goal: find a linear system y′ = Ay + b + linear transformation T s.t

F(x,x′) |= (Tx′) = A(Tx) + b

Binary search: project onto ticks, (hi − lo)

Algorithm:
1 Compute the affine hull of F by sampling linearly independent

models of F using an SMT solver.
Result is system of (all) equations Ax′ = Bx + c entailed by F(x,x′)

2 Fixpoint computation:

We have: Ax′ = Bx + c

We need: y′ = By + c

Linear transformation T
T0x′ = T0Bx + T0c

T1x′ = T1Bx + T1c
...

computes best abstraction
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Reasoning about non-linear arithmetic



for (i = 0; i < n; i++):
if (*): continue
for (j = 0; j < n; j++):

for (k = 0; k < n; k++):
ticks++

i′ = i+ 1
∧i < n
∧n′ = n

∧



 ticks′ = ticks
∧j′ = j
∧k′ = k


∨


∃y ≥ 0. ticks′ = ticks+ y × n
∧j′ = y = n
∧k′ = n





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∧n′ = n

∧



 ticks′ = ticks
∧j′ = j
∧k′ = k


∨


∃y ≥ 0. ticks′ = ticks+ y × n
∧j′ = y = n
∧k′ = n





ticks′ ≤ ticks+ n2



The wedge abstract domain

• The wedge domain is an abstract domain for reasoning about
non-linear integer/rational arithmetic

• The properties expressible by wedges correspond to the conjunctive
fragment of non-linear arithmetic (x × y, x/y, xy, logx(y), x mod y, ...)

Wedge

Polyhedron
Algebraic
variety

treat non-linear terms as
independent dimensions

ignore ≤, treat
non-polynomial terms as
independent dimensions

linear equations

Inference rules
Congruence

closure
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Symbolic abstraction

i′ = i+ 1
∧i < n
∧n′ = n

∧



 ticks′ = ticks
∧j′ = j
∧k′ = k


∨


∃y ≥ 0. ticks′ = ticks+ y × n
∧j′ = y = n
∧k′ = n








Symbolic abstraction


i′ = i+ 1

∧i < n
∧n′ = n
∧ticks′ = ticks
∧j′ = j

 ∨



i′ = i+ 1
∧i < n
∧n′ = n
∧ticks′ = ticks+ sky × n
∧j′ = sky = n
∧k′ = n





Symbolic abstraction



i′ = i+ 1
∧i < n
∧n′ = n
∧ticks′ = ticks
∧j′ = j
∧0 ≤ n× n

 ∨



i′ = i+ 1
∧i < n
∧n′ = n
∧ticks′ = ticks+ n× n
∧j′ = n
∧k′ = n
∧0 ≤ n× n





Symbolic abstraction



i′ = i+ 1
∧i < n
∧n′ = n
∧ticks ≤ ticks′ ≤ ticks+ n× n
∧j′ = j
∧0 ≤ n× n





Extracting recurrences

Given: non-linear transition formula F(x,x′)

1 Compute wedge w that over-approximates F
2 Extract recurrences from w

Class of extractable recurrences:

(Tx′) = A(Tx) + t

Additive term t involves polynomials & exponentials.
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1 Compute wedge w that over-approximates F
2 Extract recurrences from w

Class of extractable recurrences:

(Tx′) = A(Tx) + t

Additive term t involves polynomials & exponentials.



How can we solve recurrence equations?



Operational Calculus Recurrence Solver [Berg 1967]

Operational calculus is an algebra of infinite sequences. Idea:
1 Translate recurrence into equation in operational calculus

• x(k+1) = x(k) + 1⇝ qx − (q − 1)x0 = x + 1

2 Solve the equation

• x = x0 +
1

q − 1

3 Translate solution back
• x(k) = x(0) + k



Operational Calculus

Field of operators:
• Operator is a sequence with finitely many negative positions

a = (a−2, a−1 ∥ a0, a1, a2, ...)

b = (∥ b0, b1, b2, ...)

• Addition is pointwise: (a + b)i ≜ ai + bi

• Multiplication is convolution difference:

(ab)n =

n∑
i=−∞

aibn−i +
n−1∑

i=−∞
aibn−i−1

• Left shift operator q = (1 ∥ 1, 1, 1, ...)

qa = (a−2a−1a0 ∥ a1, a2, a3, ...)
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Recurrence → operational calculus

Recurrences are equations in operational calculus

x(k+1) = xk + t⇝ qx − (q − 1)x0 = x + Tk(t)
• Think of x as an sequence (∥ x0, x1, x2, ...)

• Use left-shift operator to write recurrence as an equation

qx = (x0 ∥ x1, x2, x3, ...)
(q − 1)x0 = (x0 ∥ 0, 0, 0, ...)

qx − (q − 1)x0 = (∥ x1, x2, x3, ...)

Can translate any expression in the grammar

s, t ∈ Expr(k) ::= c ∈ Q | k | ck | s + t | st

Tk(c) = c
Tk(ct) = cTk(t)

...

Tk(s + t) = Tk(s) + Tk(t)

Tk(k) =
1

q − 1

...
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Operational Calculus → classical algebra

Tk(c) = c
Tk(ct) = cTk(t)

Tk(s + t) = Tk(s) + Tk(t)

Tk(k) =
1

q − 1
...

Tk(ft(k)) = t

T −1
k (c) = c

T −1
k (ct) = cT −1

k (t)
T −1

k (s + t) = T −1
k (s) + T −1

k (t)

T −1
k (

1

q − 1
) = k

...

T −1
k (t) =

Operational Calculus → classical algebra translation is not complete!
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Experiments

ICRA: built on top of Z3, Apron.
Analyzes recursive procedures via [Kincaid, Breck, Boroujeni, Reps PLDI 2017]

Benchmark Total ICRA UAut. CPA SEA
Suite #A Time #A Time #A Time #A Time #A

HOLA 46 123.5 33 1571.9 20 2004.1 11 259.5 38
functional 21 77.9 11 732.8 0 1155.7 0 722.3 2
relational 10 8.1 10 473 0 603.0 0 121.8 4
Total 77 209.5 54 2777.7 20 3762.8 11 1103.6 44



Contributions:
• Wedge abstract domain
• Algorithm for extracting recurrences from loop bodies with control

flow & non-determinism
• Recurrence solver that avoids algebraic numbers

Result: non-linear invariant generation for arbitrary loops


