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Monotone Procedure Summarization via Vector Addition
Systems and Inductive Potentials
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This paper presents a technique for summarizing recursive procedures operating on integer variables. The

motivation of our work is to create more predictable program analyzers, and in particular to formally guarantee

compositionality and monotonicity of procedure summarization. To summarize a procedure, we compute its

best abstraction as a vector addition system with resets (VASR) and exactly summarize the executions of this

VASR over the context-free language of syntactic paths through the procedure. We improve upon this technique

by refining the language of syntactic paths using (automatically synthesized) linear potential functions that
bound the number of recursive calls within valid executions of the input program. We implemented our

summarization technique in an automated program verification tool; our experimental evaluation demonstrates

that our technique computes more precise summaries than existing abstract interpreters and that our tool’s

verification capabilities are comparable with state-of-the-art software model checkers.
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1 INTRODUCTION

int add(int m, int n) {
if (n == 0) { return m; }

if (n > 0) { return add(m + 1, n − 1); }

if (n < 0) { return add(m − 1, n + 1); }}

Fig. 1. SOTA verifiers UAutomizer [Heiz-
mann et al. 2013] and Korn [Ernst 2020] ver-
ify 𝑎𝑑𝑑 (𝑚,𝑛) == 𝑚 + 𝑛, but cannot verify
𝑚1 > 𝑚2 =⇒ 𝑎𝑑𝑑 (𝑚1, 𝑛) > 𝑎𝑑𝑑 (𝑚2, 𝑛)
even though the former property implies
the latter.

Program analyzers typically reason about procedures

by computing summaries that over-approximate their be-

havior and using those summaries to interpret procedure

calls. Procedure summarization is commonly driven by

heuristics, which can lead to unpredictable behavior of

down-stream analysis tasks. For example, software ver-

ifiers built atop heuristic analysis methods can exhibit

unintuitive behavior, as seen in Figures 1 and 2. Ulti-

mately, this unpredictability is a symptom of the fact

that program analysis techniques generally do not pro-

vide any guarantees on their behavior beyond soundness

(and in some cases, termination). This raises the question:

what behavioral guarantees are attainable while retaining
state-of-the-art precision and performance?
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int nodes = 0; int leaves = 0;

void tc1(int n) {
if (∗) { leaves += 1; }

else { nodes += 1;

tc1((n − 1) / 2); tc1((n − 1) / 2); } }

int nodes = 0; int leaves = 0;

void tc2(int n) {
if (n <= 1) { leaves += 1; }

else { nodes += 1;

tc2((n − 1) / 2); tc2((n − 1) / 2); } }

Fig. 2. The above programs differ only at
the conditional. UAutomizer and Korn verify
𝑛𝑜𝑑𝑒𝑠 + 1 == 𝑙𝑒𝑎𝑣𝑒𝑠 ∨ 𝑛𝑜𝑑𝑒𝑠 == 𝑛 + 46 after
running tc1, but cannot verify it holds after
running tc2, even though the behavior of
the latter program is a subset of the former.

This paper describes a summarization algorithm for re-

cursive procedures operating over integer variables that

is compositional and monotone. A compositional analy-

sis summarizes a composite program by combining sum-

maries of its components. Compositionality demands that

the summary of a procedure depends upon the text of

that procedure (and the procedures it may call) and not

surrounding context. For instance, this implies that a

compositional analyzer that is able to verify functional

correctness of the add routine in Figure 1 is also able to

verify that add is strictly monotone in its first argument.

Informally speaking, an analysis is monotone if, given

two procedures A and B where A’s behavior is a subset

of B’s, the summary computed for A will be at least as

precise as that for B. For instance, Figure 2 depicts two

procedures tc1 and tc2, which differ in that tc1 has

non-deterministic branches where tc2 has deterministic

conditional branches. Monotonicity guarantees that the

summary of tc2 is at least as precise as tc1. The primary

barrier to monotonicity is that many of the foundational tools that are used to compute summaries,

in particular widening and Craig interpolation, are non-monotone.

A successful recipe for developing monotone loop analyses is to compute an abstract model of a

loop and to analyze the exact dynamics of that model [Kincaid 2018; Silverman and Kincaid 2019;

Zhu and Kincaid 2021a]. In particular, Silverman and Kincaid [2019] computes loop summaries

by (1) modeling loops as Rational Vector Addition Systems with Resets (VASR) and (2) using the

reachability relation of the VASR to over-approximate the transitive closure of the loop. The key

factors making this approach monotone are that the computed abstraction is best, in the sense that

it is at least as precise as any other abstraction in its class, and that one can precisely summarize the

reachability relation of a VASR in a loop [Haase and Halfon 2014]. This approach can be extended

to compute summaries of non-recursive procedures “bottom-up” using the framework of Algebraic

Program Analysis [Kincaid et al. 2021], but this framework does not apply to procedures containing

arbitrary recursive calls.

This paper extends Silverman and Kincaid [2019]’s approach to compute summaries of recursive

procedures. We compute the best VASR abstraction of an input procedure and then compute a

formula that exact represents of the executions of the VASR along the context-free language of

paths through the procedure. This formula serves as an over-approximate summary of the input

procedure. To improve the precision of this technique, we present two refinements. First, we extend

our method to Lossy VASRs, a strictly more powerful abstract domain. Second, we perform an

auxiliary static analysis that synthesizes potential functions bounding the number of procedure

calls within any valid program execution as a function of the input state; we then only encode

the executions of the VASR on paths meeting these bounds into our summary. The end-to-end

summarization procedure of this paper is both compositional and monotone. Our evaluation of this

technique within a software verifier empirically shows that it computes more precise summaries

than existing abstract interpreters and that its verification capabilities are comparable with state-

of-art model checkers. The extended version of this paper with an Appendix containing proofs and

additional technical details can be accessed online [Pimpalkhare and Kincaid 2024].
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Contributions. (1) An algorithm that computes the best VASR abstraction of a program. (Section

5). (2) A polynomially-sized encoding of the reachability relation of a VASR along a context-free

language. (Section 4). (3) An extension of the above to more expressive domain of Lossy VASRs

(Section 6). (4) A monotone technique to synthesize linear potential functions of the input state

upper bounding procedure invocations within executions of the input program. (Section 7). (5) A

benchmark suite of recursive integer programs. (Section 9).

2 OVERVIEW

1 int mem_ops, buf;
2 void save_tree(int size) {
3 buf += 1;
4 if (size <= 1) {
5 mem_ops += buf;
6 buf = 0;
7 } else {
8 save_tree((size - 1) / 2);
9 save_tree((size - 1) / 2);
10 }
11 }

1 void main() {
2 mem_ops = 0; buf = 0;
3 int size = nondet_int();
4 assume(size >= 1);
5 save_tree(size);
6 assert(mem_ops <= size + 1);
7 }

2

8 8’ 9 9’

10

a

c save_tree c

save_tree

b

Globals: {𝑚𝑒𝑚_𝑜𝑝𝑠, 𝑏𝑢𝑓 , 𝑝𝑎𝑟𝑎𝑚0} Locals: {𝑠𝑖𝑧𝑒}

tf(𝑎) ≜ ©­«
𝑠𝑖𝑧𝑒′ = 𝑝𝑎𝑟𝑎𝑚0 ∧ 𝑠𝑖𝑧𝑒′ > 1

∧ 𝑝𝑎𝑟𝑎𝑚0
′ = 𝑝𝑎𝑟𝑎𝑚0 ∧ 𝑏𝑢𝑓 ′ = 𝑏𝑢𝑓 + 1

∧𝑚𝑒𝑚_𝑜𝑝𝑠′ =𝑚𝑒𝑚_𝑜𝑝𝑠

ª®¬
tf(𝑏) ≜ ©­«

𝑠𝑖𝑧𝑒′ = 𝑝𝑎𝑟𝑎𝑚0 ∧ 𝑠𝑖𝑧𝑒′ ≤ 1

∧ 𝑏𝑢𝑓 ′ = 0 ∧ 𝑝𝑎𝑟𝑎𝑚0
′ = 𝑝𝑎𝑟𝑎𝑚0

∧𝑚𝑒𝑚_𝑜𝑝𝑠′ =𝑚𝑒𝑚_𝑜𝑝𝑠 + 𝑏𝑢𝑓 + 1

ª®¬
tf(𝑐) ≜

(
𝑝𝑎𝑟𝑎𝑚0

′ = (𝑠𝑖𝑧𝑒 − 1)/2 ∧ 𝑏𝑢𝑓 ′ = 𝑏𝑢𝑓

∧𝑚𝑒𝑚_𝑜𝑝𝑠′ =𝑚𝑒𝑚_𝑜𝑝𝑠 ∧ 𝑠𝑖𝑧𝑒′ = 𝑠𝑖𝑧𝑒

)
Fig. 3. On the left, a program in C (top) and verification task (bottom). On the right, its representation as a
program graph (top) representing the trajectories (syntactic paths) through the program and a transition
assignment (bottom) representing its semantics.

The objective of our technique is to compute a transition formula that over-approximates the

dynamics of a procedure. A transition formula 𝐹 is a logical formula over a set of program variables

𝑋 and primed copies𝑋 ′ respectively representing program state before and after some computation.

For two states 𝜌, 𝜌 ′ ∈ Q𝑋 , we say 𝜌 can transition to 𝜌 ′ according to 𝐹 if 𝐹 holds when each 𝑥 in

𝑋 is replaced with 𝜌 (𝑥) and each 𝑥 ′ in 𝑋 ′ is replaced with 𝜌 ′ (𝑥). We aim to compute a summary

formula 𝐹 such that if an execution of a procedure with input state 𝜌 terminates with state 𝜌 ′ then
𝜌 can transition to 𝜌 ′ according to 𝐹 .

Figure 3 displays a procedure save_tree, an integer model of a routine that traverses a binary

tree, saving the value of each internal node to an intermediate buffer and emptying the buffer to disk

at any leaf. The variable mem_ops counts the number of integers written to disk, buf represents the
length of the buffer, and size represents the size of the binary tree. The source code for save_tree is
pictured alongside its representation as a program graph and transition assignment. The nodes of the
program graph represent lines of the code and the edges represent execution paths between those

lines, with recursive calls labeled by the name of the called functions. The transition assignment

tf corresponds each non-call edge with a transition formula representing the semantics of the

corresponding execution path. Parameter passing is modeled via the global variable param0.
The program graph represents a language of trajectories through the procedure save_tree,

the members of which are paths from the input vertex (2) to the output vertex (10) in which

every recursive call is replaced with a trajectory through the called procedure. For example,

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 337. Publication date: October 2024.



337:4 Nikhil Pimpalkhare and Zachary Kincaid

𝑓 (𝜌) (𝑦1) = 𝜌 (𝑏𝑢𝑓 )
𝑓 (𝜌) (𝑦2) = 𝜌 (𝑚𝑒𝑚_𝑜𝑝𝑠 + 𝑏𝑢𝑓 )

V(𝑎) ≜ 𝑦′
1
= 𝑦1 + 1 ∧ 𝑦′

2
= 𝑦2 + 1

V(𝑏) ≜ 𝑦′
1
= 0 ∧ 𝑦′

2
= 𝑦2 + 1

V(𝑐) ≜ 𝑦′
1
= 𝑦1 ∧ 𝑦′2 = 𝑦2

Fig. 4. Best VASR abstraction of transition assignment in Figure 3. If 𝜌 can transition to 𝜌′ according to tf(𝑠)
then 𝑓 (𝜌) can transition to 𝑓 (𝜌′) according toV(𝑠) for any 𝑠 in {𝑎, 𝑏, 𝑐}.

𝑎𝑐𝑏𝑐𝑎𝑐𝑏𝑐𝑏 is a trajectory through save_tree. This language is context-free; the grammar gen-

erating this language has one nonterminal save_tree, terminals {𝑎, 𝑏, 𝑐}, and production rules

{save_tree =⇒ 𝑏, save_tree =⇒ 𝑎𝑐save_tree𝑐save_tree}.
Silverman and Kincaid [2019] present a loop summarization algorithm that operates by computing

the best Rational Vector Addition System with Resets (VASR) that over-approximates a single

transition formula describing the body of a loop and then computing the reachability of this VASR,

which over-approximates any number of iterations of the loop. We extend this approach to work

over multiple transition formulas and arbitrary recursive control structure. We do so by viewing

procedures as context-free languages interpreted with a transition assignment; we compute the best

VASR that over-approximates the transition assignment and compute its reachability constrained

to sequences in the context-free language of trajectories through the procedure. We elaborate on

each step of this technique in turn.

Best VASR abstractions. A labeled Rational Vector Addition System with Resets (VASR)
1 V over

variables 𝑌 is a transition assignment in which each transition formula is of the form

∧
𝑦∈𝑌 𝑦

′ =
𝑟𝑦 · 𝑦 + 𝑎𝑦 where 𝑟𝑦 ∈ {0, 1} and 𝑎𝑦 ∈ Q for all 𝑦 ∈ 𝑌 . Each variable of a VASR can be thought of as

an independent counter; for each counter, a VASR transition either resets the counter to zero or

leaves its value unchanged, and then adds some rational constant to it.

Most programs (including save_tree) are not VASRs, but we show in Section 5 that every

programhas a best VASR that over-approximates it, which is called its reflection. A VASR reflectionV
of tf is depicted in Figure 4.V is defined over two variables𝑦1 and𝑦2, which correspond to the terms

buf and mem_ops + buf, respectively. The linear simulation 𝑓 captures this correspondence: for

each character 𝑠 , if state 𝜌 can transition to state 𝜌 ′ according to tf(𝑠), then state 𝑓 (𝜌) can transition

to state 𝑓 (𝜌 ′) according toV(𝑠). The simulation 𝑓 ensures that each VASR transitionV(𝑠) is an
over-approximation of transition formula tf(𝑠), and thus by transitivity, that the composition of

VASR transitions according toV along a trajectory is an over-approximation of the composition of

transition formulas according to tf along that trajectory. In this sense, we sayV simulates tf.
The VASR reflection is best because it simulates any VASR that simulates tf, and therefore contains

at least much information about the semantics of tf as any other VASR. The computed VASR being

best of its class is the critical property that makes our summarization method monotone.

Our method for computing VASR reflections is an extension of Silverman and Kincaid [2019] to

the more general setting of summarizing procedures; we go beyond this work by (1) computing

VASR reflections of transition assignments expressed in linear integer real arithmetic (LIRA), not just

linear real arithmetic (LRA) and (2) presenting a new coordinate-free theory of VASR abstractions,

allowing us to easily extend our best abstraction strategy to extensions of the VASR model.

1
Classically, the states of vector addition systems are vectors of natural numbers. In this paper, states are vectors of rational

numbers (essentially equivalent to the Z-VASR model of Haase and Halfon [2014]). The relaxation to rationals both (1)

allows VASR to model quantities that may be negative (e.g., signed integers in C) and (2) enables the reachability relation of

a VASR to be defined in linear integer/real arithmetic.
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𝑓 (𝜌) (𝑧1) = 𝜌 (buf)
𝑓 (𝜌) (𝑧2) = 𝜌 (−buf)
𝑓 (𝜌) (𝑧3) = 𝜌 (mem_ops + buf)
𝑓 (𝜌) (𝑧4) = 𝜌 (−mem_ops − buf)

LV(𝑎) ≜ 𝑧′
1
≤ 𝑧1 + 1 ∧ 𝑧′

2
≤ 𝑧2 − 1 ∧

𝑧′
3
≤ 𝑧3 + 1 ∧ 𝑧′

4
≤ 𝑧4 − 1

LV(𝑏) ≜ 𝑧′
1
≤ 0 ∧ 𝑧′

2
≤ 0 ∧

𝑧′
3
≤ 𝑧3 + 1 ∧ 𝑧4; ≤ 𝑧4 − 1

LV(𝑐) ≜ 𝑧′
1
≤ 𝑧1 ∧ 𝑧2 ≤ 𝑧2 ∧

𝑧′
3
≤ 𝑧3 ∧ 𝑧′4 ≤ 𝑧4

Fig. 5. Best Lossy VASR abstraction of transition assignment in Figure 3.

CFL-reachability for VASR. Section 4 describes a method which, given a context free grammar 𝐺

and VASRV , computes a transition formula 𝐹 such that state 𝜌 can transition to state 𝜌 ′ according
to 𝐹 if and only if 𝜌 can transition to 𝜌 ′ according the composition of VASR transformations ofV
along some word recognized by𝐺 . In our context, this is used to summarize all executions of a VASR

along the trajectories through a procedure. Haase and Halfon [2014] showed that the reachability

relation for VASR restricted to sequences in a regular language (equivalently, the reachability of

VASR with states) can be defined in LIRA formulas; however, their approach does not generalize to

context-free languages. We present an approach which defines the context-free language-restricted

reachability relation for VASR (equivalently, reachability for VASR with a stack).

The reachability of the VASRV shown in Figure 4 over the language of trajectories through the

program graph shown in Figure 3 can by described by the formula 𝑦′
1
= 0 ∧ ∃𝑘 ≥ 0.𝑦′

2
= 𝑦2 + 𝑘 + 1.

By applying the variable substitution corresponding to the simulation 𝑓 shown in Figure 4, we

obtain an over-approximate summary of the executions of tf on the language of paths through

the program graph: buf ′ = 0 ∧ ∃𝑘 ≥ 0.mem_ops′ + buf ′ = mem_ops + buf + 𝑘 + 1. Note that 𝑘

symbolically represents the number of child invocations of the save_tree procedure.

Extension to Lossy VASRs. A labeled Lossy VASR over variables 𝑌 is a transition assignment in

which each transition formula is of the form

∧
𝑦∈𝑌 𝑦

′ ≤ 𝑟𝑦 · 𝑦 + 𝑎𝑦 where 𝑟𝑦 ∈ {0, 1} and 𝑎𝑦 ∈ Q
for all 𝑦 ∈ 𝑌 . Section 6 describes how our method for computing best VASR abstractions can be

extended to compute best Lossy VASR abstractions. CFL-reachability of Lossy VASR is a trivial

extension of CFL-reachability of VASR.

A Lossy VASR reflection of tf is depicted in Figure 5. The summary computed by taking the CFL

reachability of LV through the program graph and applying the variable substitution of 𝑓 is:

∃𝑘 ≥ 0.

(
buf ′ ≤ 0 ∧ −buf ′ ≤ 0 ∧

mem_ops′ + buf′ ≤ 𝑘 + 1 ∧ −mem_ops′ − buf′ ≤ −𝑘 − 1

)
Note that this summary is logically equivalent to the summary produced by VASR summarization.

The Lossy VASR variables 𝑧1 and 𝑧2 capture the same information as VASR variable 𝑦1 inV; the

same holds for 𝑧3, 𝑧4 and 𝑦2. In this way, Lossy VASR summaries are always at least as precise as

VASR summaries. Additionally, since in some cases program behavior can be modeled by a Lossy

VASR but not by a VASR, Lossy VASRs are a strictly more powerful domain than VASRs.

Constraining call count with potentials. The language of trajectories through a program graph

includes all syntactic trajectories, including those that do not correspond to executions of the

program. The above summary is not precise enough to conclude that mem_ops′ ≤ size + 1 because

𝑘 can be arbitrarily large. Observe that any call to save_tree from input state 𝜌 can produce at

most max(0, 𝜌 (param0)) child calls; if our summary bounded 𝑘 to be below this term, it would

be precise enough to prove the desired assertion. We improve the precision of our summary by

synthesizing potential functions [Tarjan 1985] bounding the number of times each procedure can be
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invoked as a function of the initial state, and summarizing VASR executions only over the subset of

trajectories meeting these bounds. A potential function 𝜈 bounding calls to 𝑝 maps each procedure

𝑞 and valuation 𝜌 to an integer 𝜈 (𝑞, 𝜌) such that every (terminating) execution of 𝑞 with initial

state 𝜌 may call 𝑝 no more than 𝜈 (𝑞, 𝜌) times.

The key point making our refinement technique monotone, which is necessary to maintain the

monotonicity of the end-to-end technique, is that we synthesize all potential functions meeting

an intra-procedurally checkable inductiveness condition and matching our template: 𝜈 (𝑞, 𝜌) =
max(0, 𝜃𝑞 (𝜌)), where all 𝜃𝑞 are linear. Our method generates a set of necessary constraints for

valid inductive potentials via an intraprocedural analysis and incorporates a representation of all

solutions into our transition formula summary. The over-approximate summary of the program in

Figure 3 after adding this refinement is:

∃𝑘 ≥ 0.

(
buf ′ ≤ 0 ∧ −buf ′ ≤ 0 ∧

mem_ops′ + buf ′ ≤ 𝑘 + 1 ∧ −mem_ops′ − buf ′ ≤ −𝑘 − 1

)
∧ 𝑘 ≤ max(0, param0)

Observe that this summary is strong enough to prove that mem_ops ≤ size + 1, as desired.

3 BACKGROUND
Let [𝑛] denote the set {1, . . . , 𝑛}. Given a function 𝑓 : 𝐴 → 𝐵 and a subset of the domain 𝐶 ⊆ 𝐴,

𝑓 |𝐶 : 𝐶 → 𝐵 is the restriction of 𝑓 to the domain 𝐶 . Within this paper, we use “vector space”

to mean a vector space over the rational numbers. For a finite set of variables 𝑋 , let Lin(𝑋 ) ≜
{∑𝑥∈𝑋 𝛼𝑥𝑥 : 𝛼𝑥 ∈ Q} be the vector space of linear terms over 𝑋 . Given a valuation 𝜌 : Q𝑋 and a

term 𝑡 over 𝑋 , let 𝜌 (𝑡) be the evaluation of 𝑡 .

A convex polyhedron 𝑃 in vector space 𝑉 is a set of the form

𝑃 =

{
𝑛∑︁
𝑖=1

𝜆𝑖𝑣𝑖 +
𝑚∑︁
𝑗=1

𝛼 𝑗𝑟 𝑗 : 𝜆𝑖 ≥ 0, 𝛼𝑖 ≥ 0,

𝑛∑︁
𝑖=1

𝜆𝑖 = 1

}
where 𝑣1 . . . 𝑣𝑛, 𝑟1 . . . 𝑟𝑚 ∈ 𝑉 . The sets {𝑣1, . . . , 𝑣𝑛} and {𝑟1, . . . , 𝑟𝑚} are the vertices and rays of 𝑃 . If
the only vertex of 𝑃 is zero, 𝑃 is a convex cone [Schrijver 1986].

3.1 Transition Systems
A labeled transition system2

over a finite set of variables 𝑋 and a finite alphabet Σ is a pair

𝑇 =
〈
Q𝑋 ,→𝑇

〉
where Q𝑋 is a state space and→𝑇⊆ Q𝑋 × Σ × Q𝑋 is a labeled transition relation.

We use 𝑇 |Σ′ to denote the restriction of transition system 𝑇 to the alphabet Σ′ ⊆ Σ. We use the

following notation for transition systems:

• For a character 𝑠 ∈ Σ, 𝜌 𝑠−→𝑇 𝜌 ′ denotes that ⟨𝜌, 𝑠, 𝜌 ′⟩ belongs to transition relation→𝑇

• For a word 𝑠1 . . . 𝑠𝑛 ∈ Σ∗, 𝜌
𝑠1 ...𝑠𝑛−−−−→ 𝜌 ′ denotes there exist states 𝜌0 . . . 𝜌𝑛 such that

𝜌 = 𝜌0

𝑠1−→𝑇 𝜌1

𝑠2−→𝑇 . . .
𝑠𝑛−→𝑇 𝜌𝑛 = 𝜌 ′. The sequence 𝜌0 . . . 𝜌𝑛 is called a trace of the word

𝑠1 . . . 𝑠𝑛 in 𝑇 .

• For a language 𝐿 ⊆ Σ∗, 𝜌
𝐿−→𝑇 𝜌 ′ denotes that 𝜌

𝑤−→𝑇 𝜌 ′ for some𝑤 ∈ 𝐿
A linear simulation between labeled transition systems𝑇 over variables𝑋 and𝑈 over variables

𝑌 over the same alphabet Σ is a linear map 𝑓 : Q𝑋 → Q𝑌 such that for all 𝑠 ∈ Σ, if 𝜌 𝑠−→𝑇 𝜌 ′ then

𝑓 (𝜌) 𝑠−→𝑈 𝑓 (𝜌 ′). The image of 𝑇 under a function 𝑓 : Q𝑋 → Q𝑌 is the labeled transition system

image(𝑇, 𝑓 ) =
〈
Q𝑌 ,→𝑈

〉
where 𝜎

𝑠−→𝑈 𝜎 ′ if and only if there is some 𝜌
𝑠−→𝑇 𝜌 ′ with 𝜎 = 𝑓 (𝜌)

and 𝜎 ′ = 𝑓 (𝜌 ′). Each linear map 𝑓 : Q𝑋 → Q𝑌 corresponds uniquely to a variable substitution

2
We restrict our attention to transition systems with state spaces which are finite-dimensional vector spaces over the

rationals.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 337. Publication date: October 2024.



Monotone Procedure Summarization via Vector Addition Systems and Inductive Potentials 337:7

SUB𝑓 : 𝑌 → Lin(𝑋 ) such that 𝑓 (𝜌) (𝑦) = 𝜌 (SUB𝑓 (𝑦)); SUB𝑓 extends uniquely to a linear map in

Lin(𝑌 ) → Lin(𝑋 ) which is the dual of 𝑓 . For example, the substitution SUB𝑓 of the linear simulation

displayed in Figure 4 sends 𝑦1 to buf and 𝑦2 to mem_ops + buf.
A transition formula over a set of variables𝑋 is a formula 𝐹 in the language of linear integer/real

arithmetic (LIRA) whose free variables range over variables 𝑋 and primed copies 𝑋 ′. For two
valuations 𝜌, 𝜌 ′ ∈ Q𝑋 , we write [𝜌, 𝜌 ′] |= 𝐹 if and only if 𝐹 holds when every occurrence of 𝑥 ∈ 𝑋
and 𝑥 ′ ∈ 𝑋 ′ are replaced with 𝜌 (𝑥) and 𝜌 ′ (𝑥) respectively. We refer to the set of all transition

formulas over 𝑋 as 𝑇𝐹 (𝑋 ). A transition assignment tf : Σ → 𝑇𝐹 (𝑋 ) defines a labeled transition

system

〈
Q𝑋 ,→tf

〉
over alphabet Σ where 𝜌

𝑠−→tf 𝜌
′
if and only if [𝜌, 𝜌 ′] |= tf(𝑠).

A VASR transition over variables 𝑌 is a transition formula in 𝑇𝐹 (𝑌 ) of the form ∧
𝑦∈𝑌 𝑦

′ =
𝑟𝑦𝑦 + 𝑎𝑦 , where 𝑟𝑦 is either 0 or 1 and 𝑎𝑦 ∈ Q for all 𝑦. A Rational Vector Addition System with

Resets (VASR) over a set of variables 𝑌 is a transition assignmentV : Σ→ 𝑇𝐹 (𝑌 ) in whichV(𝑠)
is a VASR transition for all 𝑠 ∈ Σ. We define Reset(V, 𝑦) to be the set of symbols 𝑠 ∈ Σ such that

𝑟𝑦 = 0 inV(𝑠) and Offset(V, 𝑠, 𝑦) to be the rational 𝑎𝑦 inV(𝑠). Lossy-VASRs and Lossy-VASR
transitions are defined in the same way except with “≤” in place of “=”.

3.2 Program Model and Formal Languages
A program graph𝑀 = ⟨𝑉 , Σ, 𝑃, 𝐸, 𝑖𝑛, 𝑜𝑢𝑡⟩ consists of a finite set of vertices𝑉 , a finite alphabet Σ, a
finite set of procedure identifiers 𝑃 (disjoint from Σ), a set of labeled edges 𝐸 ⊆ 𝑉 × (Σ∪𝑃) ×𝑉 , and

two functions 𝑖𝑛, 𝑜𝑢𝑡 : 𝑃 → 𝑉 mapping each procedure to its input and output vertex respectively.

A trajectory over Σ is a word in Σ∗. A nested trajectory over Σ and 𝑃 is a sequence 𝜏1 . . . 𝜏𝑛
such that each 𝜏𝑖 is either a character 𝑠 ∈ Σ or a pair ⟨𝑝, 𝜏⟩ such that 𝑝 ∈ 𝑃 and 𝜏 is a nested

trajectory. We denote the set of all nested trajectories over Σ and 𝑃 to be N(Σ, 𝑃). For a program
graph𝑀 , we define the set of nested trajectories T𝑀 (𝑢, 𝑣) between vertices 𝑢 and 𝑣 to be the least

set such that:

• if (𝑢, 𝑠, 𝑣) ∈ 𝐸 with 𝑠 ∈ Σ, then 𝑠 ∈ T𝑀 (𝑢, 𝑣)
• if (𝑢, 𝑝, 𝑣) ∈ 𝐸 with 𝑝 ∈ 𝑃 and 𝜏 ∈ T𝑀 (𝑖𝑛(𝑝), 𝑜𝑢𝑡 (𝑝)), then ⟨𝑝, 𝜏⟩ ∈ T𝑀 (𝑢, 𝑣)
• if 𝜏1 ∈ T𝑀 (𝑢,𝑤) and 𝜏2 ∈ T𝑀 (𝑤, 𝑣), then 𝜏1𝜏2 ∈ T𝑀 (𝑢, 𝑣)

We will use T𝑀 (𝑝) as shorthand for T𝑀 (𝑖𝑛(𝑝), 𝑜𝑢𝑡 (𝑝)).
Suppose variables 𝑋 are partitioned into locals 𝑋𝐿 and globals 𝑋𝐺 . For transition assignment

tf : Σ → TF(𝑋 ) and nested trajectory 𝜏1 . . . 𝜏𝑛 ∈ N (Σ, 𝑃), we write 𝜌0

𝜏1 ...𝜏𝑛−−−−→tf 𝜌𝑛 to denote there

exists a trace 𝜌0 . . . 𝜌𝑛 such that:

• (Local transition) if 𝜏𝑖 = 𝑠 then 𝜌𝑖−1

𝑠−→tf 𝜌𝑖
• (Procedure call) if 𝜏𝑖 = ⟨𝑝, 𝜏⟩ then 𝜌𝑖−1 |𝑋𝐿

= 𝜌𝑖 |𝑋𝐿
and there exists 𝜌𝑖−1, 𝜌𝑖 such that

𝜌𝑖−1

𝜏−→tf 𝜌𝑖 and 𝜌𝑖 |𝑋𝐺
= 𝜌𝑖 |𝑋𝐺

and 𝜌𝑖+1 |𝑋𝐺
= 𝜌𝑖+1 |𝑋𝐺

Nested trajectories and their transition relations describe semantics that are representative of

the local variable behavior of programming languages with lexical scope. Parameter passing and

returns can be modeled by introducing auxiliary global variables param0, param1, . . . and ret.
Define flat to be the flattening function mapping a nested trajectory to its corresponding tra-

jectory. Formally, flat is the homomorphism that sends 𝜏𝑖 = 𝑠 to 𝑠 and 𝜏𝑖 = ⟨𝑝, 𝜏⟩ to flat(𝜏). The
language of trajectories through a procedure 𝑝 is defined as L𝑀 (𝑝) = {flat(𝜏) : 𝜏 ∈ T𝑀 (𝑝)}.
A context-free grammar 𝐺 = ⟨𝑁, Σ, 𝑅, 𝑛0⟩ consists of a finite set of nonterminals 𝑁 , a finite

alphabet Σ, a set of production rules 𝑅 ⊆ 𝑁 × (Σ ∪ 𝑁 )∗, and a designated start symbol 𝑛0 ∈ 𝑁 . We

denote production rule (𝛼, 𝛽) ∈ 𝑅 as 𝛼 ⇒ 𝛽 . An application of production rule 𝛼 ⇒ 𝛽 replaces a

single occurrence of 𝛼 with 𝛽 : 𝑤1𝛼𝑤2 → 𝑤1𝛽𝑤2. The language corresponding to a nonterminal

L𝐺 (𝑛) is the set {𝑤 ∈ Σ∗ : 𝑛 →∗ 𝑤}. The language of the grammar L(𝐺) is the language of its
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start symbol, L𝐺 (𝑛0). A grammar is in Chomsky Normal Form if all of its productions rules are of

the form 𝑛1 ⇒ 𝑠 , 𝑛1 ⇒ 𝑛2𝑛3, or 𝑛0 ⇒ 𝜖 where 𝑛1, 𝑛2, 𝑛3 ∈ 𝑁 and 𝑠 ∈ Σ. There is a quadratic-time

procedure to convert any context-free grammar into a grammar in Chomsky Normal Form that

recognizes the same language [Chomsky 1959]. Given a program graph𝑀 , it is straightforward to

construct a grammar G(𝑀, 𝑝) such that L𝑀 (𝑝) = L(G(𝑀, 𝑝)).
The Parikh image [Parikh 1966] of a word 𝑤 ∈ Σ∗ is a function 𝜋 (𝑤) : Σ → N mapping

each symbol 𝑠 ∈ Σ to the number of occurrences of 𝑠 in 𝑤 . The Parikh image of a language 𝐿 is

defined as 𝜋 (𝐿) ≜ {𝜋 (𝑤) : 𝑤 ∈ 𝐿}. For any context-free grammar𝐺 = ⟨𝑁, Σ, 𝑅, 𝑛0⟩, there is a LIRA
formula Parikh(𝐺) that represents the Parikh image of L(𝐺); its free variables are {𝑐𝑠 : 𝑠 ∈ Σ} and
Parikh(𝐺) [𝑐𝑠 ↦→𝑚(𝑠)] holds if and only if𝑚 is the Parikh image of some word𝑤 ∈ L(𝐺). There is
a polynomial-time procedure (quadratic in the number of production rules) to compute Parikh(𝐺)
from any context-free grammar [Verma et al. 2005].

4 CONTEXT-FREE REACHABILITY OF VASRS
The central pillar of our summarization procedure is a method to compute (in polynomial time) a

transition formula that precisely encodes the reachability relation of a VASR over a context-free

language. We leverage this result to compute a logical summary of the executions of a VASR

abstraction of our input program over the syntactic paths through our program graph. Given a

VASRV over variables 𝑌 and alphabet Σ and a context-free grammar 𝐺 with terminal alphabet Σ,
our goal is to compute a transition formula Reach(V,𝐺) ∈ 𝑇𝐹 (𝑌 ) such that [𝜌, 𝜌 ′] |= Reach(V,𝐺)
if and only if 𝜌

L(𝐺 )
−−−−→V 𝜌 ′. The following example lends intuition to our approach.

Example 4.1. For the VASR V in Figure 4, consider the task of computing a formula 𝐹 such

that [𝜌, 𝜌 ′] |= 𝐹 if and only if 𝜌
𝑎𝑏𝑎𝑏𝑎−−−−→V 𝜌 ′. We can consider each variable independently. For the

second variable of the VASR, 𝑦2, the composition ofV(𝑎) andV(𝑏) along 𝑎𝑏𝑎𝑏𝑎 can be computed

from the character count of 𝑎 and 𝑏 within the trajectory, as all VASR transitions increment 𝑦2 and

therefore commute. Since there are 3 occurrences of 𝑎 and 2 occurrences of 𝑏, 𝑦′
2
= 𝑦2 + 3(1) + 2(1).

The transitions along 𝑎𝑏𝑎𝑏𝑎 do not commute with respect to 𝑦1 due to the reset incurred by

V(𝑏), so we cannot compute their composition from the Parikh image of 𝑎𝑏𝑎𝑏𝑎. For example,

𝑎𝑎𝑎𝑏𝑏 has the same Parikh image as 𝑎𝑏𝑎𝑏𝑎 but the former resets 𝑦1 to 0 and the latter resets 𝑦1 to

1. Haase and Halfon [2014] observed that it is sufficient to identify the final reset of 𝑦2 from left

to right and the Parikh image of the sub-word after it; the final reset nullifies the effects of the

transitions before it and all transitions after increment the variable and therefore commute.

To formalize what we wish to compute, observe that any trajectory 𝑤 ∈ {𝑎, 𝑏, 𝑐}∗ can be

decomposed as 𝑤 = 𝑤1𝑤2𝑤3 where 𝑤3 ∈ {𝑎, 𝑐}∗, 𝑤2 is either 𝜖 or 𝑏, and 𝑤1 is in {𝑎, 𝑐}∗ if 𝑤2 is 𝜖

and is in {𝑎, 𝑏, 𝑐}∗ otherwise. Intuitively, 𝑤2 identifies the final reset of 𝑦2 from left to right. The

transition relation

𝑤−→V is uniquely determined by the Parikh images of𝑤1,𝑤2 and𝑤3. ⌟

As seen in Example 4.1, our goal is to compute a variation of the Parikh image of the language of𝐺

which identifies the final time each variable is reset from left to right. Our approach takes inspiration

from [Haase and Halfon 2014]’s generalized Parikh images, but it is distinct—see Section 10 for a

detailed comparison.

Our approach computes abstract trajectories, an abstraction of context free languages which

identifies an arbitrary number of symbols in each word and captures the Parikh images of the

subwords in between. Any particular trajectory has many abstract trajectories that abstract it, and at

least one such abstraction identifies the final reset of each variable. We conjoin additional formulas

symbolically ensuring that the abstract trajectories we compute for a context-free language captures
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enough information to compute the corresponding VASR transition. This division of tasks is our

key insight that we leverage to compute the CFL-reachability of VASR.

Definition 4.2. A 𝑑-marked abstract trajectory is a function 𝑛 : (Σ × [2𝑑 + 1]) → N such that

for all even 𝑖 we have
∑

𝑠∈Σ 𝑛(𝑠, 𝑖) ≤ 1.

For a trajectory 𝑤 ∈ Σ∗ and 𝑑-marked abstract trajectory 𝑛, write 𝑤 ⊩ 𝑛 if there exists a

decomposition𝑤 = 𝑤1 . . .𝑤2𝑑+1 such that 𝑛(𝑠, 𝑖) = 𝜋 (𝑤𝑖 ) (𝑠) for all 𝑖 and 𝑠 . For any even 𝑖 , there is

at most one nonzero 𝑛(𝑠, 𝑖) so we can determine all even-indexed words of the decomposition from

𝑛; additionally, 𝑛 captures the Parikh image of all odd-indexed words. Then, a 𝑑-marked abstract

trajectory 𝑛 such that𝑤 ⊩ 𝑛 identifies up to 𝑑 characters in𝑤 in order, and also contains the Parikh

images of the subwords between the identified characters.

We say that an abstract trajectory is well-formed with respect to a VASR if its identified

characters mark the final reset of each variable. Formally, a |𝑌 |-marked abstract trajectory is

well-formed with respect to VASRV over variables 𝑌 if for all 𝑦 ∈ 𝑌 and all odd 𝑖:(
there exists 𝑠 ∈ Reset(V, 𝑦)

with 𝑛(𝑠, 𝑖) > 0

)
=⇒

(
there exists even 𝑗 > 𝑖 , 𝑠′ ∈ Reset(V, 𝑦)

with 𝑛(𝑠′, 𝑗) > 0

)
We show how to compute a formula Transition(V) corresponding a well-formed abstract tra-

jectory to its associated VASR transformation, a formula AT(V,𝐺) that defines the set of abstract
trajectories of trajectories in L(𝐺), and a formulaWF(V) that constrains abstract trajectories to
be well-formed. These formulae are conjoined to form Reach(V,𝐺).

4.1 Transitions of Abstract Trajectories
This subsection defines the formula Transition(V) for a VASRV over variables 𝑌 over alphabet Σ.
The free variables of this formula are rational variables𝑌 and𝑌 ′ representing the pre and post states
of the VASR and integer variables 𝑐𝑠,𝑘 for all 𝑠 ∈ Σ and 𝑘 ∈ [2|𝑌 | + 1] representing a |𝑌 |-marked

abstract trajectory. Its behavior fulfills the following theorem.

Theorem 4.3. LetV be a VASR over variables 𝑌 ,𝑤 be a trajectory over Σ, and 𝑛 be a |𝑌 |-marked
abstract trajectory well-formed with respect toV such that𝑤 ⊩ 𝑛. For all states 𝜌, 𝜌 ′:

[𝜌, 𝜌 ′] |= Transition(V)[𝑐𝑠,𝑖 ↦→ 𝑛(𝑠, 𝑖)] ⇐⇒ 𝜌
𝑤−→V 𝜌 ′

We define the following helper formulae; FR(V, 𝑦, 𝑗) holds if the final reset of 𝑦 occurs at index

𝑗 and After(𝑦, 𝑗) is the sum of the character counts after index 𝑗 weighted by the offsets of 𝑦:

FR(V, 𝑦, 𝑗) ≜ ©­«
∨

𝑠∈Reset(V,𝑦)
𝑐𝑠,𝑗 > 0

ª®¬ ∧
©­­­«

∧
𝑠∈Reset(V,𝑦)
𝑗<𝑘≤2 |𝑌 |+1

𝑐𝑠,𝑘 = 0

ª®®®¬ After(𝑦, 𝑗) ≜
∑︁
𝑠∈Σ
𝑘≥ 𝑗

Offset(V, 𝑠, 𝑦) · 𝑐𝑠,𝑘

Finally, Transition(V) is defined as follows:

Transition(V) ≜
∧
𝑦∈𝑌

( ∨ |𝑌 |
𝑗=1
(FR(V, 𝑦, 2 𝑗) ∧ 𝑦′ = After(𝑦, 2 𝑗))

∨
(∧

2 |𝑌 |+1
𝑘=1

∧
𝑠∈Reset(V,𝑦) 𝑐𝑠,𝑘 = 0 ∧ 𝑦′ = 𝑦 + After(𝑦, 1)

))
4.2 Abstract Trajectories of CFLs
The aim of this section is to compute, given a context-free grammar 𝐺 ⟨𝑁, Σ, 𝑅, 𝑠0⟩ and a VASRV
over 𝑌 , a formula AT(V,𝐺) that represents the set of |𝑌 |-marked abstract trajectories 𝑛 such that

𝑤 ⊩ 𝑛 for some trajectory𝑤 in L(𝐺). This formula has free variables 𝑐𝑠,𝑖 for 𝑠 ∈ Σ and 𝑖 ∈ [2|𝑌 | +1].
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It meets the condition that AT(V,𝐺) [𝑐𝑠,𝑖 ↦→ 𝑛(𝑠, 𝑖)] holds if and only if there exists some𝑤 ∈ L(𝐺)
such that𝑤 ⊩ 𝑛. This section assumes 𝐺 is in Chomsky Normal Form.

Consider the following regular language, in which each Σ𝑖 ≜ {⟨𝑠, 𝑖⟩ : 𝑠 ∈ Σ} is a copy of Σ:

O ≜ Σ∗
1
(Σ2 + 𝜖)Σ∗3 . . . Σ∗2 |𝑌 |−1

(Σ2 |𝑌 | + 𝜖)Σ∗2 |𝑌 |+1
Observe that the Parikh image of O is equal to the set of all abstract trajectories over Σ. Defining
ℎ : (Σ × [2|𝑌 | + 1])∗ → Σ∗ to be the homomorphism that maps ⟨𝑎, 𝑖⟩ ↦→ 𝑎 for all 𝑖 , one can

additionally observe that𝑛 ∈ 𝜋 (ℎ−1 (L(𝐺))∩O) if and only if there exists some trajectory𝑤 ∈ L(𝐺)
such that 𝑤 ⊩ 𝑛. Since context-free languages are closed under inverse homomorphism and

intersection with regular languages, ℎ−1 (L(𝐺)) ∩ O is context-free. We may construct a grammar

I(𝐺,𝑌 ) ≜
〈
𝑁 [ ], Σ × [2|𝑌 | + 1], 𝑅[ ], 𝑠 [1,2 |𝑌 |+1]

〉
that recognizes the language ℎ−1 (L(𝐺)) ∩ O as

follows; the formula 𝐴𝑇 (V,𝐺) is defined to be its Parikh image formula Parikh(𝐼 (𝐺,𝑌 )).
• The non-terminal symbols are defined to be

𝑁 [ ] ≜
{
𝑛 [2𝑖+1:2𝑗+1] : 𝑛 ∈ 𝑁, 0 ≤ 𝑖 ≤ 𝑗 ≤ |𝑌 |

}
The intention of the grammar design is that the set of words derivable from𝑛 [𝑖:𝑗 ] isL𝐼 (𝐺,𝑌 ) (𝑛 [𝑖:𝑗 ]) =
ℎ−1 (L𝐺 (𝑛)) ∩ (Σ∗𝑖 (Σ𝑖+1 + 𝜖) . . . (Σ 𝑗−1 + 𝜖)Σ∗𝑗 ).
• The productions are defined to be

𝑅[ ] ≜

{
𝐴[2𝑖+1:2𝑗+1] ⇒ 𝐵 [2𝑖+1:2𝑘+1]𝐶 [2𝑘+1:2𝑗+1] : 𝐴⇒ 𝐵𝐶 ∈ 𝑅, 0 ≤ 𝑖 ≤ 𝑘 ≤ 𝑗 ≤ |𝑌 |

}
∪
{
𝐴[2𝑖+1:2𝑗+1] ⇒ ⟨𝑎, 𝑘⟩ : 𝐴⇒ 𝑎 ∈ 𝑅, 2𝑖 + 1 ≤ 𝑘 ≤ 2 𝑗 + 1, 0 ≤ 𝑖 ≤ 𝑗 ≤ |𝑌 |

}
∪
{
𝑠 [1:2𝑑+1] ⇒ 𝜖 : 𝑠 ⇒ 𝜖 ∈ 𝑅

}
The design of the production rules maintains the invariant throughout the derivation of any word

that for any even 𝑘 , there is at most one 𝑛 [𝑖:𝑗 ] capable of producing a terminal symbol in Σ𝑘 . This
ensures that the output of the grammar is in O; all derived words are additionally in ℎ−1 (L𝐺 (𝑛))
because all production rules are structurally identical to those of 𝐺 .

Theorem 4.4. For any grammar 𝐺 = (𝑁, Σ, 𝑅, 𝑠0) (in Chomsky Normal Form), we have

L(I(𝐺,𝑌 )) = ℎ−1 (L(𝐺)) ∩ O

Moreover, observe that I(𝐺,𝑌 ) has 𝑂 ( |𝑌 | |Σ|) terminals, 𝑂 ( |𝑌 |2 |𝑁 |) nonterminals, 𝑂 ( |𝑌 |3 |𝑅 |)
production rules, and can be constructed in polynomial time.

Theorem 4.5. Let 𝐺 be a context-free grammar and V be a VASR over 𝑌 . Define AT(V,𝐺) ≜
Parikh(I(𝐺,𝑌 )). Then for all |𝑌 |-marked abstract trajectories 𝑛:

AT(V,𝐺) [𝑐𝑠,𝑖 ↦→ 𝑛(𝑠, 𝑖)] ⇐⇒ 𝑤 ⊩ 𝑛 for some𝑤 ∈ L(𝐺)

4.3 Well-Formedness and Reachability Formula
Finally, we are ready to use the formulas described in the previous subsections to produce Reach(V,𝐺),
a formula encoding the relation

L(𝐺 )
−−−−→V . Transition(V) describes the composition of VASR transi-

tions associated with a well-formed abstract trajectory and AT(V,𝐺) defines the set of all abstract
trajectories such that 𝑤 ⊩ 𝑛 for some 𝑤 ∈ L(𝐺). To bridge the gap between these formulas, we

define the following formula WF(V) to ensure the abstract trajectory is well-formed.

WF(V) ≜
∧
𝑦∈𝑌

©­­­«
|𝑌 |∨
𝑗=1

FR(V, 𝑦, 2 𝑗) ∨
∧

𝑠∈Reset(V,𝑖 )
𝑘∈[2 |𝑌 |+1]

𝑐𝑠,𝑘 = 0

ª®®®¬
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With 𝐶 ≜
{
𝑐𝑠,𝑖 : 𝑠 ∈ Σ, 𝑖 ∈ [2|𝑌 | + 1]

}
, define:

Reach(V,𝐺) ≜ ∃𝐶.𝐴𝑇 (V,𝐺) ∧WF(V) ∧ Transition(V)

Theorem 4.6. There is a polynomial-time procedure which, given a VASRV over alphabet Σ and a
grammar 𝐺 over the same alphabet, computes a formula Reach(V,𝐺) such that:

[𝜌, 𝜌 ′] |= Reach(V,𝐺) ⇐⇒ 𝜌
L(𝐺 )
−−−−→V 𝜌 ′

5 BEST VASR ABSTRACTIONS OF TRANSITION ASSIGNMENTS
This section describes a procedure for computing the best VASR abstraction ⟨𝑓 ,V⟩ of a transition
assignment tf using a divide-and-conquer approach. A VASR abstraction of tf is a pair composed of

a VASRV and a linear simulation 𝑓 from tf toV . Using Section 4, we can over-approximate the

context-free reachability of tf from a VASR abstraction via the following:(
𝜌
L(𝐺 )
−−−−→tf 𝜌

′
)

=⇒
(
𝑓 (𝜌)

L(𝐺 )
−−−−→V 𝑓 (𝜌 ′)

)
⇐⇒

(
[𝑓 (𝜌), 𝑓 (𝜌 ′)] |=
Reach(V,𝐺)

)
⇐⇒

(
[𝜌, 𝜌 ′] |=

Reach(V,𝐺) [𝑦 ↦→ SUB𝑓 (𝑦)]

)
A VASR abstraction ⟨𝑓 ,V⟩ is best if for any other VASR abstraction ⟨𝑓 ′,V′⟩ there is a linear

simulation 𝑓 ∗ fromV toV′ such that 𝑓 ∗ ◦ 𝑓 = 𝑓 ′. We refer to a best VASR abstraction as a VASR
reflection. The over-approximation of the context-free reachability of tf induced by a VASR reflection

is at least as precise as that of any other VASR abstraction:(
[𝜌, 𝜌 ′] |=

Reach(V,𝐺) [𝑦 ↦→ SUB𝑓 (𝑦)]

)
⇐⇒

(
𝑓 (𝜌)

L(𝐺 )
−−−−→V 𝑓 (𝜌 ′)

)
=⇒

(
𝑓 ∗ (𝑓 (𝜌))

L(𝐺 )
−−−−→V′ 𝑓 ∗ (𝑓 (𝜌))

)
⇐⇒

(
[𝜌, 𝜌 ′] |=

Reach(V′,𝐺) [𝑦 ↦→ SUB𝑓 ′ (𝑦)]

)
First, we show how to compute a VASR reflection of tf in the special case that Σ is a singleton—in

other words, we show that every transition formula has a best abstraction as a VASR transition.

Second, we show how to combine reflections across disjoint alphabets—that is, if Σ1, Σ2 is a partition

of Σ, we may calculate a VASR reflection of tf : Σ→ 𝑇𝐹 (𝑋 ) from the VASR reflections of tf|Σ1
and

tf|Σ2
. By combining these two results, we obtain a procedure for computing a VASR reflection of

transition assignments over finite alphabets.

We restrict our attention to VASR abstractions which operate over global variables of the input

program, as we wish to summarize the effect of our programs on global variables; in other words,

we require the simulation 𝑓 to be in Q𝑋𝐺 → Q𝑌 where 𝑋𝐺 is the global subset of the variables 𝑋 of

tf and 𝑌 are the variables ofV .

5.1 Best VASR Abstractions of Transition Formulas
This subsection describes how to compute the VASR reflection of tf|{𝑠 } . Let 𝑋𝐺 denote the global

variables of𝑋 . Define the spaces of reset terms and incremented terms implied by a transition formula

𝐹 ∈ 𝑇𝐹 (𝑋 ) to be:

Res(𝐹 ) ≜ {⟨𝑡, 𝑎⟩ ∈ Lin(𝑋𝐺 ) × Q : 𝐹 |= 𝑡 ′ = 𝑎}
Add(𝐹 ) ≜ {⟨𝑡, 𝑏⟩ ∈ Lin(𝑋𝐺 ) × Q : 𝐹 |= 𝑡 ′ = 𝑡 + 𝑏}

Res(𝐹 ) and Add(𝐹 ) are vector spaces and can be computed via Reps et al. [2004]. Let

{⟨𝑡1, 𝑎1⟩, . . . , ⟨𝑡𝑛, 𝑎𝑛⟩} and
{〈
𝑡1, 𝑏1

〉
, . . . ,

〈
𝑡𝑚, 𝑏𝑚

〉}
be bases of Res(tf(𝑠)) and Add(tf(𝑠)) respectively.

Then, the VASR reflection ⟨𝑓𝑠 ,V𝑠⟩ of tf|{𝑠 } can be defined as the following:

V𝑠 (𝑠) ≜
(

𝑛∧
𝑖=1

𝑦′𝑖 = 𝑎𝑖

)
∧

(
𝑚∧
𝑖=1

𝑧′𝑖 = 𝑧𝑖 + 𝑏𝑖

)
SUB𝑓𝑠 (𝑦𝑖 ) = 𝑡𝑖 SUB𝑓𝑠 (𝑧𝑖 ) = 𝑡𝑖

Lemma 5.1. For tf : Σ→ TF(𝑋 ) and any 𝑠 ∈ Σ, ⟨𝑓𝑠 ,V𝑠⟩ is a VASR reflection of tf|{𝑠 } .
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Example 5.2. Consider tf(𝑏) from Figure 3. The bases of Res(tf(𝑏)) and Add(tf(𝑏)) are respectively
⟨𝑏𝑢𝑓 , 0⟩ and ⟨mem_ops + buf, 1⟩, ⟨param0, 0⟩. Then, the VASR reflection of tf|{𝑏} is:

𝑓𝑏 (𝜌) (𝑦1) = 𝜌 (buf)
𝑓𝑏 (𝜌) (𝑧1) = 𝜌 (mem_ops + buf)
𝑓𝑏 (𝜌) (𝑧2) = 𝜌 (param0)

V𝑏 (𝑏) ≜ 𝑦′
1
= 0 ∧ 𝑧′

1
= 𝑧1 + 1 ∧ 𝑧′

2
= 𝑧2

⌟

5.2 Combining Best VASR Abstractions over Disjoint Alphabets
For a bipartition Σ1, Σ2 of an alphabet Σ, this subsection shows how to combine VASR reflections of

tf|Σ1
and tf|Σ2

into a VASR reflection of tf : Σ→ 𝑇𝐹 (𝑋 ). Our technique is an adaptation of [Silverman

and Kincaid 2019, Algorithm 2] to the setting of labeled transition systems; however, we prove

stronger guarantees about the algorithm in the labeled setting (we can compute best abstractions of

LIRA transition assignments, not just LRA), and we present a new coordinate-free theory of VASR

abstractions, revealing insight about the abstract structure of VASRs without relying upon their

matrix representations. This theory provides a foundation for computing reflections of extensions

of the VASR model; we discuss one extension (Lossy-VASRs) in Section 6.

The following example refers to the assignment tf of Figure 3 and motivates our approach.

Example 5.3. Consider VASR reflections ⟨𝑓𝑎,V𝑎⟩ of tf|{𝑎} , ⟨𝑓𝑏,V𝑏⟩ of tf|{𝑏} , and ⟨𝑓 ,V⟩ of tf|{𝑎,𝑏} :

𝑓𝑎 (𝜌) (𝑦1) = 𝜌 (mem_ops)
𝑓𝑎 (𝜌) (𝑦2) = 𝜌 (buf)
𝑓𝑎 (𝜌) (𝑦3) = 𝜌 (param0)

V𝑎 (𝑎) ≜ 𝑦′
1
= 𝑦1 ∧ 𝑦′2 = 𝑦2 + 1 ∧ 𝑦′

3
= 𝑦3

𝑓𝑏 (𝜌) (𝑦4) = 𝜌 (buf)
𝑓𝑏 (𝜌) (𝑦5) = 𝜌 (mem_ops + buf)
𝑓𝑎 (𝜌) (𝑦6) = 𝜌 (param0)

V𝑏 (𝑏) ≜ 𝑦′
4
= 0 ∧ 𝑦′

5
= 𝑦5 + 1 ∧ 𝑦′

6
= 𝑦6

𝑓 (𝜌) (𝑧1) = 𝜌 (buf)
𝑓 (𝜌) (𝑧2) = 𝜌 (mem_ops + buf)
𝑓 (𝜌) (𝑧3) = 𝜌 (param0)

V(𝑎) ≜ 𝑧′
1
= 𝑧1 + 1 ∧ 𝑧′

2
= 𝑧2 + 1 ∧ 𝑧′

3
= 𝑧3

V(𝑏) ≜ 𝑧′
1
= 0 ∧ 𝑧′

2
= 𝑧2 + 1 ∧ 𝑧′

3
= 𝑧3

Since ⟨𝑓𝑎,V𝑎⟩ and ⟨𝑓𝑏,V𝑏⟩ are reflections, there exist simulations 𝑔𝑎 fromV𝑎 toV|𝑎 and 𝑔𝑏 from
V𝑏 toV|𝑏 such that 𝑔𝑎 ◦ 𝑓𝑎 = 𝑓 = 𝑔𝑏 ◦ 𝑓𝑏 . These are:

𝑔𝑎 (𝜌) (𝑧1) = 𝜌 (𝑦2)
𝑔𝑎 (𝜌) (𝑧2) = 𝜌 (𝑦1 + 𝑦2)
𝑔𝑎 (𝜌) (𝑧3) = 𝜌 (𝑦3)

𝑔𝑏 (𝜌) (𝑧1) = 𝜌 (𝑦4)
𝑔𝑏 (𝜌) (𝑧2) = 𝜌 (𝑦5)
𝑔𝑏 (𝜌) (𝑧3) = 𝜌 (𝑦6)

⌟

In the above example, observe that ⟨𝑓 ,V⟩ is fully determined by the simulations 𝑔𝑎, 𝑔𝑏 and the

VASRs V𝑎,V𝑏 : V|𝑎 = image(V𝑎, 𝑔𝑎), V|𝑏 = image(V𝑏, 𝑔𝑏), and 𝑓 = 𝑔𝑎 ◦ 𝑓𝑎 = 𝑔𝑏 ◦ 𝑓𝑏 . Thus, our
strategy is to find a “best” solution to the equation 𝑔𝑎 ◦ 𝑓𝑎 = 𝑔𝑏 ◦ 𝑓𝑏 subject to the constraint that

the image of V𝑎 under 𝑔𝑎 and V𝑏 under 𝑔𝑏 are VASRs. We first investigate the conditions on 𝑓

under which image(V, 𝑓 ) is a VASR: we associate with any VASR a separated space, a linear space
with a canonical decomposition as a direct sum, and show that any simulation between VASRs

must be coherent in the sense that it preserves the direct sum decomposition. We then show how

to compute the “best” coherent solution to the equation 𝑔𝑎 ◦ 𝑓𝑎 = 𝑔𝑏 ◦ 𝑓𝑏 .
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We say that a VASR transition 𝐹 ≜
∧

𝑦∈𝑌 𝑦
′ = 𝑟𝑦 · 𝑦 + 𝑎𝑦 resets a state 𝜌 if [𝜌, 𝜌 ′] |= 𝐹 when

𝜌 ′ (𝑦) = 𝑎𝑦 for all 𝑦 ∈ 𝑌 . We say that 𝐹 increments 𝜌 if [𝜌, 𝜌 ′] |= 𝐹 when 𝜌 ′ (𝑦) = 𝜌 (𝑦) + 𝑎𝑦 for

all 𝑦 ∈ 𝑌 . For a VASR transition over 𝑌 , the set of states that are reset and the set of states that

are incremented are each vector spaces whose direct sum is Q𝑌 . A coherence class of V is a

linear subspace of Q𝑌 of the form

⋂
𝑠∈Σ 𝑅𝑠 where for each 𝑠 , 𝑅𝑠 is either the space of states reset

or the space of states incremented byV(𝑠). Any two coherence classes only intersect at the zero

state, and the direct sum of all coherence classes is Q𝑌 . A necessary condition for any simulation 𝑓

from VASRV to VASRV′ is that if 𝜌 is reset byV(𝑠), then 𝑓 (𝜌) must be reset byV′ (𝑠); if 𝜌 is

incremented byV(𝑠), then 𝑓 (𝜌) must be incremented byV′ (𝑠). Then, for all coherence classes 𝐶′
ofV′, the set {𝜌 : 𝑓 (𝜌) ∈ 𝐶′} must be contained in a single coherence class 𝐶 ofV . We introduce

the following definitions to formalize the abstract structure of VASRs and the linear simulations

between them.

A separated space 𝑆 is a pair ⟨𝑉𝑆 , 𝐷𝑆 ⟩ where 𝑉𝑆 is a vector space and 𝐷𝑆 = {𝐶1, . . . ,𝐶𝑛} is
a finite set of nonzero disjoint subspaces of 𝑉𝑆 such that each 𝑣 ∈ 𝑉𝑆 can be uniquely written

as 𝑣 =
∑𝑛

𝑖=1
𝑣𝑖 where 𝑣𝑖 ∈ 𝐶𝑖 . We call 𝑣𝑖 the orthogonal projection of 𝑣 onto 𝐶𝑖 . For each

𝐶 ∈ 𝐷𝑆 , define proj𝐶 : 𝑉𝑆 → 𝐶 to be the linear map sending each element of 𝑉𝑆 to its orthogonal

projection onto 𝐶 . Define the separated space of a VASR V over 𝑌 to be 𝑆 (V) =
〈
Q𝑌 , 𝐷𝑆 (V)

〉
where 𝐷𝑆 (V) = {𝐶1, . . . ,𝐶𝑛} are the coherence classes ofV .

A coherent linear map from separated spaces 𝑆 to 𝑆 ′ is a pair
〈
𝑓 ,𝑤 𝑓

〉
where 𝑓 : 𝑉𝑆 → 𝑉𝑆 ′

is a linear map and 𝑤 𝑓 : 𝐷𝑆 ′ → 𝐷𝑆 is a witness function such that for all 𝐶 ∈ 𝐷𝑆 and 𝐶′ ∈ 𝐷𝑆 ′ ,

if 𝐶 ≠ 𝑤 𝑓 (𝐶′) then proj𝐶′ (𝑓 (proj𝐶 (𝑣))) = 0 for all 𝑣 ∈ 𝑉𝑆 . Put into words, a coherent linear map

𝑓 maintains that each orthogonal projection of 𝑓 (𝑣) is only dependent on one of the orthogonal

projections of 𝑣 ; in other terms, 𝑓 (𝑣) = ∑
𝐶∈𝐷 ′

𝑆
proj𝐶 (𝑓 (proj𝑤𝑓 (𝐶 ) (𝑣))). Composition of coherent

linear maps can be understood as

〈
𝑓 ,𝑤 𝑓

〉
◦
〈
𝑔,𝑤𝑔

〉
≜

〈
𝑓 ◦ 𝑔,𝑤𝑔 ◦𝑤 𝑓

〉
.

Theorem 5.4. LetV andV∗ be VASRs. If 𝑓 is a linear simulation fromV toV∗, then there exists
a function𝑤 𝑓 : 𝐷𝑆 (V∗ ) → 𝐷𝑆 (V) such that

〈
𝑓 ,𝑤 𝑓

〉
is a coherent linear map from 𝑆 (V) to 𝑆 (V∗).

With this theorem in hand, we can formalize our approach to combining VASR reflections over

disjoint alphabets. Let 𝑤̃ refer to the dummy witness function sending every input to Q𝑋 and

let 𝑆 ≜
〈
Q𝑋 ,

{
Q𝑋

}〉
be the separated space of transition assignment tf over variables 𝑋 . Given

two VASR reflections

〈
𝑓Σ1

,VΣ1

〉
and

〈
𝑓Σ2

,VΣ2

〉
of tf|Σ1

and tf|Σ2
, one can observe that

〈
𝑓Σ1

, 𝑤̃
〉
is a

coherent linear map from 𝑆 to 𝑆VΣ
1

and

〈
𝑓Σ2

, 𝑤̃
〉
is a coherent linear map from 𝑆 to 𝑆VΣ

2

. We aim to

compute a separated space 𝑆V and coherent linear maps

〈
𝑔Σ1

,𝑤Σ1

〉
from 𝑆VΣ

1

to 𝑆V and

〈
𝑔Σ2

,𝑤Σ2

〉
from 𝑆VΣ

2

to 𝑆V such that:

•
〈
𝑔Σ1

,𝑤Σ1

〉
◦
〈
𝑓Σ1

, 𝑤̃
〉
=

〈
𝑔Σ2

,𝑤Σ2

〉
◦
〈
𝑓Σ2

, 𝑤̃
〉

• for any other separated space 𝑆V′ and coherent linear maps

〈
𝑔′Σ1

,𝑤 ′Σ1

〉
from 𝑆VΣ

1

to 𝑆V′ and〈
𝑔′Σ2

,𝑤 ′Σ2

〉
from 𝑆VΣ

1

to 𝑆V′ such that
〈
𝑔′Σ1

,𝑤 ′Σ1

〉
◦
〈
𝑓Σ1

, 𝑤̃
〉
=

〈
𝑔′Σ2

,𝑤 ′Σ2

〉
◦
〈
𝑓Σ2

, 𝑤̃
〉
, there exists

a coherent linear map ⟨𝑢,𝑤𝑢⟩ from 𝑆V to 𝑆V′ such that ⟨𝑢,𝑤𝑢⟩ ◦
〈
𝑔Σ1

,𝑤Σ1

〉
=

〈
𝑔′Σ1

,𝑤 ′Σ1

〉
and

⟨𝑢,𝑤𝑢⟩ ◦
〈
𝑔Σ2

,𝑤Σ2

〉
=

〈
𝑔′Σ1

,𝑤 ′Σ1

〉
The first condition ensures that the linear simulation 𝑔Σ1

◦ 𝑓Σ1
from tf|Σ1

to image(VΣ1
, 𝑔Σ1
) is

equal to the linear simulation 𝑔Σ2
◦ 𝑓Σ2

from tf|Σ2
to image(VΣ2

, 𝑔Σ2
) and thus that〈

𝑔Σ1
◦ 𝑓Σ1

, image(VΣ1
, 𝑔Σ1
) ⊎ image(VΣ2

, 𝑔Σ2
)
〉
is a VASR abstraction of tf. The second condition

ensures that this abstraction is best, by the following argument. Consider any other abstraction

⟨𝑓 ′,V′⟩ of tf. Since
〈
𝑓Σ1

,VΣ1

〉
and

〈
𝑓Σ2

,VΣ2

〉
are reflections, there exist simulations 𝑔′Σ1

fromVΣ1
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to V′ |Σ1
and 𝑔′Σ2

from VΣ2
to V′ |Σ2

. By Theorem 5.4, there are coherent linear maps

〈
𝑔′Σ1

,𝑤 ′Σ1

〉
from 𝑆VΣ

1

to 𝑆V′ |Σ
1

and

〈
𝑔′Σ2

,𝑤 ′Σ2

〉
from 𝑆VΣ

2

to 𝑆V′ |Σ
2

. Let 𝑤1 and 𝑤2 be the functions sending

each coherence class ofV′ respectively to the coherence class ofV′ |Σ1
or ofV′ |Σ2

which contains

it. There are coherent linear maps

〈
𝑔′Σ1

,𝑤 ′Σ1

◦𝑤1

〉
and

〈
𝑔′Σ2

,𝑤 ′Σ2

◦𝑤2

〉
from respectively 𝑆VΣ

1

and

𝑆VΣ
2

to 𝑆V′ . If the second condition above holds, there exists a coherent linear map ⟨𝑢,𝑤𝑢⟩ from
𝑆V to 𝑆V′ such that 𝑢 ◦𝑔Σ1

= 𝑔′Σ1

and 𝑢 ◦𝑔Σ2
= 𝑔′Σ2

. Since VASRs are deterministic, we can conclude

that 𝑢 is a simulation from image(VΣ1
, 𝑔Σ1
) ∪ image(VΣ2

, 𝑔Σ2
) toV′.

From a category-theoretic view, these conditions correspond to the pushout3 in the category in

which the objects are separated spaces and the arrows are coherent linear maps, which we refer

to as Sep. For this reason, we refer to our procedure for computing

〈
𝑔Σ1

,𝑤Σ1

〉
and

〈
𝑔Σ2

,𝑤Σ2

〉
as

pushoutSep. For readability, we present this procedure via the following example; the technical

definition of pushoutSep can be found in the proof of Lemma 5.6.

Example 5.5. A key technical tool used in pushoutSep is that we can compute the pushout in the

category of rational vector spaces. Given two linear functions 𝑓1 : 𝐴→ 𝐵 and 𝑓2 : 𝐴→ 𝐶 where

𝐴, 𝐵,𝐶 are rational vector spaces, the pushout of 𝑓1 and 𝑓2 is a rational vector space 𝐷 and two

functions 𝑔1 : 𝐵 → 𝐷 and 𝑔2 : 𝐶 → 𝐷 such that:

(1) 𝑔1 ◦ 𝑓1 = 𝑔2 ◦ 𝑓2
(2) For any rational vector space𝐷 ′ and linear 𝑔′

1
: 𝐵 → 𝐷 ′, 𝑔′

2
: 𝐶 → 𝐷 ′ such that 𝑔′

1
◦ 𝑓1 = 𝑔′

2
◦ 𝑓2,

there exists a unique function 𝑢 : 𝐷 → 𝐷 ′ such that 𝑢 ◦ 𝑔1 = 𝑔′
1
and 𝑢 ◦ 𝑔2 = 𝑔′

2
.

Consider the VASR reflections of tf|{𝑎} and tf|{𝑏} shown in Example 5.3. We are searching for

coherent linear maps ⟨𝑔𝑎,𝑤𝑎⟩ and ⟨𝑔𝑏,𝑤𝑏⟩ meeting the aforementioned properties. We will compute

these coherent linear maps by considering each pair of coherence classes 𝐶𝑎,𝐶𝑏 of the VASRs,

computing the pushout in the category of rational vector spaces of proj𝐶𝑎
◦ 𝑓𝑎 and proj𝑏 ◦ 𝑓𝑏 ,

and “stacking” the outputs to form the final coherent linear maps. This approach compositionally

leverages the properties of the pushout in the category of rational vector spaces to produce the

pushout in the category of separated spaces.

V𝑎 has one coherence class 𝐶𝑎 ≜ Q
{𝑦1,𝑦2,𝑦3 }

andV𝑏 has two coherence classes

𝐶𝑏 ≜
{
𝜌 ∈ Q{𝑦4,𝑦5,𝑦6 }

: 𝜌 (𝑦5) = 0, 𝜌 (𝑦6) = 0

}
and 𝐶′

𝑏
≜

{
𝜌 ∈ Q{𝑦4,𝑦5,𝑦6 }

: 𝜌 (𝑦4) = 0

}
. The orthogo-

nal projection functions onto these classes are:

proj𝐶𝑎
(𝜌) (𝑦1) = 𝜌 (𝑦1)

proj𝐶𝑎
(𝜌) (𝑦2) = 𝜌 (𝑦2)

proj𝐶𝑎
(𝜌) (𝑦3) = 𝜌 (𝑦3)

proj𝐶𝑏
(𝜌) (𝑦4) = 𝜌 (𝑦4)

proj𝐶𝑏
(𝜌) (𝑦5) = 0

proj𝐶𝑏
(𝜌) (𝑦6) = 0

proj𝐶′
𝑏
(𝜌) (𝑦4) = 0

proj𝐶′
𝑏
(𝜌) (𝑦5) = 𝜌 (𝑦5)

proj𝐶′
𝑏
(𝜌) (𝑦6) = 𝜌 (𝑦6)

The functions 𝑔1, 𝑔2 of the pushout of proj𝐶𝑎
◦ 𝑓𝑎 and proj𝐶𝑏

◦ 𝑓𝑏 are:

𝑔1 (𝜌) (𝑧1) = 𝜌 (𝑦2) 𝑔2 (𝜌) (𝑧1) = 𝜌 (𝑦4)
The functions 𝑔3, 𝑔4 of the pushout of proj𝐶𝑎

◦ 𝑓𝑎 and proj𝐶′
𝑏
◦ 𝑓𝑏 are:

𝑔3 (𝜌) (𝑧2) = 𝜌 (𝑦1 + 𝑦2) 𝑔4 (𝜌) (𝑧2) = 𝜌 (𝑦5)
𝑔3 (𝜌) (𝑧3) = 𝜌 (𝑦3) 𝑔4 (𝜌) (𝑧3) = 𝜌 (𝑦6)

The pushout of ⟨𝑓𝑎, 𝑤̃⟩ and ⟨𝑓𝑏, 𝑤̃⟩ in the category Sep is the separated space

〈
Q{𝑧1,𝑧2,𝑧3 },

{
𝐶,𝐶′

}〉
and coherent maps ⟨𝑔𝑎,𝑤𝑎⟩ and ⟨𝑔𝑏,𝑤𝑏⟩, where:
3
The standard definition of pushouts requires that the coherent linear map ⟨𝑢, 𝑤𝑢 ⟩ is unique, but this uniqueness is not
necessary to produce monotone summaries. For the remainder of the paper, we use a weakened definition of pushouts

without the uniqueness condition.
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𝑔𝑎 (𝜌) (𝑧1) = 𝜌 (𝑦2)
𝑔𝑎 (𝜌) (𝑧2) = 𝜌 (𝑦1 + 𝑦2)
𝑔𝑎 (𝜌) (𝑧3) = 𝜌 (𝑦3)

𝑔𝑏 (𝜌) (𝑧1) = 𝜌 (𝑦4)
𝑔𝑏 (𝜌) (𝑧2) = 𝜌 (𝑦5)
𝑔𝑏 (𝜌) (𝑧3) = 𝜌 (𝑦6)

𝐶 ≜
{
𝜌 ∈ Q{𝑧1,𝑧2,𝑧3 }

: 𝜌 (𝑧2) = 0, 𝜌 (𝑧3) = 0

}
𝐶′ =

{
𝜌 ∈ Q{𝑧1,𝑧2,𝑧3 }

: 𝜌 (𝑧1) = 0

}
Witness function𝑤𝑎 sends 𝐶 and 𝐶′ to 𝐶𝑎 ;𝑤𝑏 sends 𝐶 to 𝐶𝑏 and 𝐶′ to 𝐶′

𝑏
. ⌟

Lemma 5.6. The category Sep has pushouts.

Theorem 5.7. Consider a transition assignment tf : Σ → 𝑇𝐹 (𝑋 ) and a partition Σ1, Σ2 of Σ. Let〈
𝑓Σ1

,VΣ1

〉
and

〈
𝑓Σ2

,VΣ2

〉
be VASR reflections of tf|Σ1

and tf|Σ2
respectively, and let

⟨𝑆 (V), ⟨𝑎,𝑤𝑎⟩, ⟨𝑏,𝑤𝑏⟩⟩ = pushoutSep (
〈
𝑓Σ1

, 𝑤̃
〉
,
〈
𝑓Σ2

, 𝑤̃
〉
)

Then,
〈
𝑎 ◦ 𝑓Σ1

,V
〉
is a VASR reflection of tf, whereV|Σ1

= image(VΣ1
, 𝑎) andV|Σ2

= image(VΣ2
, 𝑏).

Lemma 5.1 describes how to compute the best VASR abstraction of a single transition formula and

Theorem 5.7 describes how to combine reflections. Together, they describe a divide-and-conquer

approach to computing the VASR reflection of any transition assignment. We describe an efficient

algorithmic implementation of this approach in the next section.

5.3 An Efficient Algorithm for Computing Best VASR Abstractions
We can compute the VASR reflection of any transition assignment tf via the following algorithm. At

a high level, Algorithm 1, GenVASR, iteratively applies the combination step described in Theorem

5.7 to combine singleton VASR reflections generated via Lemma 5.1. It does so by computing the

|Σ|-way Sep pushout in a forward pass, then computing the images of the VASRs in a backwards

pass. The complexity of this algorithm is linear in its calls to pushoutSep, which can cause an

exponential blowup in the state space of the resulting reflection as a function of |Σ|.

Input: Transition assignment tf : Σ→ 𝑇𝐹 (𝑋 )
Output: VASR-reflection ⟨𝑓 ,V⟩

1
〈
𝑓𝑠𝑖 ,V𝑠𝑖

〉
← VASR-reflection of tf|𝑠𝑖 (Section 5.1) for all 𝑠𝑖 ∈ Σ

2 curr← 𝑓𝑠1

3 for 𝑖 ∈ [2, . . . , |Σ|] do
4 ⟨𝑆𝑖 , ⟨𝑎𝑖 , _⟩, ⟨𝑏𝑖 , _⟩⟩ ← pushoutSep (curr, 𝑓𝑠𝑖 ) ; /* invariant: curr = 𝑎𝑖−1 ◦ · · · ◦ 𝑎2 ◦ 𝑓𝑠1

*/
5 curr← 𝑎𝑖 ◦ curr
6 𝑟 ← I ; /* identity */
7 for 𝑖 ∈ [|Σ| . . . 2] do
8 V|{𝑠𝑖 } ← image(V𝑠𝑖 , 𝑟 ◦ 𝑏𝑖 ); /* invariant: 𝑟 = 𝑎 |Σ | ◦ · · · ◦ 𝑎𝑖+1 */
9 𝑟 ← 𝑟 ◦ 𝑎𝑖

10 V|𝑠1
← image(V𝑠1

, 𝑟 )
11 return

〈
𝑏 |Σ | ◦ 𝑓 |Σ | ,V

〉
Algorithm 1: GenVASR: Calculate a VASR-reflection of a transition assignment

Theorem 5.8. For any transition assignment tf : Σ→ TF(𝑋𝐺 ), ⟨𝑓 ,V⟩ = GenVASR(tf) is a VASR-
reflection of tf.
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6 EXTENSION TO LOSSY VASRS
This subsection briefly discusses an extension of our summarization procedure to Lossy-VASRs,

highlighting the extensibility of the theory built in Section 5. Replacing the equalities in the

transitions of vector addition systems with inequalites is a standard relaxation [Bouajjani and Mayr

1999] typically used to make reachability problems easier; here, we show that Lossy-VASRs are

strictly more powerful than VASR abstractions, akin to how polyhedral abstractions are strictly more

powerful than affine relation abstractions. First, we adapt the divide-and-conquer strategy used to

compute VASR reflections to compute Lossy-VASR reflections. Then, the reachability formula of

Section 4 is immediately adaptable to Lossy-VASRs by replacing equalities in Transition(V) with
inequalities.

Lossy-VASR transitions are a relaxation of VASR transitions to inequalities, but counter-intuitively

Lossy-VASRs abstractions are strictly more powerful than VASR abstractions. This is because every

VASR is precisely simulated by a Lossy-VASR: for any VASRV over 𝑌 , we can construct an LVASR

LV over a set of variables

{
lo𝑦 : 𝑦 ∈ 𝑌

}
∪

{
hi𝑦 : 𝑦 ∈ 𝑌

}
and a simulation 𝑓 : V → LV such that

𝜌
𝑠−→V 𝜌 ′ if and only if 𝑓 (𝜌) 𝑠−→LV 𝑓 (𝜌 ′).

𝑓 (𝜌) (lo𝑦)≜ 𝜌 (𝑦)
𝑓 (𝜌) (hi𝑦)≜ 𝜌 (−𝑦) LV(𝑠) ≜

∧
𝑦∈𝑌 (lo′𝑦 ≤ 𝑟𝑦 lo𝑦 + 𝑎𝑦)

∧∧𝑦∈𝑌 ∈ |𝑄 | (hi′𝑦 ≤ 𝑟𝑦hi𝑦 − 𝑎𝑦)
whereV(𝑠) ≜

∧
𝑦∈𝑌
(𝑦′ = 𝑟𝑦𝑦+𝑎𝑦)

Then, a LVASR reflection of a program is guaranteed to capture all information that a VASR

reflection does. Conditionals in programs, particularly those involving inequalities, frequently

cannot be modeled by VASR transitions but can be modeled by LVASR transitions.

We proceed by computing LVASR reflections of singleton transition assignments and then modify

the pushout procedure to account for the new model. Consider a transition formula 𝐹 . Like before,

define the space of resets and increments to be:

L-Res(𝐹 ) ≜ {⟨𝑡, 𝑏⟩ ∈ Lin(𝑋𝐺 ) × Q : 𝐹 |= 𝑡 ′ ≤ 𝑏}
L-Add(𝐹 ) ≜ {⟨𝑡, 𝑏⟩ ∈ Lin(𝑋𝐺 ) × Q : 𝐹 |= 𝑡 ′ ≤ 𝑡 + 𝑏}

L-Res(𝐹 ) and L-Add(𝐹 ) are convex cones; we define the LVASR reflection of a singleton transition

assignment using the generator representations of L-Res(tf(𝑠)) and L-Add(tf(𝑠)) as in Section 5.1.

Following the pattern developed in Section 5.2, wemay reduce the problem ofmerging two LVASR

abstractions over disjoint alphabets to computing a pushout in an appropriate category. Intuitively,

the additional constraint (besides coherence) that must be satisfied by a linear simulation 𝑓 fromLV
to LV′ is that it is non-negative: for each variable 𝑧 of LV′, we have 𝑓 (𝜌) (𝑧) = 𝜌 (𝑎1𝑦1 + . . . 𝑎𝑛𝑦𝑛)
when each 𝑎𝑖 ≥ 0. We thus consider the following variation of the category Sep from Section 5.

An ordered vector space is a vector space 𝑉 equipped with a partial order ≤𝑉 on V. A positive
map 𝑓 between ordered spaces 𝑉 and 𝑉 ′ is linear map that is monotone with respect to this order:

𝑢 ≤𝑉 𝑣 implies that 𝑓 (𝑢) ≤𝑉 ′ 𝑓 (𝑣). A separated ordered space is a separated space 𝑆 = ⟨𝑉𝑆 , 𝐷𝑆 ⟩ in
which 𝑉𝑆 equipped with an partial order under which 𝑉𝑆 and each space in 𝐷𝑆 is an ordered vector

space. Let Sep≤ be the category in which the objects are separated ordered spaces and the arrows

are positive coherent linear maps. The category Sep≤ has pushouts, following a construction

analogous to that in the category Sep (substituting pushouts in the category of rational vector

spaces with weak pushouts in the category of ordered rational vector spaces, explained in the

Appendix of [Pimpalkhare and Kincaid 2024]). Following similar reasoning to Section 5, we obtain

an LVASR reflection of a transition assignment tf : Σ→ TF(𝑋 ) by splitting the alphabet Σ into two

Σ = Σ1 ⊎ Σ2, computing LV reflections

〈
𝑓Σ1

,LVΣ1

〉
and

〈
𝑓Σ2

,LVΣ2

〉
of tf|Σ1

and tf|Σ2
respectively,

computing the pushout 𝑔1 and 𝑔2 of 𝑓Σ1
and 𝑓Σ2

in Sep≤ , and then taking the reflection to be〈
𝑔1 ◦ 𝑓Σ1

, image(𝑔1,LVΣ1
) ⊎ image(𝑔2,LVΣ2

)
〉
.
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7 BOUNDING RECURSIVE DEPTHWITH POTENTIALS
Our summarization procedure works by finding an abstraction (VASR or LVASR) of a program

and computing the reachability relation of this abstraction along the context-free language of

trajectories through the program. This section improves the precision of this summary while

preserving its monotonicity by refining the language of trajectories that are considered. It does so

by taking advantage of our characterization of CFL-reachability using abstract trajectories, which

are essentially a counting abstraction of context-free languages. Our insight is that we can compute

other counting abstractions of the language of executions of a program to further constrain the

abstract trajectories and thereby refine the considered language. In particular, we show how to

synthesize potential functions to bound the number of procedure invocations.

Given a function 𝑓 : Σ→ Q, let ˆ𝑓 : N(Σ, 𝑃) → Q be the function computing the 𝑓 -count of a
nested trajectory:

ˆ𝑓 (𝜏) = ∑
𝑠∈Σ 𝑓 (𝑠) · 𝜋 (flat(𝜏)) (𝑠). In Figure 3, since every call to save_tree is

preceded by a 𝑐 edge, letting #(𝑠) = ( if 𝑠 = 𝑐 then 1 else 0), the #-count of a nested trajectory is

the number of times save_tree is invoked within it.

Our aim is to synthesize potential functions [Tarjan 1985] 𝜈 : (𝑃 × Q𝑋 ) → Q for # such that if

𝜏 ∈ T𝑀 (𝑝) and 𝜌
𝜏−→tf 𝜌

′
, then #̂(𝜏) ≤ 𝜈 (𝑝, 𝜌). Put into words, if 𝜏 is a nested trajectory through

procedure 𝑝 that can be executed from some input state 𝜌 , then 𝜈 (𝑝, 𝜌) is an upper bound on the

number of times save_tree is invoked in 𝜏 . The key insight is that #̂(𝜏) can be computed from an

abstract trajectory of flat(𝜏) and that 𝜈 (𝑝, 𝜌) can be computed from 𝜌 ; we can symbolically bound

the variables of our summary representing the abstract trajectory to obey synthesized bounds and

thereby refine the summarized language.

To ensure monotonicity of our overall summarization technique, if a procedure f refines another

g, then the refined language considered for f must be a subset of the refined language considered

for g. Existing techniques [Carbonneaux et al. 2015; Hoffmann et al. 2012; Hoffmann and Hofmann

2010] for synthesizing potential functions compute just one potential function per procedure and

therefore do not induce monotone language refinements. To see why this is the case, suppose that

such a technique computes a single potential of the form 𝜈 (𝑝, 𝜌) = max(0, 𝜌 (𝑡)) where 𝑡 is a linear
term of variables of the program, and consider the following procedure:

f(x, y): if (x<=0) || (y<=0) then 0 else f(x-1,y-1)

Procedure f has two tightest potential functions matching our template: 𝜈1 (𝑓 , 𝜌) = max(0, 𝑥) and
𝜈2 (𝑓 , 𝜌) = max(0, 𝑦). These are tightest in the sense that all other potential functions for f are

greater than either 𝜈1 (𝑓 , 𝜌) or 𝜈2 (𝑓 , 𝜌) for all input states 𝜌 . Assume without loss of generality that

a technique computing a single potential function computes 𝜈1. Then, consider the procedure:

g(x, y): if * || (y<=0) then 0 else g(x-1,y-1)

Procedure g has a single tightest potential function matching our template: 𝜈3 (𝑔, 𝜌) = max(0, 𝑦).
Here, we have a violation of monotonicity for the input state 𝜌 (𝑥) = 2, 𝜌 (𝑦) = 1: f is a refinement

of g, but for the input state 𝜌 we compute a tighter bound for g than f: 𝜈3 (𝑔, 𝜌) = 1 ≤ 2 = 𝜈1 (𝑓 , 𝜌).
Ultimately, a language refinement using potential functions must compute both 𝜈1 and 𝜈2 for f to

be monotone.

This section synthesizes a space of potential functions and uses all functions in the space to

refine our summary while preserving monotonicity. First, we define inductive potentials, which give

a sufficient “local” condition for a function to be a potential. Second, we show how to transform a

program by adding variables which capture the necessary information to symbolically check this

local condition, and use intra-procedural summarization of the transformed program to synthesize

a convex polyhedron such that each point in the polyhedron corresponds to an inductive potential
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function. Third, we show how to encode all bounds that arise from a convex polyhedron of potential

functions into a LIRA formula.

7.1 Defining Inductive Upper Potentials
Our method is described for a generic counting scheme 𝑓 : Σ → Q. We constrain our attention

to potential functions for 𝑓 which satisfy an inductiveness condition that can be checked with an

intra-procedural analysis. At a high level, a potential function 𝜈 is inductive if 𝜈 (𝑝, 𝜌) is greater
than or equal to the 𝑓 -count of any nested trajectory through procedure 𝑝 with input 𝜌 where 𝜈 is

used as an approximation of the 𝑓 -count of any sub-nested trajectory.

Formally, consider a program graph𝑀 , a transition assignment tf : Σ→ TF(𝑋 ), and a partition

of 𝑋 into local variables 𝑋𝐿 and global variables 𝑋𝐺 . Suppose that for each procedure 𝑝 , S(𝑝) is
an over-approximate procedure summary for 𝑝 (perhaps trivial – e.g., 𝑆 (𝑝) = ∧

𝑥∈𝑋𝐿
𝑥 ′ = 𝑥) such

that if 𝜌
⟨𝑝,𝜏 ⟩
−−−−→tf 𝜌

′
for any 𝜏 ∈ T𝑀 (𝑝), then [𝜌, 𝜌 ′] |= 𝑆 (𝑝). Then tf ⊎ S defines a labeled transition

system over the alphabet Σ ∪ 𝑃 . For any trace 𝑒 = 𝜌0 . . . 𝜌𝑛 in this transition system of a trajectory

𝑤 = 𝑤1 . . .𝑤𝑛 ∈ (Σ ∪ 𝑃)𝑛 , define:

𝜈∗ (𝑓 , 𝑒,𝑤) = ©­«
∑︁

𝑖∈[𝑛],𝑤𝑖 ∈Σ
𝑓 (𝑤𝑖 )ª®¬ + ©­«

∑︁
𝑖∈[𝑛],𝑤𝑖 ∈𝑃

𝜈 (𝑤𝑖 , 𝜌𝑖−1)
ª®¬

Let skim : N(Σ, 𝑃) → (Σ∪𝑃)∗ be the homomorphism sending 𝑠 ∈ Σ to 𝑠 and ⟨𝑝, 𝜏⟩ ∈ 𝑃 ×N(Σ, 𝑃)
to 𝑝 . If 𝑒 is a trace of nested trajectory 𝜏 in tf, then since S is over-approximate 𝑒 is also a trace of

trajectory skim(𝜏) in tf ⊎ S; then 𝜈∗ (𝑓 , 𝑒, skim(𝜏)) can be understood as an approximation of
ˆ𝑓 (𝜏)

where 𝜈 is used in place of
ˆ𝑓 for all recursive calls ⟨𝑝, 𝜏 ′⟩ within 𝜏 .

We say that 𝜈 is an inductive upper potential for 𝑓 if for any valuation 𝜌 , procedure 𝑝 , and

nested trajectory 𝜏 ∈ T𝑀 (𝑝):(
𝜌0 . . . 𝜌 |𝜏 | is a trace of

skim(𝜏) in tf ⊎ 𝑆

)
=⇒ 𝜈 (𝑝, 𝜌0) ≥ 𝜈∗ (𝑓 , 𝜌0 . . . 𝜌 |𝜏 | , skim(𝜏))

If 𝜈 meets this condition, then by induction over the structure of 𝜏 :(
𝜌0 . . . 𝜌 |𝜏 | is a trace of

𝜏 in tf

)
=⇒

(
𝜌0 . . . 𝜌 |𝜏 | is a trace of

𝜏 in tf ⊎ S

)
=⇒ ˆ𝑓 (𝜏) ≤ 𝜈∗ (𝑓 , 𝜌0 . . . 𝜌 |𝜏 | , skim(𝜏)) ≤ 𝜈 (𝑝, 𝜌0)

We further constrain our attention to potentials of the form 𝜈𝜃 (𝑝, 𝜌) = max(0, 𝜌 (𝜃 (𝑝)) where
𝜃 : 𝑃 → Lin(𝑋 ). In the remaining subsections, we will:

(1) Compute a convex polyhedron 𝑈𝐵(𝑀, tf, 𝑆, 𝑓 ) ⊆ (𝑃 → Lin(𝑋 )) such that for all 𝜃 ∈
𝑈𝐵(𝑀, tf, 𝑆, 𝑓 ), we have 𝜈𝜃 is an inductive upper potential on 𝑓 .

(2) Define, given a polyhedron UB ∈ 𝑃 → Lin(𝑋 ), a formula 𝐵↑ (𝑋,UB, 𝑝) with free variables

𝑋 ∪ {𝜉} such that 𝜌 |= 𝐵↑ (𝑋,UB, 𝑝) if and only if 𝜌 (𝜉) ≤ 𝜈𝜃 (𝑝, 𝜌) for all 𝜃 ∈ UB.

7.2 Computing a Polyhedron of Inductive Upper Potentials
This section shows how to use an intraprocedural analysis to compute a convex polyhedron

𝑈𝐵(𝑀, tf, 𝑆, 𝑓 ) of functions 𝜃 : 𝑃 → Lin(𝑋 ) such that 𝜈𝜃 is an inductive upper potential for 𝑓 . That

is, we are interested in finding 𝜃 such that for all procedures 𝑝 , valuations 𝜌 , and nested trajectories

𝜏 ∈ T𝑀 (𝑝), if 𝑒 = 𝜌, . . . , 𝜌 ′ is a trace of skim(𝜏) in tf ⊎ S then 𝜈𝜃 (𝑝, 𝜌) ≥ 𝜈∗
𝜃
(𝑓 , 𝑒, skim(𝜏)). The

following example motivates our approach.

Example 7.1. Consider the program graph𝑀 and transition assignment tf displayed in Figure 3.We

write save_tree as st. Let 𝑆 : 𝑃 → 𝑇𝐹 (𝑋 ) be the trivial procedure summary assignment sending
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st to
∧

𝑥∈𝑋𝐿
𝑥 ′ = 𝑥 . This example computes potential functions of #(𝑠) = ( if 𝑠 = 𝑐 then 1 else 0);

in other words, bounds on the number of calls to st within executions of st.
For any trajectory 𝜏 through st, observe that skim(𝜏) is equal to either 𝑏 or 𝑎𝑐st𝑐st. As a

stepping stone, consider the problem of synthesizing potentials of the form 𝜈𝜃 (𝑝, 𝜌) = 𝜌 (𝜃 (𝑝))
where 𝜃 : 𝑃 → Lin(𝑋 ). Our approach is to compute an intra-procedural summary 𝐹 of tf ⊎ 𝑆 over

all possible skim(𝜏) through st instrumented with extra variables ctr and {𝑑𝑥 : 𝑥 ∈ 𝑋 } where ctr
tracks the sum of 𝑓 (𝑠) for every 𝑠 ∈ Σ in skim(𝜏) and 𝑑𝑥 tracks the sum of the values of 𝑥 at each

invocation of st. We then compute the set of 𝜃 such that

𝐹 |= 𝜃 (st) ≥ ctr ′ + 𝜃 (st) [𝑥 ↦→ 𝑑 ′𝑥 ]
Then, for every trace 𝜌0𝜌1 of 𝑏 in tf ⊎ 𝑆 , we have [𝜌0, 𝜌1] |= 𝐹 where 𝜌 is the extension of 𝜌 to

the variables ctr and 𝑑𝑥 . Thus,

𝜈𝜃 (𝑝, 𝜌0) = 𝜌0 (𝜃 (st)) ≥ 𝜌1 (ctr) + 𝜌1 (𝜃 (st) [𝑥 ↦→ 𝑑𝑥 ]) = 0 = 𝜈∗
𝜃
(#, 𝜌0𝜌1, 𝑏)

For every trace 𝜌0 . . . 𝜌5 of 𝑎𝑐st𝑐st in tf ⊎ 𝑆 , we have [𝜌0, 𝜌5] |= 𝐹 , and thus

𝜈𝜃 (𝑝, 𝜌0) = 𝜌0 (𝜃 (st)) ≥ 𝜌5 (ctr) + 𝜌5 (𝜃 (st) [𝑥 ↦→ 𝑑𝑥 ]) = 2 + (𝜌2 + 𝜌4) (𝜃 (st)) = 𝜈∗
𝜃
(#, 𝜌0 . . . 𝜌5, 𝑎𝑐st𝑐st)

The key trick to this approach is that we exploit the linearity of𝜃 to compute 𝜌2 (𝜃 (st))+𝜌4 (𝜃 (st))
from 𝜌2 + 𝜌4, which is symbolically captured by {𝑑𝑥 : 𝑥 ∈ 𝑋 }. We now adapt this approach to the

full template 𝜈𝜃 (𝑝, 𝜌) = max(0, 𝜌 (𝜃 (𝑝))) where 𝜃 : 𝑃 → 𝐿𝑖𝑛(𝑋 ).
For any trace 𝜌0𝜌1 of 𝑏 in tf ⊎ 𝑆 , we have 𝜈∗

𝜃
(#, 𝜌0𝜌1, 𝑏) = 0 so by the definition of our template

we have 𝜈𝜃 (𝑝, 𝜌0) ≥ 𝜈∗
𝜃
(#, 𝜌0𝜌1, 𝑏) for any 𝜃 . We additionally instrument tf ⊎ 𝑆 with an additional

variable rec tracking whether a recursive call occurs in skim(𝜏) and refine our summary 𝐹 by

conjoining (rec′ = 1 ∨ ctr′ > 0) to ignore such cases where 𝜈∗
𝜃
must be zero.

For any trace 𝜌0 . . . 𝜌5 of 𝑎𝑐st𝑐st in tf ⊎ 𝑆 , we can use the following equivalences to translate

the condition 𝜈𝜃 (𝑝, 𝜌0) ≥ 𝜈∗
𝜃
(#, 𝜌0 . . . 𝜌5, 𝑎𝑐st𝑐st) into a conjunction of inequalities with the same

form as the linear template.

𝜌0 (max(0, 𝜃 (st)) ≥ 2 + 𝜌2 (max(0, 𝜃 (st))) + 𝜌4 (max(0, 𝜃 (st)))
⇐⇒ 𝜌0 (𝜃 (st)) ≥ 2 +max𝜎∈{𝜌2,0},𝜎 ′∈{𝜌4,0} (𝜎 + 𝜎 ′) (𝜃 (st))
⇐⇒ ∧

𝜎∈{𝜌2,0},𝜎 ′∈{𝜌4,0} 𝜌0 (𝜃 (st)) ≥ 2 + (𝜎 + 𝜎 ′) (𝜃 (st))
We modify our extended program by non-deterministically incrementing 𝑑𝑥 by 𝑥 or by 0 at each

invocation—in this way, the possible valuations of 𝑑𝑥 capture all options for 𝜎 + 𝜎 ′. ⌟

Our high level approach is to construct an augmented transition assignment tf↑ over the alphabet
Σ ∪ 𝑃 such that traces of 𝑠𝑘𝑖𝑚(𝜏) in tf ⊎ 𝑆 correspond to traces in tf↑ in which the extra variables of

tf↑ capture enough information to compute 𝜈∗
𝜃
(𝑓 , 𝑒, skim(𝜏)); we then use consequence-finding on

an intra-procedural summary of tf↑ to compute a polyhedron of all inductive upper potentials.

Define tf↑ : (Σ ∪ 𝑃) → 𝑇𝐹 (𝑋 ∪ 𝐷 ∪ {ctr, rec}) as follows, where 𝐷 ≜
⋃

𝑝∈𝑃 𝐷𝑝 and 𝐷𝑝 ≜{
𝑑𝑥,𝑝 : 𝑥 ∈ 𝑋

}
. The mapping tf↑ will meet the conditions for all 𝜏 ∈ T𝑀 (𝑝) that if 𝑒 = 𝜌0 . . . 𝜌 |𝜏 | is

a trace of skim(𝜏) in tf ⊎ S such that 𝜈∗
𝜃
(𝑓 , 𝑒, skim(𝜏)) > 0, then there is a trace 𝑒 = 𝜌0 . . . 𝜌 |𝜏 | of

skim(𝜏) in tf↑ such that:

(1) 𝜌𝑖 |𝑋 = 𝜌𝑖 and 𝜌0 (𝑧) = 0 for all 𝑧 ∈ 𝐷 ∪ {ctr, rec}
(2) 𝜈∗

𝜃
(𝑓 , 𝑒, skim(𝜏)) = 𝜌 |𝜏 |

(∑
𝑝∈𝑃 𝜃 (𝑝) [𝑋 ↦→ 𝐷𝑝 ] + 𝑐𝑡𝑟

)
(3) if skim(𝜏) ∈ Σ∗ then 𝜌 |𝜏 | (rec) = 0 else 𝜌 |𝜏 | (rec) = 1

The first condition ensures that 𝑒 represents the same computation as 𝑒 , and the second condition

allows us to compute 𝜈∗
𝜃
(𝑓 , 𝑒, skim(𝜏)) from the post valuation 𝜌 |𝜏 | . The third condition describes

the behavior of rec. The definition of tf↑ is as follows, where same(𝑋 ) ≜ ∧
𝑥∈𝑋 𝑥 ′ = 𝑥 :
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• For all 𝑠 ∈ Σ, tf↑ (𝑠) ≜ tf(𝑠) ∧ same(𝐷 ∪ {rec}) ∧ ctr′ = ctr + 𝑓 (𝑠)
• For all 𝑝 ∈ 𝑃 , tf↑ (𝑝) ≜ 𝑆 (𝑝) ∧ same((𝐷\𝐷𝑝 ) ∪ {ctr}) ∧ rec′ = 1 ∧ (same(𝐷𝑝 ) ∨ ®𝐷 ′𝑝 = ®𝐷𝑝 + ®𝑋 )

Let Intra refer to an intra-procedural analysis function, the inputs to which are a graph ⟨𝑉 , 𝐸⟩
where 𝐸 ⊆ 𝑉 × Σ ×𝑉 , a transition assignment tf : Σ→ TF(𝑋 ), a source src ∈ 𝑉 and a target vertex

tgt ∈ 𝑉 . Its output is a transition formula 𝐹 such that [𝜌, 𝜌 ′] |= 𝐹 if and only if 𝜌
𝑤−→tf 𝜌

′
where𝑤 is

a path through the graph between src and tgt. We assume Intra(⟨𝑉 , 𝐸⟩, tf, src, tgt) is monotone: if

tf(𝑠) |= tf′ (𝑠) for all 𝑠 ∈ 𝐸, then Intra(⟨𝑉 , 𝐸⟩, tf, src, tgt) |= Intra(⟨𝑉 , 𝐸⟩, tf′, src, tgt).
If our program graph is𝑀 = ⟨𝑉 , Σ, 𝑃, 𝐸, in, out⟩, then Intra(⟨𝑉 , 𝐸⟩, tf↑, in(𝑝), out(𝑝)) is a transition

formula over-approximating 𝜌
skim(𝜏 )
−−−−−−→tf↑ 𝜌

′
for all 𝜏 ∈ T𝑀 (𝑝). We conjoin additional formulae to

initialize our variables and ignore cases in which we know the 𝑓 -count to be non-positive:

𝐹 ≜ Intra(⟨𝑉 , 𝐸⟩, tf↑, in(𝑝), out(𝑝)) ∧
©­«

∧
𝑣∈{ctr,rec}∪𝐷

𝑣 = 0
ª®¬ ∧ (rec′ = 1 ∨ ctr′ > 0)

Finally, we define𝑈𝐵(𝑀, tf, 𝑆, 𝑓 ) to be

⋂
𝑝∈𝑃 𝑈𝐵𝑝 where:

UB𝑝 ≜
𝜃 : 𝑃 → Lin(𝑋 ) : 𝐹 |= 𝜃 (𝑝) ≥ ctr′ +

∑︁
𝑝∈𝑃

𝜃 (𝑝) [𝑋 ↦→ 𝐷 ′𝑝 ]


All 𝜃 ∈ 𝑈𝐵(𝑀, tf, 𝑆, 𝑓 ) represent inductive upper potentials. The argument is as follows: con-

sider any trace 𝜌 . . . 𝜌 ′ of nested trajectory 𝜏 . If 𝜈∗
𝜃
(𝑓 , 𝜌 . . . 𝜌 ′, skim(𝜏)) ≤ 0 then 𝜈𝜃 (𝑝, 𝜌) ≥

𝜈∗
𝜃
(𝑓 , 𝜌 . . . 𝜌 ′, skim(𝜏)) by the template. Otherwise, by the definition of tf↑, there exist valuations 𝜌, 𝜌

′

such that [𝜌, 𝜌 ′] |= 𝐹 , 𝜌 |𝑋 = 𝜌 , 𝜌 ′ |𝑋 = 𝜌 ′, and 𝜈∗
𝜃
(𝑓 , 𝑒, skim(𝜏)) = 𝜌 ′ (𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + ∑

𝑝∈𝑃 𝜃 (𝑝) [𝑋 ↦→
𝐷𝑝 ]); then, 𝜈𝜃 (𝑝, 𝜌) ≥ 𝜌 ′ (𝜃 (𝑝)) ≥ 𝜈∗

𝜃
(𝑓 , 𝑒, skim(𝜏)).

Theorem 7.2. Consider a program graph𝑀 , a transition assignment tf : Σ→ TF(𝑋 ), a procedure
summary map 𝑆 : 𝑃 → TF(𝑋 ), and a function 𝑓 : Σ→ Q. Let 𝜃 ∈ 𝑈𝐵(𝑀, tf, 𝑆, 𝑓 ). For any valuations
𝜌, 𝜌 ′, procedure 𝑝 , and nested trajectory 𝜏 ∈ T𝑀 (𝑝) such that 𝜌

𝜏−→tf 𝜌
′, we have ˆ𝑓 (𝜏) ≤ 𝜈𝜃 (𝑝, 𝜌).

Lemma 7.3 (Anti-monotonicity). For any two transition assignments tf, tf′ : Σ→ TF(𝑋 ) and two
summary assignments 𝑆, 𝑆 ′ : 𝑃 → TF(𝑋 ), if tf(𝑠) |= tf′ (𝑠) for all 𝑠 ∈ Σ and 𝑆 (𝑝) |= 𝑆 ′ (𝑝) for all 𝑝 ∈ 𝑃 ,
then𝑈𝐵(𝑀, tf′, 𝑆 ′, 𝑓 ) ⊆ 𝑈𝐵(𝑀, tf, 𝑆, 𝑓 ).

7.3 Applying All Constraints of a Polyhedron of Upper Inductive Potentials
Suppose that UB ⊆ 𝑃 → Lin(𝑋 ) is a convex polyhedron and 𝑝 ∈ 𝑃 is a procedure. In this section, we

should how to construct a formula 𝐵↑ (𝑋,𝑋, 𝑝) with free variables in 𝑋 plus a designated variable 𝜉

such that 𝜌 |= 𝐵↑ (𝑋,UB, 𝑝) if and only if 𝜌 (𝜉) ≤ 𝜈𝜃 (𝑝, 𝜌) for all 𝜃 ∈ UB. This formula will allow us

to refine AT(V,𝐺) from Section 4 by replacing 𝜉 with relevant terms.

Let {𝑣1, . . . , 𝑣𝑛} and {𝑟1, . . . , 𝑟𝑚} be the vertices and rays of the generator representation of UB,
respectively. Then, the following formula encodes our bound into LIRA:

𝐵↑ (𝑋,UB, 𝑝) ≜
©­«©­«

∨
𝑖∈[𝑚]

𝑟𝑖 (𝑝) < 0
ª®¬ ∧ 𝜉 ≤ 0

ª®¬ ∨ ©­«©­«
∧

𝑖∈[𝑚]
𝑟𝑖 (𝑝) ≥ 0

ª®¬ ∧
∧
𝑖∈[𝑛]

𝜉 ≤ max(0, 𝑣𝑖 (𝑝))
ª®¬

Lemma 7.4. Let 𝑃 be a set of procedure identifiers and let tf : Σ→ TF(𝑋 ) be a transition assignment.
Consider any convex polyhedron UB ⊆ 𝑃 → Lin(𝑋 ). For any valuation 𝜌 , we have 𝜌 |= 𝐵↑ (𝑋,UB, 𝑝)
if and only if 𝜌 (𝜉) ≤ 𝜈𝜃 (𝑝, 𝜌) for all 𝜃 ∈ UB.
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A sketch of the proof of this lemma is that if there is a ray 𝑟𝑖 such that 𝜌 (𝑟𝑖 (𝑝)) < 0, for any

inductive potential 𝜃 we have that 𝜃 + 𝛼𝑟𝑖 is an inductive potential for all 𝛼 > 0, and by linearity

there must some value of 𝛼 such that 𝜈𝜃+𝛼𝑟𝑖 (𝑝, 𝜌) = 0. Otherwise, the least inductive upper bound

in UB must be one of the vertices by convexity.

Thework of this section can be straightforwardly extended to the template𝜈 (𝑝, 𝜌) = max(0, 𝜌 (𝜃 (𝑝)))
where 𝜃 ∈ 𝑃 → Aff(𝑋 ) where Aff(𝑋 ) denotes the set of affine terms over 𝑋 . Additionally, we can

modify the procedure to generate and apply lower bounds; this is discussed in the Appendix.

8 AN END-TO-END SUMMARIZATION PROTOCOL
Here, we specify our end-to-end summarization procedure and formalize its monotonicity.

(1) The input is a program graph𝑀 = ⟨𝑉 , Σ, 𝑃, 𝐸, in, out⟩ representing the structure of the input

procedure, a transition assignment tf : Σ→ TF(𝑋 ) over a set of local variables 𝑋𝐿 and a set of

global variables 𝑋𝐺 , and a procedure to summarize 𝑝 . We will assume that all calls to 𝑝′ ∈ 𝑃
are preceded by a designated edge begin(𝑝′) ∈ Σ.

(2) Using the divide-and-conquer approach of Section 5 with the theory of Section 6, compute

the best LVASR abstraction ⟨𝑓 ,LV⟩ of tf.
(3) Recalling that G(𝑀, 𝑝) is the grammar generating L𝑀 (𝑝), use Section 4 to compute the

CFL-reachability formula ∃𝐶.Reach(LV,G(𝑀, 𝑝∗)) where 𝐶 =
{
𝑐𝑠,𝑖 : 𝑠 ∈ Σ, 𝑖 ∈ [2𝑑 + 1]

}
.

(4) Let #𝑝′ (𝑠) = (if 𝑠 = begin(𝑝′) then 1 else 0) and 𝑆 (𝑝′) = ∧
𝑥∈𝑋𝐿

𝑥 ′ = 𝑥 for all 𝑝′ ∈ 𝑃 . Using
Section 7, compute the upper-bounding formula 𝐵↑ (𝑋,𝑈𝐵(𝑀, tf, 𝑆, #𝑝′ ), 𝑝) for all 𝑝′ ∈ 𝑃 .

(5) Our final summary for 𝑝 is the following transition formula:

Summary(𝑀, tf, 𝑝) ≜ ∃𝐶.
(

Reach(LV,G(𝑀, 𝑝)) [𝑌 ↦→ SUB𝑓 (𝑌 ), 𝑌 ′ ↦→ SUB𝑓 (𝑌 )′]
∧ ∧

𝑝′∈𝑃 𝐵↑ (𝑋,𝑈𝐵(𝑀, tf, 𝑆, #𝑝′ ), 𝑝) [𝜉 ↦→
∑

𝑖∈[2𝑑+1] 𝑐begin(𝑝′ ),𝑖

)
By Theorems 5.8, 4.6, and 7.2, we know for all valuations 𝜌, 𝜌 ′, and trajectories 𝜏 ∈ T𝑀 (𝑝∗) if

𝜌
𝜏−→tf 𝜌

′
, then 𝜌, 𝜌 ′ |= Summary(𝑀, tf, 𝑝∗). Furthermore, Summary is monotone:

Theorem 8.1 (Monotonicity). For any transition assignments tf and tf′ such that tf(𝑠) |= tf′ (𝑠) for
all symbols 𝑠 , program graph𝑀 , and procedure 𝑝 ,

Summary(𝑀, tf, 𝑝) |= Summary(𝑀, tf′, 𝑝)

9 EVALUATION
This evaluation seeks to answer: (1) How does the precision of our summarization technique

compare to state-of-the-art abstract interpreters? (2) How do the verification capabilities of a

automated verifier based on our technique compare to state-of-the-art verifiers? (3) How do the

refinements in Sections 6 and 7 affect the precision of the summaries?

Implementation. Our summarization methods are implemented in an algebraic program ana-

lyzer called LiP (LVASR summarization with Inductive Potentials).
4
It uses a monotone variant of

Compositional Recurrence Analysis (CRA) [Farzan and Kincaid 2015] as a backend intraprocedural

analyzer to verify safety properties using procedure summaries computed using our technique. We

evaluate three baseline methods representing our summarization routine without refinements. We

also compare LiP with an instantiation of CRA with a different monotone procedure summarization

technique, which is a classical abstract-interpretation-based analysis using the reduced product of

a signed domain and the domain of affine relations.
5
Finally, we compare with the combination

4
The source code of 𝐿𝑖𝑃 is available at https://github.com/nikhilpim/duet

5
This domain satisfies the ascending chain condition, which avoids the need for (non-monotone) widening operators.
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Rec-Supreme (60) Recursive (17) Recursive-simple (35)

✓ ? TO ✓ ? TO ✓ ? TO

LiP (LVASR + Poten.) 28 32 0 3 13 1 20 15 0

- LVASR, No Poten. 26 34 0 3 13 1 20 15 0

- VASR + Poten. 20 40 0 2 15 0 14 21 0

- VASR, No Poten. 14 46 0 2 15 0 13 22 0

CRA 16 44 0 4 13 0 14 21 0

LiP ∧ CRA 29 31 0 5 11 1 20 15 0

Korn 18 1 39 13 1 3 35 0 0

UAutomizer 23 0 37 11 0 6 23 0 12

Goblint 7 53 0 3 14 0 20 15 0

Fig. 6. Columns headers denote benchmark sets and # tasks per task. Row headers denote program verification
tools; tools above the midrule are monotone. Table entries denote # of solves, unknowns, and timeouts.

(LiP ∧ CRA) of both summarization techniques (which simply conjoins the summaries produced by

each); since both techniques are monotone, their conjunction is also monotone.

Other tools. To answer research question 1, we compare our tool against monotone CRA and

Goblint [Vojdani et al. 2016], a (non-monotone) abstract interpreter that performed well in SV-

COMP 2023 [Beyer 2023]. To answer research question 2, we compare with the first and second

place finishers in the ReachSafety Recursive category of SV-COMP 2023, Korn [Ernst 2020], a

portfolio solver based on Spacer [Komuravelli et al. 2014] and Eldarica [Hojjat and Rümmer 2018],

and UAutomizer [Heizmann et al. 2013], a model checker based on trace abstraction.

Our experiments should be viewed with the qualitative differences between model checkers

(Korn, UAutomizer) and abstract interpreters (LiP, CRA, Goblint) in mind. Abstract interpreters

are terminating invariant generation algorithms, whereas software model checkers are semi-

algorithms that verify or refute a given property. The two tool categories have different strengths

and capabilities—software model checkers can refute safety properties, and abstract interpreters

have clients beyond verification (e.g., compilers, resource bound analyzers, as a pre-processing step

for software model checkers). Our experiments compare these tools on (safe) verification tasks,

which lies at the intersection of their capabilities. Abstract interpreters can easily be combined by

conjoining their procedure summaries as with LiP∧CRA; model checkers can incorporate abstract

interpreters by using them to generate initial candidate summaries which are subsequently refined.

Evaluation Tasks. Since procedure summarization is only relevant in the presence of recursive

procedures, we restrict our attention to verification tasks on recursive programs; for non-recursive

procedures our tool is identical to CRA. This paper describes a technique to compute numerical

procedure summaries, so we restrict our attention to numerical programs. Although LiP can be

used to analyze numerical abstractions of programs with data structures (for instance, Magill et al.

[2010] gives one method for computing such abstractions), it cannot analyze them directly. We

compiled a diverse set of recursive numerical procedures in a suite called Rec-Supreme (available

in supplement). The tasks are variants of 17 functions which are enumerated in Subsection 9.2.

We include the safe tasks from the Recursive and Recursive-Simple sets from SV-Comp in our

evaluation, but remark that these sets have weaknesses as evaluation metrics. Firstly, these sets

have low diversity—the sets include 18 variants of the Fibonacci function, 12 variants of the identity

function, and 8 variants of a recursive implementation of addition. Secondly, the suite contains a
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large number of tasks that can be verified by unrolling (e.g., proving that Fibonacci(9) == 34),
for which abstract interpreters are ill-suited.

Timings were gathered on a virtual machine running Ubuntu 20.04 with 8 GB of RAM with

access to a 2.3 GHz Intel i7 CPU. The time limit was 10 minutes per task. Data can be found in

Figure 6.

9.1 RQ1: Precision Comparison with Abstract Interpreters
Our results show that our summarization technique is a step forward for the abstract interpretation

of recursive programs. LiP significantly outperforms CRA and Goblint on Rec-Supreme; the three

techniques have similar performance on the SV-Comp benchmarks. Since both LiP and CRA are

monotone, their summaries can be conjoined while preserving monotonicity. These summaries are

complementary, so this conjunction succeeds on some tasks that neither LiP nor CRA succeed on.

9.2 RQ2: Verification Comparison
Our evaluation shows that our method is comparable with state-of-the-art verifiers. LiP outperforms

Korn and UAutomizer on Recursive-Supreme but is outperformed on SV-Comp benchmarks. The

relative performance of these tools on these sets indicates that these software model checkers would

benefit from using LiP as a pre-pass to generate initial summaries for each recursive procedure.

Within Recursive-Supreme, LiP scores highly on the add, evenodd, id, mod2, sort, treecount, and

treedelay benchmarks while UAutomizer and Korn exhibit non-monotone or non-compositional

behavior and miss some tasks. However, on the ackermann, fib, gcd, lexer, and queue benchmarks

they are able to verify properties that LiP is not precise enough to handle. The binomial, grid, mul,

partition, and treedepth benchmarks are not verified by any tool.
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Fig. 7. Cactus Plot over all sets

Figure 7 shows timing performance on tasks which

were successfully solved. The solve time of LiP is com-

parable with CRA, Korn, and Goblint and is better than

that of UAutomizer. We note that unsafe benchmarks are

excluded in our evaluation since LiP is not capable of refu-

tation, but comment that LiP’s runtime performance does

not degrade on unsafe benchmarks—on the unsafe tasks

within SV-Comp, LiP returns unknown in an average of

0.7 seconds and always in less than 3.5 seconds.

9.3 RQ3: Component Analysis
By comparing the performance of LiP and the baseline

methods, we can conclude that both Lossy VASR and

inductive potentials are refinements that meaningfully

increase the precision of our procedure summaries. The

extension to the domain of Lossy VASRs appears to be a more powerful refinement than the

inclusion of inductive potentials. In programs in which the base case is a conditional in terms of

variables of the LVASR reflection, the LVASR summary sometimes effectively bounds the number

of procedure calls without requiring potential functions.

10 RELATEDWORK
Interprocedural analysis. Computing summaries that approximate the dynamics of recursive

procedures is a classical problem in program analysis [Cousot and Cousot 1977; Sharir and Pnueli

1978]. The dominant approach is based on iterative approximation, which uses the limit of a Kleene
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iteration sequence as a summary. For abstract domains that fail the ascending chain condition, the

limit can be over-approximated using widening; however, this results in a non-monotone analysis.

Newtonian program analysis [Esparza et al. 2010] is a method for solving inter-procedural

dataflow equations based on Newton iteration rather than Kleene iteration. Newtonian program

analysis relies on commutativity of the sequencing operation rather than the ascending chain

condition. Newtonian program analysis cannot compute VASR reachability because resets do not

commute.

SLAM [Ball and Rajamani 2001] is a suite of tools which abstract programs as boolean programs
that have recursive procedures. SLAM iteratively refines its boolean program abstraction and uses

pushdown model checking to answer questions about program behavior. SLAM’s abstract model is

restricted to boolean variables, while the work of this paper operates over rational variables.

Vector addition systems. Vector addition systems are a class of transition systems originally

motivated as a model of parallel systems. Classically, vector addition systems operate over vectors

of natural numbers. The complexity of the reachability problem is non-elementary [Lazic 2013a].

The integer VAS model was introduced by Haase and Halfon [2014], which showed that the

reachability relation

𝐿−→V can be encoded as a Presburger formula in polynomial time in the case

that 𝐿 = Σ∗ and the case that 𝐿 is regular (i.e. integer VASR with states). Their approach is based

on representing a particular counting abstraction, the generalized Parikh image, of 𝐿 using a LIA

formula. The generalized Parikh image of a word consists of a permutation over characters in a

monitored sub-alphabet describing the order of final occurrences from left to right and the Parikh

images of the sub-words in between each final occurrence. Haase and Halfon [2014] extends Seidl

et al. [2004]’s method for computing Parikh images based on a correspondence between Parikh

images and connected flows through an automaton recognizing the language. Haase and Halfon

[2014] modified this construction to compute generalized Parikh images by encoding multiple

connected sub-flows representing consecutive sub-words and symbolically encoding permutations

of final occurrences in LIA. Chistikov et al. [2018] extended this approach to communication-

free Petri net languages. However, it is not clear how to extend this construction to compute

the generalized Parikh image of a context-free language from its representation as a pushdown

automaton or a context-free grammar; it is difficult to represent the configurations of a pushdown

machine between flows in linear arithmetic and the generalization of Seidl et al. [2004] to grammars

breaks the desired correspondence between sub-flows and consecutive sub-words.

This paper introduces abstract trajectories as an alternative to generalized Parikh images. We

show that the problem of computing abstract trajectories can essentially be reduced to computing

ordinary Parikh images by using standard language-theoretic operations (inverse homomorphism

and intersection with a regular language). Our methods could in principle be used to compute

generalized Parikh images, but the need to encode a permutation of the alphabet Σ yields an

exponential-space reduction. Abstract trajectories allow us to side-step this blowup by identifying

𝑑 arbitrary positions in a word rather than a permutation of the alphabet.

Pushdown vector addition systems over the naturals were investigated in [Ganardi et al. 2022;

Lazic 2013b; Leroux et al. 2015]. Whether reachability is decidable for this model is an open problem.

Hague and Lin [2011] show how to obtain a reachability formula for reversal bounded counter

transition systems, which are equivalent to a Rational Vector Addition System (without resets)

subject to a context free language via the reduction in Baumann et al. [2023].

Our work is closely related to Silverman and Kincaid [2019]’s loop summarization technique.

Given a transition formula 𝐹 representing the body of a loop, their method computes an (unlabeled)

VASR abstraction of 𝐹 , and then uses the reachability relation of the VASR (computed via Haase

and Halfon [2014]’s algorithm) to over-approximate the reflexive transitive closure of 𝐹 . Silverman
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and Kincaid [2019] also extend their loop summarization approach to VASR with states (equiva-

lently, VASR restricted to a regular language of trajectories). Using the algebraic program analysis

framework [Kincaid et al. 2021], loop summarization can be extended to summarize (non-recursive)

procedures by computing a regular expression representing all paths through the procedure and

then re-interpreting each regular expression operator with a corresponding operation on transition

formulas (and in particular, interpreting the Kleene ∗ operator using the aforementioned loop

summarization algorithm).

Our work differs in several respects. Foremost, our approach can be applied to recursive proce-

dures. Algebraic program analysis relies on the inductive structure of regular expressions to enable

a simple “bottom-up” summarization strategy; in the presence of recursion, path languages can be

context-free and so do not possess such an inductive structure. Our approach overcomes this barrier

by directly extending VASR-based summarization to recursive procedures rather than relying upon

algebraic program analysis. Our approach necessitated two technical innovations: (1) we must

compute a “global” VASR abstraction for the whole procedure (rather than an independent “local”

abstraction of each loop as in Silverman and Kincaid [2019]), and (2) we must compute context-free

reachability relations for VASR (rather than regular reachability as in Haase and Halfon [2014]).

Secondly, we extend the approach to the more expressive abstract domain of lossy VASR. Finally,

our VASR abstraction algorithm computes a best abstraction for LIRA formulas, whereas Silverman

and Kincaid [2019]’s algorithm is only best for LRA formulas, since it relies upon the fact that LRA

is a convex theory.

Monotone invariant generation. The classical iterative method for program analysis is monotone

for abstract domains satisfying the ascending chain condition, such as affine relation analysis [Karr

1976; Müller-Olm and Seidl 2004] and the Houdini algorithm [Flanagan and Leino 2001]. A recent

line of work has designed monotone program analyses [Kincaid et al. 2023; Silverman and Kincaid

2019; Zhu and Kincaid 2021a,b] using algebraic program analysis [Kincaid et al. 2021]. This work is

intra-procedural, and falls back on an iterative strategy to summarize recursive procedures.

Resource bound analysis. The call-count bounding procedure of Section 7 is based on the potential

function method for amortized resource analysis [Tarjan 1985], which also serves as the foundation

of several resource bound analyses [Carbonneaux et al. 2015; Hoffmann et al. 2012; Hoffmann and

Hofmann 2010]. Carbonneaux et al. [2015] encodes the space of linear potential functions as a linear

program and using an LP solver to find an optimum. In contrast, our technique directly manipulates

the entire space of potential functions, which is the key to making the analysis monotone.

11 CONCLUSION
This paper presented a compositional and monotone summarization technique for recursive integer

programs. It computed the best VASR abstraction of an input program and computed the reachability

relation of that VASR over the context-free language of paths through the program. Its key technical

contributions were (1) a new theory of VASR abstractions and (2) the development of a counting

abstraction of context-free languages, abstract trajectories. It leveraged the new theory of VASR

abstractions to extend the summarization technique to the domain of Lossy VASRs. It took advantage

of the counting abstraction to refine the summary with potential functions constraining the

language of syntactic paths considered by the summary. The evaluation of this technique showed

that it represents a step forward in monotone program analysis and in abstract-interpretation of

procedures, and that its verification capabilities can compete with the state-of-the-art in verification.

In future work, we hope to use our theory of VASR abstractions to discover larger and more

expressive abstract domains in which we can compute reflections and to extend abstract-trajectory

summarization to algebraic structures beyond numerical domains.
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A APPENDIX
A.1 Proofs

Lemma 5.1. For tf : Σ→ TF(𝑋 ) and any 𝑠 ∈ Σ, ⟨𝑓𝑠 ,V𝑠⟩ is a VASR reflection of tf|{𝑠 } .

Proof. Let

〈
𝑓 ′𝑠 ,V′𝑠

〉
be a different VASR abstraction over variables 𝑌 ′ of the transition system

defined by tf|{𝑠 } . Consider variable 𝑦′ ∈ 𝑌 .
If 𝑠 ∈ 𝑅𝑒𝑠𝑒𝑡 (V′, 𝑦′), then

〈
SUB𝑓 ′𝑠 (𝑦′),𝑂 𝑓 𝑓 𝑠𝑒𝑡 (V′, 𝑠, 𝑦′

〉
∈ 𝑅𝑒𝑠 (tf(𝑠)) since for all [𝜌, 𝜌 ′] |= tf(𝑠),

we have 𝑓 ′𝑠 (𝜌)
𝑠−→V′ 𝑓 ′𝑠 (𝜌 ′) and so 𝜌 (SUB𝑓 ′𝑠 (𝑦′)) = 𝑂𝑓 𝑓 𝑠𝑒𝑡 (V′, 𝑠, 𝑦′). Otherwise, it must be in

𝐴𝑑𝑑 (tf(𝑠)) by similar reason. In either case, since {⟨𝑡1, 𝑎1⟩ . . .} and
{〈
𝑡1, 𝑏1

〉
. . .

}
are bases, there

must exist a unique linear function 𝑓 ∗ : 𝑌 → 𝑌 ′ such that SUB𝑓 (SUB𝑓 ∗ (𝑦′)) = SUB𝑓 ′ (𝑦′). Then,
𝑓 ∗ is a simulation fromV𝑠𝑡𝑜V′𝑠 becauseV′𝑠 = 𝑖𝑚𝑎𝑔𝑒 (V𝑠 , 𝑓

∗). Thus, ⟨𝑓𝑠 ,V𝑠⟩ is a VASR reflection of

tf|{𝑠 } .
unique vector ®𝑔𝑦′ such that:[

𝑡1 . . . 𝑡𝑛 𝑡1 . . . 𝑡𝑛
]
®𝑔𝑦′ = SUB(𝑦′)

Then, 𝑔 = [ ®𝑔1 . . . ®𝑔 |𝑌 ∗ | ]𝑇 is the unique matrix such that 𝑔𝑓𝑠 = 𝑓 ′𝑠 , and 𝑔 must be a simulation from

V𝑠 toV′𝑠 becauseV′𝑠 = 𝑖𝑚𝑎𝑔𝑒 (V𝑠 , 𝑔). Thus, ⟨𝑓𝑠 ,V𝑠⟩ is a best VASR abstraction of tf|{𝑠 } . □

Theorem 5.4. LetV andV∗ be VASRs. If 𝑓 is a linear simulation fromV toV∗, then there exists
a function𝑤 𝑓 : 𝐷𝑆 (V∗ ) → 𝐷𝑆 (V) such that

〈
𝑓 ,𝑤 𝑓

〉
is a coherent linear map from 𝑆 (V) to 𝑆 (V∗).

Proof. Let 𝑌 be the variables of V and 𝑌 ∗ be the variables of V∗. Note that we can write

𝑓 (𝜌) (𝑦∗) = 𝜌 (𝑎𝑇
𝑦∗
®𝑌 ) for some 𝑎𝑇

𝑦∗ for all 𝑦
∗ ∈ 𝑌 ∗.

First, observe that Offset(V∗, 𝑠, 𝑦∗) = [Offset(V, 𝑠, 𝑦1),Offset(V, 𝑠, 𝑦2), . . . ]𝑎𝑦∗ .

[0, 𝜌 ′] |= V(𝑠) when 𝜌 ′ (𝑦) = Offset(V, 𝑠, 𝑦)
=⇒ [0, 𝑓 (𝜌 ′)] |= V∗ (𝑠)

=⇒ Offset(V∗, 𝑠, 𝑦∗) = 𝑓 (𝜌 ′) (𝑦∗) = 𝜌 ′ (𝑎𝑇𝑦∗ ®𝑌 ) = [Offset(V, 𝑠, 𝑦1),Offset(V, 𝑠, 𝑦2), . . . ]𝑎𝑦∗

Next, observe that ifV(𝑠) increments 𝜌 , we knowV∗ (𝑠) increments 𝑓 (𝜌).

[𝜌, 𝜌 ′] |= V(𝑠) where 𝜌 ′ (𝑦) = 𝜌 (𝑦) + Offset(V, 𝑠, 𝑦)

[𝑓 (𝜌), 𝑓 (𝜌 ′)] |= V∗ (𝑠) where 𝑓 (𝜌 ′) (𝑦∗) = 𝜌 ′ (𝑎𝑇𝑦∗ ®𝑌 ) = [𝜌 (𝑦1) + Offset(V, 𝑠, 𝑦1) . . . ]𝑎𝑦∗
[𝑓 (𝜌), 𝑓 (𝜌 ′)] |= V∗ (𝑠) where 𝑓 (𝜌 ′) (𝑦∗) = 𝑓 (𝜌) (𝑦∗) +𝑂𝑓 𝑓 𝑠𝑒𝑡 (V∗, 𝑠, 𝑦∗)

By similar reasoning, ifV(𝑠) resets 𝜌 , thenV∗ (𝑠) resets 𝑓 (𝜌).
We show that for every coherence class 𝐶∗ of V∗, there exists at most one coherence class 𝐶

ofV such that proj∗
2
◦ 𝑓 ◦ proj𝐶 is non-zero. Assuming this result, we may let𝑤 𝑓 be the function

mapping 𝐶∗ to the unique 𝐶 meeting the above condition if one exists and an arbitrary coherence

class otherwise, and observe that

〈
𝑓 ,𝑤 𝑓

〉
is a coherent linear map.

Let 𝐶∗ be a coherence class ofV2. For a contradiction, suppose that there are distinct coherence

classes𝐶1 and𝐶2 ofV such that proj𝐶∗ ◦ 𝑓 ◦ proj𝐶1

and proj𝐶∗ ◦ 𝑓 ◦ proj𝐶2

are non-zero. Then there

is some 𝜌1 ∈ 𝐶1 and 𝜌2 ∈ 𝐶2 such that proj𝐶∗ (𝑓 (𝜌1)) and proj𝐶∗ (𝑓 (𝜌2)) are non-zero. Without loss

of generality, there is some 𝑠 ∈ Σ such thatV increments 𝜌1 and resets 𝜌2. It follows thatV∗ (𝑠)
increments 𝑓 (𝜌1) and resets 𝑓 (𝜌2), and thus increments proj𝐶∗ (𝑓 (𝜌1)) and resets proj𝐶∗ (𝑓 (𝜌2)).
Since proj𝐶∗ (𝑓 (𝜌1)) and proj𝐶∗ (𝑓 (𝜌2)) both belong to the same coherence class 𝐶∗, V∗ (𝑠) must

either increment both or reset both. It follows that one of proj𝐶∗ (𝑓 (𝜌1)) and proj𝐶∗ (𝑓 (𝜌2)) must be
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both reset and incremented, and is therefore zero, contradicting our assumption that proj𝐶∗ (𝑓 (𝜌1))
and proj𝐶∗ (𝑓 (𝜌2)) are non-zero. □

Lemma 5.6. The category Sep has pushouts.

Proof. Let

〈
𝑓 ,𝑤 𝑓

〉
be a linear coherent map from 𝑆 to 𝑆 ′ and

〈
𝑔,𝑤𝑔

〉
be a linear coherent

map from 𝑆 to 𝑆†. Define 𝐸 ≜
{〈
𝐶′,𝐶†

〉
∈ 𝐷𝑆 ′ × 𝐷𝑆† : 𝑤 𝑓 (𝐶′) = 𝑤𝑔 (𝐶†)

}
. For all

〈
𝐶′,𝐶†

〉
in E, let〈

𝐷⟨𝐶′,𝐶†⟩, 𝑎⟨𝐶′,𝐶†⟩, 𝑏⟨𝐶′,𝐶†⟩
〉
denote the pushout of proj𝐶′ ◦ 𝑓 and proj𝐶† ◦𝑔 in the category of rational

vector spaces. Then, define𝑉 ∗ to be the direct product

∏
𝑝∈𝐸 𝐷𝑝 . Let 𝜒𝑝 : 𝑉 ∗ → 𝐷𝑝 be the function

projecting elements of 𝑉 ∗ onto 𝐷𝑝 , and let 𝜒∗𝑝 : 𝐷𝑝 → 𝑉 ∗ be the function sending vectors 𝑑 ∈ 𝐷𝑝

to the unique vector in 𝑉 ∗ such that 𝜒𝑝 (𝜒∗𝑝 (𝑑)) = 𝑑 and 𝜒𝑝′ (𝜒∗𝑝 (𝑑)) = 0 for all 𝑝′ ≠ 𝑝 ∈ 𝐸. Define
𝐷∗ be the set

{
𝜒∗𝑝 (𝐷𝑝 ) : 𝑝 ∈ 𝐸

}
and let𝑤𝑎 and𝑤𝑏 be the functions mapping 𝜒∗⟨𝐶′,𝐶†⟩ (𝐷⟨𝐶′,𝐶†⟩) to

𝐶′ and 𝐶† respectively. Finally, define:

𝑎 ≜
∑︁

⟨𝐶′,𝐶†⟩∈𝐸
𝜒∗⟨𝐶′,𝐶†⟩ ◦ 𝑎⟨𝐶′,𝐶†⟩ ◦ proj𝐶′ 𝑏 ≜

∑︁
⟨𝐶′,𝐶†⟩∈𝐸

𝜒∗⟨𝐶′,𝐶†⟩ ◦ 𝑏⟨𝐶′,𝐶†⟩ ◦ proj𝐶†

𝑝𝑢𝑠ℎ𝑜𝑢𝑡Sep (
〈
𝑓 ,𝑤 𝑓

〉
,
〈
𝑔,𝑤𝑔

〉
) ≜ ⟨⟨𝑉 ∗, 𝐷∗⟩, ⟨𝑎,𝑤𝑎⟩, ⟨𝑏,𝑤𝑏⟩⟩

By the commutativity of the pushout of the category of rational vector spaces, for all pairs〈
𝐶′,𝐶†

〉
in 𝐸, we have that

𝑎⟨𝐶′,𝐶†⟩ ◦ proj𝐶′ ◦ 𝑓 = 𝑏⟨𝐶′,𝐶†⟩ ◦ proj𝐶† ◦ 𝑔

It follows that 𝑎 ◦ 𝑓 = 𝑏 ◦ 𝑔. Additionally,𝑤 𝑓 (𝐶′) = 𝑤𝑔 (𝐶†) for all
〈
𝐶′,𝐶†

〉
∈ 𝐸 by the definition

of 𝐸. Thus, ⟨𝑎,𝑤𝑎⟩ ◦
〈
𝑓 ,𝑤 𝑓

〉
= ⟨𝑏,𝑤𝑏⟩ ◦

〈
𝑔,𝑤𝑔

〉
.

We now show universality. Suppose 𝑆 is a separated space, ⟨𝑐,𝑤𝑐⟩ is a coherent linear map from 𝑆 ′

to 𝑆 and ⟨𝑑,𝑤𝑑⟩ is a coherent linear map from 𝑆† to 𝑆 such that ⟨𝑐,𝑤𝑐⟩ ◦
〈
𝑓 ,𝑤 𝑓

〉
= ⟨𝑑,𝑤𝑑⟩ ◦

〈
𝑔,𝑤𝑔

〉
.

Then, for all 𝐶 ∈ 𝐷𝑆 , we have that𝑤 𝑓 (𝑤𝑐 (𝐶)) = 𝑤𝑔 (𝑤𝑑 (𝐶)), so
〈
𝑤𝑐 (𝐶),𝑤𝑑 (𝐶)

〉
∈ 𝐸. Additionally:

𝑐 ◦ 𝑓 = 𝑑 ◦ 𝑔 assumption

proj𝐶 ◦ 𝑐 ◦ proj𝑤𝑐 (𝐶 ) ◦ 𝑓 = proj𝐶 ◦ 𝑑 ◦ proj𝑤𝑑 (𝐶 ) ◦ 𝑔 ⟨𝑐,𝑤𝑐⟩ and ⟨𝑑,𝑤𝑑⟩ coherent

Then, by the universality of the pushout of the category of rational vector spaces on (proj𝑤𝑐 (𝐶 ) ◦ 𝑓
and proj𝑤𝑑 (𝐶 ) ◦𝑔, there must exist a unique𝑢⟨𝑤𝑐 (𝐶 ),𝑤𝑑 (𝐶 )⟩ such that𝑢⟨𝑤𝑐 (𝐶 ),𝑤𝑑 (𝐶 )⟩ ◦𝑎⟨𝑤𝑐 (𝐶 ),𝑤𝑑 (𝐶 )⟩ =
proj𝐶 ◦ 𝑐 and 𝑢⟨𝑤𝑐 (𝐶 ),𝑤𝑑 (𝐶 )⟩ ◦ 𝑏⟨𝑤𝑐 (𝐶 ),𝑤𝑑 (𝐶 )⟩ = proj𝐶 ◦ 𝑑 . Define:

𝑢 ≜
∑̄︁
𝐶∈𝐻̄

𝑢⟨𝑤𝑐 (𝐶 ),𝑤𝑑 (𝐶 )⟩ ◦ 𝜒⟨𝑤𝑐 (𝐶 ),𝑤𝑑 (𝐶 )⟩

𝑢 is unique by the uniqueness of each 𝑢⟨𝑤𝑐 (𝐶 ),𝑤𝑑 (𝐶 )⟩ and the definition of 𝜒𝑝 . Let 𝑤𝑢 be the

functionmapping𝐶 to 𝜒∗⟨𝑤𝑐 (𝐶 ),𝑤𝑑 (𝐶 )⟩ (𝐷⟨𝑤𝑐 (𝐶 ),𝑤𝑑 (𝐶 )⟩). Wemust show that ⟨𝑢,𝑤𝑢⟩◦⟨𝑎,𝑤𝑎⟩ = ⟨𝑐,𝑤𝑐⟩
and ⟨𝑢,𝑤𝑢⟩ ◦ ⟨𝑏,𝑤𝑏⟩ = ⟨𝑑,𝑤𝑑⟩. We will only show 𝑢 ◦ 𝑎 = 𝑐 as 𝑢 ◦ 𝑏 = 𝑑 is similar and equivalence

of the witnesses is straightforward. For all 𝑝, 𝑝′ ∈ 𝐸 such that 𝑝 ≠ 𝑝′, we have𝜒𝑝 ◦ 𝜒∗𝑝 = 0, and so:
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𝑢 ◦ 𝑎 =

(∑̄︁
𝐶∈𝐻̄

𝑢⟨𝑤𝑐 (𝐶 ),𝑤𝑑 (𝐶 )⟩ ◦ 𝜒⟨𝑤𝑐 (𝐶 ),𝑤𝑑 (𝐶 )⟩

)
◦
©­­«

∑︁
⟨𝐶′,𝐶†⟩∈𝐸

𝜒∗⟨𝐶′,𝐶†⟩ ◦ 𝑎⟨𝐶′,𝐶†⟩ ◦ proj𝐶′
ª®®¬

=
∑̄︁
𝐶∈𝐻̄

𝑢⟨𝑤𝑐 (𝐶 ),𝑤𝑑 (𝐶 )⟩ ◦ 𝑎⟨𝑤𝑐 (𝐶 ),𝑤𝑑 (𝐶 )⟩ ◦ proj𝑤𝑐 (𝐶 )

=
∑̄︁
𝐶∈𝐻̄

proj𝐶 ◦ 𝑐 ◦ proj𝑤𝑐 (𝐶 ) = 𝑐 □

Theorem 5.7. Consider a transition assignment tf : Σ → 𝑇𝐹 (𝑋 ) and a partition Σ1, Σ2 of Σ. Let〈
𝑓Σ1

,VΣ1

〉
and

〈
𝑓Σ2

,VΣ2

〉
be VASR reflections of tf|Σ1

and tf|Σ2
respectively, and let

⟨𝑆 (V), ⟨𝑎,𝑤𝑎⟩, ⟨𝑏,𝑤𝑏⟩⟩ = pushoutSep (
〈
𝑓Σ1

, 𝑤̃
〉
,
〈
𝑓Σ2

, 𝑤̃
〉
)

Then,
〈
𝑎 ◦ 𝑓Σ1

,V
〉
is a VASR reflection of tf, whereV|Σ1

= image(VΣ1
, 𝑎) andV|Σ2

= image(VΣ2
, 𝑏).

Proof. Let ⟨𝑓 ′,V′⟩ be a VASR abstraction of tf. Since 𝑓 ′ is a simulation from the system of tf|Σ1

toV|Σ1
, there exists a unique linear simulation 𝑓 ∗Σ1

fromVΣ1
toV′ |Σ1

such that 𝑓 ′ = 𝑓 ∗Σ1

◦ 𝑓Σ1
and

similarly a unique linear simulation 𝑓 ∗Σ2

fromVΣ2
toV′ |Σ2

such that 𝑓 ′ = 𝑓 ∗Σ2

◦ 𝑓Σ2
. Then, we have

thatV′ |Σ1
= 𝑖𝑚𝑎𝑔𝑒 (VΣ1

, 𝑓 ∗Σ1

) andV′ |Σ2
= 𝑖𝑚𝑎𝑔𝑒 (VΣ2

, 𝑓 ∗Σ2

).
Note that if ⟨𝑉 , 𝐷⟩ and ⟨𝑉 , 𝐷 ′⟩ are separated spaces where 𝐷 ′ is a refinement of 𝐷 , there is a

linear coherent map ⟨𝑖𝑑,𝑤 ⋄⟩ between the spaces where 𝑖𝑑 is the identity function and 𝑤 ⋄ maps

each 𝐶′ ∈ 𝐷 ′ to the unique 𝐶 ∈ 𝐷 such that 𝐶′ ⊆ 𝐶 .

By Theorem 5.4, 𝑓 ∗Σ1

can be extended to a coherent linear map from 𝑆 (VΣ1
) to 𝑆 (V′ |Σ1

). Since
𝐷𝑆 (V′ ) is a refinement of 𝐷𝑆 (V′ |Σ

1
) , we can compose this map with some

〈
𝑖𝑑,𝑤 ⋄

1

〉
to form a linear

coherent map

〈
𝑓 ∗Σ1

,𝑤∗Σ1

〉
from 𝑆 (VΣ1

) to 𝑆 (V′). By repeating this reasoning with 𝑓 ∗Σ2

, we can

produce a linear coherent map

〈
𝑓 ∗Σ2

,𝑤∗Σ2

〉
from 𝑆 (VΣ2

) to 𝑆 (V′).

Then, by the universality of 𝑝𝑢𝑠ℎ𝑜𝑢𝑡Sep (
〈
𝑓Σ1

,𝑤 𝑓Σ
1

〉
,

〈
𝑓Σ2

,𝑤 𝑓Σ
1

〉
) there exists a unique ⟨𝑢,𝑤𝑢⟩ such

that

〈
𝑓 ∗Σ1

,𝑤∗Σ1

〉
= ⟨𝑢,𝑤𝑢⟩ ◦ ⟨𝑎,𝑤𝑎⟩ and

〈
𝑓 ∗Σ2

,𝑤∗Σ2

〉
= ⟨𝑢,𝑤𝑢⟩ ◦ ⟨𝑏,𝑤𝑏⟩.

Finally, the following reasoning shows thatV′ = 𝑖𝑚𝑎𝑔𝑒 (V, 𝑢), so 𝑢 is a simulation fromV to

V′ and
〈
𝑎 ◦ 𝑓Σ1

,V
〉
is a VASR-reflection:

V′ |Σ1
= 𝑖𝑚𝑎𝑔𝑒 (VΣ1

, 𝑓 ∗Σ1

) = 𝑖𝑚𝑎𝑔𝑒 (VΣ1
, 𝑢 ◦ 𝑎) = 𝑖𝑚𝑎𝑔𝑒 (𝑖𝑚𝑎𝑔𝑒 (VΣ1

, 𝑎), 𝑢) = 𝑖𝑚𝑎𝑔𝑒 (V|Σ1
, 𝑢)

V′ |Σ2
= 𝑖𝑚𝑎𝑔𝑒 (VΣ2

, 𝑓 ∗Σ2

) = 𝑖𝑚𝑎𝑔𝑒 (VΣ2
, 𝑢 ◦ 𝑏) = 𝑖𝑚𝑎𝑔𝑒 (𝑖𝑚𝑎𝑔𝑒 (VΣ2

, 𝑏), 𝑢) = 𝑖𝑚𝑎𝑔𝑒 (V|Σ1
, 𝑢)

□

Theorem 4.3. LetV be a VASR over variables 𝑌 ,𝑤 be a trajectory over Σ, and 𝑛 be a |𝑌 |-marked
abstract trajectory well-formed with respect toV such that𝑤 ⊩ 𝑛. For all states 𝜌, 𝜌 ′:

[𝜌, 𝜌 ′] |= Transition(V)[𝑐𝑠,𝑖 ↦→ 𝑛(𝑠, 𝑖)] ⇐⇒ 𝜌
𝑤−→V 𝜌 ′

Proof. This result is an equivalent formulation of Lemma 6 in [Haase and Halfon 2014]. □

Theorem 7.2. Consider a program graph𝑀 , a transition assignment tf : Σ→ TF(𝑋 ), a procedure
summary map 𝑆 : 𝑃 → TF(𝑋 ), and a function 𝑓 : Σ→ Q. Let 𝜃 ∈ 𝑈𝐵(𝑀, tf, 𝑆, 𝑓 ). For any valuations
𝜌, 𝜌 ′, procedure 𝑝 , and nested trajectory 𝜏 ∈ T𝑀 (𝑝) such that 𝜌

𝜏−→tf 𝜌
′, we have ˆ𝑓 (𝜏) ≤ 𝜈𝜃 (𝑝, 𝜌).
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Proof. Consider any 𝜃 ∈ 𝑈𝐵(𝑀, tf, 𝑆, 𝑓 ). We will show that for all valuations 𝜌 , procedures 𝑝 ,

and nested trajectories 𝜏 ∈ T𝑀 (𝑝), if 𝑒 = 𝜌 . . . is a trace of 𝑠𝑘𝑖𝑚(𝜏) in the transition system defined

by tf and 𝑆 then 𝜈𝜃 (𝑝, 𝜌) ≥ 𝜈∗
𝜃
(𝑓 , 𝑒, 𝑠𝑘𝑖𝑚(𝜏)). With this in hand, we can prove by induction over the

structure of 𝜏 that for all 𝜌, 𝜌 ′, 𝜏 ∈ T𝑀 (𝑝) if 𝜌
𝜏−→tf 𝜌

′
then there is some execution 𝑒 of 𝑠𝑘𝑖𝑚(𝜏) in

the transition system defined by tf and 𝑆 beginning with 𝜌 such that 𝜈∗
𝜃
(𝑓 , 𝑒) ≥ ˆ𝑓 (𝜏). We can finally

conclude that 𝜈𝑎 (𝑝, 𝜌) ≥ ˆ𝑓 (𝜏).
Suppose 𝑒 = 𝜌1 . . . 𝜌 |𝜏 |+1 is a trace of 𝑠𝑘𝑖𝑚(𝜏) in the transition system defined by tf and 𝑆 . Let

𝑁𝑉 denote the set of new variables 𝐷 ∪ {𝑐𝑜𝑢𝑛𝑡𝑒𝑟, 𝑓 𝑙𝑎𝑔}. Let 𝜌1 be the extension of 𝜌1 to include

variables 𝑁𝑉 initialized to 0 and for all 𝑖 ∈ [|𝜏 |] let 𝜌𝑖+1 be defined by 𝜌𝑖+1 |𝑋 = 𝜌𝑖+1 and:

• if 𝑠𝑘𝑖𝑚(𝜏)𝑖 ∈ Σ, 𝜌𝑖+1 |𝑁𝑉 = 𝜌𝑖 |𝑁𝑉 [𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ↦→ 𝜌𝑖 (𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ) + 𝑓 (𝑠𝑘𝑖𝑚(𝜏)𝑖 )]
• if 𝑠𝑘𝑖𝑚(𝜏)𝑖 ∈ 𝑃 and 0 < 𝜌𝑖 (𝜃 (𝑝)), 𝜌𝑖+1 |𝑁𝑉 = 𝜌𝑖 |𝑁𝑉 [𝑑𝑝 ↦→ 𝜌𝑖 (𝑑𝑝 ) + 𝜌𝑖 ( ®𝑋 ), 𝑓 𝑙𝑎𝑔 ↦→ 1]
• if 𝑠𝑘𝑖𝑚(𝜏)𝑖 ∈ 𝑃 and 0 ≥ 𝜌𝑖 (𝜃 (𝑝)), 𝜌𝑖+1 |𝑁𝑉 = 𝜌𝑖 |𝑁𝑉 [𝑑𝑝 ↦→ 𝜌𝑖 (𝑑𝑝 ), 𝑓 𝑙𝑎𝑔 ↦→ 1]

Let 𝜌 = 𝜌1 and 𝜌 ′ = 𝜌 |𝜏 |+1. It is clear from the casework above

∑
𝑝∈𝑃 ®𝑎𝑇𝑝 𝜌 ′ (𝛿𝑝 ) + 𝜌 ′ (𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ) =

𝜈∗𝑎 (𝑓 , 𝑒, 𝑠𝑘𝑖𝑚(𝜏)).
If (𝜌 ′ (𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ) ≤ 0 ∧ 𝜌 ′ (𝑓 𝑙𝑎𝑔) = 0), then 𝜈∗

𝜃
(𝑓 , 𝑒, 𝑠𝑘𝑖𝑚(𝜏)) ≤ 0 as 𝑓 𝑙𝑎𝑔 being 0 implies

𝜈∗
𝜃
(𝑓 , 𝑒, 𝑠𝑘𝑖𝑚(𝜏)) = 𝜌 ′ (𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ), and so 𝜈∗

𝜃
(𝑓 , 𝑒, 𝑠𝑘𝑖𝑚(𝜏)) ≤ 0 ≤ 𝜈𝜃 (𝑝, 𝜌) by the definition of

our template. Otherwise by the definition of 𝐼𝑛𝑡𝑟𝑎, [𝜌, 𝜌 ′] |= 𝐼𝑛𝑡𝑟𝑎(𝑀𝑝 , tf↑) ∧𝐶𝑡𝑥𝑡↑. Then, by the

definition of 𝑈𝐵(𝑀, tf, 𝑆, 𝑓 ), 𝜈∗
𝜃
(𝑓 , 𝑒) ≤ 𝜌 (𝜃 (𝑥)) ≤ 𝜈𝜃 (𝑝, 𝜌). Thus, we have shown that 𝜈𝜃 is an

inductive upper potential and thus the theorem statement is true. □

Lemma 7.4. Let 𝑃 be a set of procedure identifiers and let tf : Σ→ TF(𝑋 ) be a transition assignment.
Consider any convex polyhedron UB ⊆ 𝑃 → Lin(𝑋 ). For any valuation 𝜌 , we have 𝜌 |= 𝐵↑ (𝑋,UB, 𝑝)
if and only if 𝜌 (𝜉) ≤ 𝜈𝜃 (𝑝, 𝜌) for all 𝜃 ∈ UB.

Proof. We will prove both directions of the proof simultaneously via a series of equivalences.

Showing that 𝜌 (𝜉) ≤ 𝜈𝜃 (𝑝, 𝜌) for all 𝜃 is equivalent to showing that 𝜌 (𝜉) ≤ min𝜃 ∈𝑈𝐵 𝜈𝜃 (𝑝, 𝜌). Since
{𝑣1, . . . , 𝑣𝑛} and {𝑟1, . . . , 𝑟𝑚} is a generator representation of𝑈𝐵:

𝜌 (𝜉) ≤ 𝜌
©­«min

𝜆,𝛼
max(0, (

∑︁
𝑖∈[𝑛]

𝜆𝑖𝑣𝑖 +
∑︁

𝑖∈[𝑚]
𝛼𝑖𝑟𝑖 ) (𝑝))ª®¬ 𝑠 .𝑡 . 𝛼 ≥ 0, 𝜆 ≥ 0,

∑︁
𝜆𝑖 = 1

Proceed by cases. If there are any 𝑟𝑖 such that 𝜌 (𝑟𝑖 (𝑝)) < 0, the term 𝜌 ((∑𝑖∈[𝑛] 𝜆𝑖𝑣𝑖+
∑

𝑖∈[𝑚] 𝛼𝑖𝑟𝑖 ) (𝑝)
can be negative by making 𝛼𝑖 large. Then, the above is equivalent to 𝜌 (𝜉) ≤ 0.

If 𝜌 (𝑟𝑖 (𝑝)) ≥ 0 for all 𝑟𝑖 , a minimum must exist where all 𝛼𝑖 = 0, so the above is equivalent

to 𝜉 ≤ min𝜆 max(0,∑𝑖∈[𝑛] (𝜆𝑖𝑣𝑖 ) (𝑝)) subject to 𝜆𝑖 ≥ 0 and

∑
𝑖 𝜆𝑖 = 1. This objective is a convex

function, so its minimum must occur at one of the 𝑣𝑖 .

𝐵↑ (tf,𝑈 𝐵, 𝑝) is a straightforward translation of this casework to logic and is thus equivalent. □

Lemma 7.3 (Anti-monotonicity). For any two transition assignments tf, tf′ : Σ→ TF(𝑋 ) and two
summary assignments 𝑆, 𝑆 ′ : 𝑃 → TF(𝑋 ), if tf(𝑠) |= tf′ (𝑠) for all 𝑠 ∈ Σ and 𝑆 (𝑝) |= 𝑆 ′ (𝑝) for all 𝑝 ∈ 𝑃 ,
then𝑈𝐵(𝑀, tf′, 𝑆 ′, 𝑓 ) ⊆ 𝑈𝐵(𝑀, tf, 𝑆, 𝑓 ).

Proof. Under the assumptions of the lemma statement, tf↑ (𝑠) |= tf′↑ (𝑠) for all 𝑠 in Σ ∪ 𝑃 . Then,
the claim follows from the assumed monotonicity of 𝐼𝑛𝑡𝑟𝑎 and the anti-monotonicity of the 𝐼𝑛𝑒𝑞

procedure described in Section 3. □

Theorem 8.1 (Monotonicity). For any transition assignments tf and tf′ such that tf(𝑠) |= tf′ (𝑠) for
all symbols 𝑠 , program graph𝑀 , and procedure 𝑝 ,

Summary(𝑀, tf, 𝑝) |= Summary(𝑀, tf′, 𝑝)
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Proof. Suppose that ⟨𝑓 ,V⟩ is a VASR reflection of tf over 𝑌 , and ⟨𝑓 ′,V′⟩ is a VASR reflection

of tf′ over 𝑌 ∗.
Since tf(𝑠) |= tf′ (𝑠) for all 𝑠 , we have that 𝑓 ′ is a linear simulation from tf toV′. Since ⟨𝑓 ,V⟩ is a

VASR reflection of tf, there is a unique linear simulation 𝑓 † fromV toV′ such that 𝑓 † ◦ 𝑓 = 𝑓 ′.

Since 𝑓 † is a simulation, we have that for for all 𝜌, 𝜌 ′ such that 𝜌
L(G(𝑀,𝑝 ) )
−−−−−−−−−→V 𝜌 ′, we have

𝑓 † (𝜌)
L(G(𝑀,𝑝 ) )
−−−−−−−−−→V′ 𝑓 † (𝜌 ′). Let (𝑓 †)∗ be the substition mapping 𝑦∗ ∈ 𝑌 ∗ to 𝑡𝑦∗ ∈ 𝐿𝑖𝑛(𝑌 ) where

𝑓 † (𝜌) (𝑦∗) = 𝜌 (𝑡𝑦∗ ), and let (𝑓 ′)∗ be the substituion mapping 𝑦∗ ∈ 𝑌 ∗ to 𝑡𝑦∗ ∈ 𝐿𝑖𝑛(𝑋 ) where
𝑓 ′ (𝜌) (𝑦∗) = 𝜌 (𝑡𝑦∗ ). It follows that:

𝑅𝑒𝑎𝑐ℎ(V,G(𝑀, 𝑝)) |= 𝑅𝑒𝑎𝑐ℎ(V′,G(𝑀)) [𝑌 ∗ ↦→ (𝑓 †)∗ (𝑌 )]
𝑅𝑒𝑎𝑐ℎ(V,G(𝑀)) [𝑌 ↦→ 𝑓 ∗ (𝑋 )] |= 𝑅𝑒𝑎𝑐ℎ(V′,G(𝑀)) [𝑌 ∗ ↦→ (𝑓 †)∗ 𝑓 ∗ (𝑋 )]
𝑅𝑒𝑎𝑐ℎ(V,G(𝑀)) [𝑌 ↦→ 𝑓 ∗ (𝑋 )] |= 𝑅𝑒𝑎𝑐ℎ(V′,G(𝑀)) [𝑌 ∗ ↦→ (𝑓 ′)∗ (𝑋 )]

So by the definition of 𝑆𝑢𝑚𝑚𝑎𝑟𝑦 and Lemmas A.2 and 7.3, we have

𝑆𝑢𝑚𝑚𝑎𝑟𝑦 (𝑀, tf) |= 𝑆𝑢𝑚𝑚𝑎𝑟𝑦 (𝑀, tf′) . □

A.2 Inductive Lower Potentials
This procedure for generating potentials can be slightly modified to produce and apply lower

bounds to
ˆ𝑓 . This section will present the modifications tersely. 𝜈 is an inductive lower potential

for 𝑓 if for all valuations 𝜌 and procedures 𝑝 , if 𝑒 = 𝜌 . . . is a trace of 𝑠𝑘𝑖𝑚(𝜏) in the transition

system defined by tf and 𝑆 with 𝜏 ∈ T𝑀 (𝑝), then 𝜈 (𝑝, 𝜌) ≤ 𝜈∗ (𝑓 , 𝑒, 𝑠𝑘𝑖𝑚(𝜏)). Our definition of tf↓ is
as follows:

tf↓ (𝑠) ≜ tf(𝑠) ∧ 𝑠𝑎𝑚𝑒 (𝐷 ∪ {𝑓 𝑙𝑎𝑔}) ∧ 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ′ = 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 𝑓 (𝑠)

tf↓ (𝑝) ≜ 𝑠𝑎𝑚𝑒 (𝐿 ∪ 𝐷\
{
𝐷𝑝

}
) ∧ ®𝐷𝑝

′
= ®𝐷𝑝 + ®𝑋 ∧ 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ′ = 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 𝑓 (𝑝)

We define our formula to codify our search conditions:

𝐹 ≜ 𝐼𝑛𝑡𝑟𝑎(⟨𝑉 , 𝐸⟩, tf↑, 𝑖𝑛(𝑝), 𝑜𝑢𝑡 (𝑝)) ∧
©­«

∧
𝑣∈{𝑐𝑜𝑢𝑛𝑡𝑒𝑟,𝑓 𝑙𝑎𝑔}∪𝐷

𝑣 = 0
ª®¬

Our set of inductive lower potentials 𝐿𝐵(𝑀, tf, 𝑆, 𝑓 ) is ⋂
𝑝∈𝑃 𝐿𝐵𝑝 where:

𝑈𝐵𝑝 ≜

𝜃 : 𝑃 → Lin(𝑋 ) : 𝐹 |= 𝜃 (𝑝) ≤ counter +
∑︁
𝑝∈𝑃

𝜃 (𝑝) [𝑋 ↦→ 𝐷𝑝 ]


Theorem A.1. Consider a program graph 𝑀 , a transition formula mapping tf : Σ → 𝑇𝐹 (𝑋 ), a
procedure summary map 𝑆 : 𝑃 → 𝑇𝐹 (𝑋 ), and a function 𝑓 : Σ→ Q. Let 𝜃 ∈ 𝑈𝐵(𝑀, tf, 𝑆, 𝑓 ). For any
valuations 𝜌, 𝜌 ′, procedure 𝑝 , and nested trajectory 𝜏 ∈ T𝑀 (𝑝) such that 𝜌

𝜏−→tf 𝜌
′, we have

ˆ𝑓 (𝜏) ≥ 𝜈𝜃 (𝑝, 𝜌)

Lemma A.2. For any two transition formula mappings tf, tf′ : Σ → 𝑇𝐹 (𝑋 ) and two summary
assignments 𝑆, 𝑆 ′ : 𝑃 → 𝑇𝐹 (𝑋 ), if tf(𝑠) |= tf′ (𝑠) for all 𝑠 ∈ Σ and 𝑆 (𝑝) |= 𝑆 ′ (𝑝) for all 𝑝 ∈ 𝑃 , then
𝐿𝐵(𝑀, tf′, 𝑆 ′, 𝑓 ) ⊆ 𝐿𝐵(𝑀, tf, 𝑆, 𝑓 ).
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Finally, the following is the encoding of a convex polyhedron 𝐿𝐵 into a formula 𝐵↓ (tf, 𝐿𝐵, 𝑝)
applying the bounds corresponding to 𝑝 to a free variables 𝜉 . Let {𝑣1 . . . 𝑣𝑛} and {𝑟1 . . . 𝑟𝑚} be the
generator representation of 𝐿𝐵 projected onto the component 𝑎𝑝 .

B↓ ≜
∧

𝑖∈[𝑚]
𝑟𝑇𝑖 𝑥 ≤ 0 ∧

∧
𝑖∈[𝑛]

𝜉 ≥ max(0, 𝑣𝑇𝑖 𝑥)

Lemma A.3. Let 𝑃 be a set of procedure identifiers and let tf : Σ → 𝑇 (𝑋𝐿 ∪ 𝑋𝐺 ) be a transition
formula mapping. Consider any convex polyhedron 𝐿𝐵 ⊆ 𝑃 → 𝐿𝑖𝑛(𝑋 ). For any valuation 𝜌 , we have
𝜌 |= 𝐵↓ (tf, 𝐿𝐵, 𝑝) if and only if 𝜌 (𝜉) ≥ 𝜈𝜃 (𝑝, 𝜌) for all 𝜃 ∈ 𝐿𝐵.

A.3 Pushout of Ordered Rational Vector Spaces
Recall that Sep refers to the category in which the objects are separated spaces and the arrows

are coherent linear maps, and that Sep≤ refers to the category in which the objected are ordered

separated spaces and the arrows are positive coherent linear maps. The pushout of Sep≤ follows
the same approach as the pushout of Sep, with the pushout of ordered rational vector spaces in

place of the pushout of rational vector spaces. This section shows that the category of ordered

rational vector spaces has pushouts.

Specifically, given two positive linear maps 𝑓 : 𝐴→ 𝐵 and 𝑔 : 𝐴→ 𝐶 between ordered vector

spaces, the pushout in the category of ordered rational vector spaces is an ordered vector space 𝐷

and positive linear maps 𝑝 : 𝐵 → 𝐷 and 𝑞 : 𝐶 → 𝐷 such that:

(1) 𝑝 ◦ 𝑓 = 𝑞 ◦ 𝑔
(2) For any other ordered vector space 𝐷 ′ and positive linear maps 𝑝′ : 𝐵 → 𝐷 ′ and 𝑞′ : 𝐶 → 𝐷 ′

such that 𝑝′ ◦ 𝑓 = 𝑞′ ◦ 𝑔, there exists a positive linear map 𝑢 : 𝐷 → 𝐷 ′ such that 𝑢 ◦ 𝑝 = 𝑝′

and 𝑢 ◦ 𝑞 = 𝑞′

The positive cone of an ordered vector space V is the set {𝑣 ∈ 𝑉 : 𝑣 ≥𝑉 0}. The pushout is

constructed as follows. Suppose that 𝑏1, . . . , 𝑏𝑛 generate the positive cone of 𝐵 and 𝑐1, . . . , 𝑐𝑚
generate the positive cone of 𝐶 . Then, consider the following set:{

⟨𝑝, 𝑞⟩ ∈ (𝐵 →lin Q) × (𝐶 →lin Q) : 𝑝 ◦ 𝑓 = 𝑞 ◦ 𝑔 ∧
𝑛∧
𝑖=1

𝑝 (𝑏𝑖 ) ≥ 0 ∧
𝑚∧
𝑗=1

𝑞(𝑐 𝑗 ) ≥ 0

}
This set is a convex cone. Let ⟨𝑝1, 𝑞1⟩ . . . 𝑝𝑘 , 𝑞𝑘 be the rays of this cone. Then the pushout is〈
Q𝑘 , 𝑝, 𝑞

〉
where the order on Q is defined as

®𝑢 ≤Q𝑟 ®𝑣 ⇐⇒ 𝑢𝑖 ≤ 𝑣𝑖 for all 𝑖

and where 𝑝 and 𝑞 are defined as:

𝑝 (𝑣 ′) ≜ ⟨𝑝1 (𝑣 ′), . . . , 𝑝𝑘 (𝑣 ′)⟩
𝑞(𝑣∗) ≜ ⟨𝑞1 (𝑣∗), . . . , 𝑞𝑘 (𝑣∗)⟩
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