Human communicates with robots
- through language

Robots interact with environments
- perceive visual information
- perform planning, take actions
Vision-and-Language Navigation Task

Unseen environment

Vision-and-Language Navigation: Interpreting visually-grounded navigation instructions in real environments, Peter Anderson et al., CVPR 2018
Vision-and-Language Navigation Task

Unseen environment

Photorealistic images

Vision-and-Language Navigation: Interpreting visually-grounded navigation instructions in real environments, Peter Anderson et al., CVPR 2018
Facing the end of the bed, take an immediate right and exit the bedroom through the open doorway. Walk straight until you see a large red painting. At the painting make a turn towards and go through the doorway on the right of the painting. Enter the bedroom, you will reach your destination.
Facing the end of the bed, take an immediate right and exit the bedroom through the open doorway. Walk straight until you see a large red painting. At the painting make a turn towards and go through the doorway on the right of the painting. Enter the bedroom, you will reach your destination.
Facing the end of the bed, take an immediate right and exit the bedroom through the open doorway. Walk straight until you see a large red painting. At the painting make a turn towards and go through the doorway on the right of the painting. Enter the bedroom, you will reach your destination.
Facing the end of the bed, take an immediate right and exit the bedroom through the open doorway. Walk straight until you see a large red painting. At the painting make a turn towards and go through the doorway on the right of the painting. Enter the bedroom, you will reach your destination.
Facing the end of the bed, take an immediate right and exit the bedroom through the open doorway. Walk straight until you see a large red painting. At the painting make a turn towards and go through the doorway on the right of the painting. Enter the bedroom, you will reach your destination.
Challenge 1: Reason over observation and languages

Facing the end of the bed, take an immediate right and exit the bedroom through the open doorway. Walk straight until you see a large red painting. At the painting make a turn towards and go through the doorway on the right of the painting. Enter the bedroom, you will reach your destination.
Challenge 1: Reason over observation and languages

Facing the end of the bed, take an immediate right and exit the bedroom through the open doorway. Walk straight until you see a large red painting. At the painting make a turn towards and go through the doorway on the right of the painting. Enter the bedroom, you will reach your destination.
Facing the end of the bed, take an immediate right and exit the bedroom through the open doorway. Walk straight until you see a large red painting. At the painting make a turn towards and go through the doorway on the right of the painting. Enter the bedroom, you will reach your destination.
Challenge 2: Perform error correction and recovery

Facing the end of the bed, take an immediate right and exit the bedroom through the open doorway. Walk straight until you see a large red painting. At the painting make a turn towards and go through the doorway on the right of the painting. Enter the bedroom, you will reach your destination.
Challenge 2: Perform error correction and recovery

Facing the end of the bed, take an immediate right and exit the bedroom through the open doorway. Walk straight until you see a large red painting. At the painting make a turn towards and go through the doorway on the right of the painting. Enter the bedroom, you will reach your destination.

Incorrect action

Correct action

Deviate from correct path
Facing the end of the bed, take an immediate right and exit the bedroom through the open doorway. Walk straight until you see a large red painting. At the painting make a turn towards and go through the doorway on the right of the painting. Enter the bedroom, you will reach your destination.
Vision-and-Language Navigation Task

Facing the end of the bed, take an immediate right and exit the bedroom through the open doorway. Walk straight until you see a large red painting. At the painting make a turn towards and go through the doorway on the right of the painting. Enter the bedroom, you will reach your destination.
Facing the end of the bed, take an immediate right and exit the bedroom through the open doorway. Walk straight until you see a large red painting. At the painting make a turn towards and go through the doorway on the right of the painting. Enter the bedroom, you will reach your destination.

Unseen environment

Current navigation architectures

Facing the end of the bed, take an immediate right and exit the bedroom through the open doorway. Walk straight until you see a large red painting. At the painting make a turn towards and go through the doorway on the right of the painting. Enter the bedroom, you will reach your destination.
Facing the end of the bed, take an immediate right and exit the bedroom through the open doorway. Walk straight until you see a large red painting. At the painting make a turn towards and go through the doorway on the right of the painting. Enter the bedroom, you will reach your destination.
Facing the end of the bed, take an immediate right and exit the bedroom through the open doorway. Walk straight until you see a large red painting. At the painting make a turn towards and go through the doorway on the right of the painting. Enter the bedroom, you will reach your destination.

Current navigation architectures

Unseen environment

Alignment confusion

Observation + decision space

Facing the end of the bed, take an immediate right and exit the bedroom through the open doorway. Walk straight until you see a large red painting. At the painting make a turn towards and go through the doorway on the right of the painting. Enter the bedroom, you will reach your destination.

Current navigation architectures

Need to make multi-step decisions, making error correction harder.
Our work: Evolving Graphical Planner

A differentiable graphical planner

Evolving Graphical Structure

Proxy graphs for planning

Graph-augmented supervision

Condensation
Facing the end of the bed, take an immediate right and exit the bedroom through the open doorway. Walk straight until you see a large red painting. At the painting make a turn towards and go through the doorway on the right of the painting. Enter the bedroom, you will reach your destination.
Our work: Evolving Graphical Planner

A differentiable graphical planner: global decision space helps
Facing the end of the bed, take an immediate right and exit the bedroom through the open doorway. Walk straight until you see a large red painting. At the painting make a turn towards and go through the doorway on the right of the painting. Enter the bedroom, you will reach your destination.
Facing the end of the bed, take an immediate right and exit the bedroom through the open doorway. Walk straight until you see a large red painting. At the painting make a turn towards and go through the doorway on the right of the painting. Enter the bedroom, you will reach your destination.
Our work: Evolving Graphical Planner

A differentiable graphical planner: Graphical memory – topological connection + raw feat.

Instructions

Facing the end of the bed, take an immediate right and exit the bedroom through the open doorway. Walk straight until you see a large red painting. At the painting make a turn towards and go through the doorway on the right of the painting...

Observations
(visual + angle)

Graphical memory

\[G_t = (V_t, E_t) \]

\[v_t^i = (visual_t^i, angle_t^i) \]
Our work: Evolving Graphical Planner

A differentiable graphical planner: Graphical memory

Instructions

Facing the end of the bed, take an immediate right and exit the bedroom through the open doorway. Walk straight until you see a large red painting. At the painting make a turn towards and go through the doorway on the right of the painting...

Observations (visual + angle)

- Grounding: global alignment

Graphical memory

Topological map

Our work: Evolving Graphical Planner

A differentiable graphical planner: Graphical memory

Instructions

Facing the end of the bed, take an immediate right and exit the bedroom through the open doorway. Walk straight until you see a large red painting. At the painting make a turn towards and go through the doorway on the right of the painting...

Observations (visual + angle)

- Follow the memorized path
- Decision made in single step
- Easier error correction
Our work: Evolving Graphical Planner

A differentiable graphical planner: Proxy graphs

Instructions
Facing the end of the bed, take an immediate right and exit the bedroom through the open doorway. Walk straight until you see a large red painting. At the painting make a turn towards and go through the doorway on the right of the painting...

Observations
(visual + angle)

Ever expanding graph...
Our work: Evolving Graphical Planner

A differentiable graphical planner: Proxy graphs

Instructions

Facing the end of the bed, take an immediate right and exit the bedroom through the open doorway. Walk straight until you see a large red painting. At the painting make a turn towards and go through the doorway on the right of the painting...

Observations
(visual + angle)

Operate on the full graph: high planning cost

Ever expanding graph...
Our work: Evolving Graphical Planner

A differentiable graphical planner: Proxy graphs

\[G_t = (V_t, E_t) \]

\[\tilde{G}_t = (V_t, E_t) \]

Ever expanding graph...

Hierarchical Graph Representation Learning with Differentiable Pooling, Ying et al. NeurIPS’18

Our work: Evolving Graphical Planner

A differentiable graphical planner: Proxy graphs

\[G_t = (V_t, E_t) \]

Pool

\[\widetilde{G}_t = (V_t, E_t) \]

Pooling matrix \(A_t \): soft “attention” or aggregation from the original graph

Hierarchical Graph Representation Learning with Differentiable Pooling, Ying et al. NeurIPS'18

Our work: Evolving Graphical Planner

A differentiable graphical planner: Proxy graphs

\[G_t = (V_t, E_t) \]

Hierarchical Graph Representation Learning with Differentiable Pooling, Ying et al. NeurIPS’18

Our work: Evolving Graphical Planner

A differentiable graphical planner: Proxy graphs

\[G_t = (V_t, E_t) \]

Neural message passing: \textit{GraphNeuralNetworks}(G_t, k = \text{steps})
Our work: Evolving Graphical Planner

A differentiable graphical planner: Proxy graphs

\[G_t = (V_t, E_t) \]

\[\tilde{G}_t = (V_t, E_t) \]

Pooling matrix \(A_t \): transpose as the un-pool matrix
Our work: Evolving Graphical Planner

A differentiable graphical planner: Proxy graphs

\[G_t = (V_t, E_t) \]

Propose next action

Un-pool

\[\tilde{G}_t = (V_t, E_t) \]
Our work: Evolving Graphical Planner

A differentiable graphical planner: Proxy graphs – multi-channel

Propose next action

Hierarchical Graph Representation Learning with Differentiable Pooling, Ying et al. NeurIPS’18
Our work: Evolving Graphical Planner

A differentiable graphical planner: how to supervise the imitation learner?

Facing the end of the bed, take an immediate right and exit the bedroom through the open doorway. Walk straight until you see a large red painting. At the painting make a turn towards and go through the doorway on the right of the painting...

Expert trajectories are provided

Speaker-Follower Models for Vision-and-Language Navigation, Fried&Hu et al., NeurIPS’18
The Regretful Agent: Heuristic-Aided Navigation through Progress Estimation, Ma et al., ICCV’19
Facing the end of the bed, take an immediate right and exit the bedroom through the open doorway. Walk straight until you see a large red painting. At the painting make a turn towards and go through the doorway on the right of the painting...

A differentiable graphical planner: how to supervise the imitation learner?

How to use expert trajectory supervision?

Speaker-Follower Models for Vision-and-Language Navigation, Fried&Hu et al., NeurIPS’18
The Regretful Agent: Heuristic-Aided Navigation through Progress Estimation, Ma et al., ICCV’19
Our work: Evolving Graphical Planner

A differentiable graphical planner: how to supervise the imitation learner?

Facing the end of the bed, take an immediate right and exit the bedroom through the open doorway. Walk straight until you see a large red painting. At the painting make a turn towards and go through the doorway on the right of the painting...

Option 1: “teacher forcing”

Expert trajectory dataset: \(D = \{(a_1, a_2, \ldots, a_T)_i\} \)

Speaker-Follower Models for Vision-and-Language Navigation, Fried&Hu et al., NeurIPS’18
The Regretful Agent: Heuristic-Aided Navigation through Progress Estimation, Ma et al., ICCV’19
Our work: Evolving Graphical Planner

A differentiable graphical planner: how to supervise the imitation learner?

Facing the end of the bed, take an immediate right and exit the bedroom through the open doorway. Walk straight until you see a large red painting. At the painting make a turn towards and go through the doorway on the right of the painting...

Option 1: “teacher forcing”

\[
P(a_1, a_2, \ldots, a_T \mid s) = P(a_1 \mid s) \prod_{t=2}^{T} P(a_t \mid a_1, a_2, \ldots, a_{t-1}, s)
\]
Our work: Evolving Graphical Planner

A differentiable graphical planner: how to supervise the imitation learner?

Facing the end of the bed, take an immediate right and exit the bedroom through the open doorway. Walk straight until you see a large red painting. At the painting make a turn towards and go through the doorway on the right of the painting...

Option 1: “teacher forcing” – drifting issue in unseen data

Speaker-Follower Models for Vision-and-Language Navigation, Fried&Hu et al., NeurIPS’18
The Regretful Agent: Heuristic-Aided Navigation through Progress Estimation, Ma et al., ICCV’19
Our work: Evolving Graphical Planner

A differentiable graphical planner: how to supervise the imitation learner?

Facing the end of the bed, take an immediate right and exit the bedroom through the open doorway. Walk straight until you see a large red painting. At the painting make a turn towards and go through the doorway on the right of the painting...

Option 2: “student forcing”
Our work: Evolving Graphical Planner

A differentiable graphical planner: how to supervise the imitation learner?

Facing the end of the bed, take an immediate right and exit the bedroom through the open doorway. Walk straight until you see a large red painting. At the painting make a turn towards and go through the doorway on the right of the painting...

Option 2: “student forcing” – generate new supervision (shortest path)

\[D^* = \left\{ (a_1^*, a_2^*, \ldots, a_{T_i}^*) \right\} \]

\[D \cup D^* \]

Speaker-Follower Models for Vision-and-Language Navigation, Fried&Hu et al., NeurIPS’18
The Regretful Agent: Heuristic-Aided Navigation through Progress Estimation, Ma et al., ICCV’19
Our work: Evolving Graphical Planner

A differentiable graphical planner: how to supervise the imitation learner?

Facing the end of the bed, take an immediate right and exit the bedroom through the open doorway. Walk straight until you see a large red painting. At the painting make a turn towards and go through the doorway on the right of the painting...

Option 2: “student forcing” – shortest path supervision

Speaker-Follower Models for Vision-and-Language Navigation, Fried&Hu et al., NeurIPS’18
The Regretful Agent: Heuristic-Aided Navigation through Progress Estimation, Ma et al., ICCV’19
Facing the end of the bed, take an immediate right and exit the bedroom through the open doorway. Walk straight until you see a large red painting. At the painting make a turn towards and go through the doorway on the right of the painting...

Option 2: “student forcing” – graph augmented supervision

A differentiable graphical planner: how to supervise the imitation learner?
Our work: Evolving Graphical Planner

A differentiable graphical planner: how to supervise the imitation learner?

Facing the end of the bed, take an immediate right and exit the bedroom through the open doorway. Walk straight until you see a large red painting. At the painting make a turn towards and go through the doorway on the right of the painting...

Option 2: “student forcing” – graph augmented supervision

\[D^* = \{(a_1^*, a_2^*, ..., a_{T_i}^*) \} \]

\[D \cup D^* \]

Speaker-Follower Models for Vision-and-Language Navigation, Fried&Hu et al., NeurIPS’18
The Regretful Agent: Heuristic-Aided Navigation through Progress Estimation, Ma et al., ICCV’19
Our work: Evolving Graphical Planner

A differentiable graphical planner: how to supervise the imitation learner?

Facing the end of the bed, take an immediate right and exit the bedroom through the open doorway. Walk straight until you see a large red painting. At the painting make a turn towards and go through the doorway on the right of the painting...

Option 2: “student forcing” – graph augmented supervision

- Ground truth always exists
- No mismatch problem
- No need to access the ENV

Speaker-Follower Models for Vision-and-Language Navigation, Fried&Hu et al., NeurIPS’18
The Regretful Agent: Heuristic-Aided Navigation through Progress Estimation, Ma et al., ICCV’19
Our work: Evolving Graphical Planner

A differentiable graphical planner: full training process

- Instructions
- Observations (visual + angle)
Our work: Evolving Graphical Planner

A differentiable graphical planner: test inference matches the training

Instructions

Graphical memory

Multi-channel planner

Action

Observations (visual + angle)
Experiments

- Room-to-Room (R2R): all trajectories are generated through shortest-path, emphasize on goal reaching
Contribution of each component

- Room-to-Room (R2R): all trajectories are generated through shortest-path, emphasize on goal reaching

The global decision space, the planner and the new supervision strategy help on navigation success rate.
Compare to existing backbones

- Room-to-Room (R2R): all trajectories are generated through shortest-path, emphasize on goal reaching

<table>
<thead>
<tr>
<th>Models</th>
<th>Type</th>
<th>Val unseen</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seq2Seq [1]</td>
<td>IL</td>
<td>6.01 39 - 53</td>
<td>7.81 22 - 28</td>
</tr>
<tr>
<td>Ghost [25]</td>
<td>IL</td>
<td>7.20 35 31 44</td>
<td>7.83 33 30 42</td>
</tr>
<tr>
<td>RCM* [47]</td>
<td>IL+RL</td>
<td>5.88 43 - 52</td>
<td>6.12 43 38 50</td>
</tr>
<tr>
<td>Monitor [14]</td>
<td>IL</td>
<td>5.98 44 30 58</td>
<td>- - - -</td>
</tr>
<tr>
<td>Monitor* [14]</td>
<td>IL</td>
<td>5.52 45 32 56</td>
<td>5.67 48 35 59</td>
</tr>
<tr>
<td>Regretful [19]</td>
<td>IL</td>
<td>5.36 48 37 61</td>
<td>- - - -</td>
</tr>
<tr>
<td>Regretful* [19]</td>
<td>IL</td>
<td>5.32 50 41 59</td>
<td>5.69 48 40 56</td>
</tr>
<tr>
<td>Baseline agent</td>
<td>IL</td>
<td>6.20 43 36 52</td>
<td>- - - -</td>
</tr>
<tr>
<td>EGP (ours)</td>
<td>IL</td>
<td>5.34 52 41 65</td>
<td>- - - -</td>
</tr>
<tr>
<td>EGP (ours)*</td>
<td>IL</td>
<td>4.83 56 44 64</td>
<td>5.34 53 42 61</td>
</tr>
</tbody>
</table>

We outperform previous backbone architecture
Room-for-room with pure imitation learning

- Room-for-Room (R4R): measured by Coverage weighted by Length Score (CLS), normalized dynamic time warping (DTW), Success rate weighted normalized Dynamic Time Warping (SDTW), emphasize on path following
Room-for-room with pure imitation learning

- Room-for-Room (R4R): measured by Coverage weighted by Length Score (CLS), normalized dynamic time warping (DTW), Success rate weighted normalized Dynamic Time Warping (SDTW)

We achieve the state-of-the-art using pure imitation learning

<table>
<thead>
<tr>
<th>Models</th>
<th>Type</th>
<th>PL</th>
<th>NE ↓</th>
<th>SR% ↑</th>
<th>CLS↑</th>
<th>nDTW↑</th>
<th>SDTW↑</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random</td>
<td>-</td>
<td>23.6</td>
<td>10.4</td>
<td>13.8</td>
<td>22.3</td>
<td>18.5</td>
<td>4.1</td>
</tr>
<tr>
<td>Speaker-Follower[18]</td>
<td>IL+RL</td>
<td>19.9</td>
<td>8.47</td>
<td>23.8</td>
<td>29.6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RCM + goal-oriented[18]</td>
<td>IL+RL</td>
<td>32.5</td>
<td>8.45</td>
<td>28.6</td>
<td>20.4</td>
<td>26.9*</td>
<td>11.4*</td>
</tr>
<tr>
<td>RCM + fidelity-oriented[18]</td>
<td>IL+RL</td>
<td>28.5</td>
<td>8.08</td>
<td>26.1</td>
<td>34.6</td>
<td>30.4*</td>
<td>12.6*</td>
</tr>
<tr>
<td>PTA low-level[53]</td>
<td>IL+RL</td>
<td>10.2</td>
<td>8.19</td>
<td>27.0</td>
<td>35.0</td>
<td>20.0</td>
<td>8.0</td>
</tr>
<tr>
<td>PTA high-level[53]</td>
<td>IL+RL</td>
<td>17.7</td>
<td>8.25</td>
<td>24.0</td>
<td>37.0</td>
<td>32.0</td>
<td>10.0</td>
</tr>
<tr>
<td>EGP (ours)</td>
<td>IL</td>
<td>18.3</td>
<td>8.0</td>
<td>30.2</td>
<td>44.4</td>
<td>37.4</td>
<td>17.5</td>
</tr>
</tbody>
</table>
Contributions

- A differentiable graphical planner that extends the decision space globally
- A new supervision strategy for training imitation agent in navigation
- Introduce proxy graphs for improving the efficiency of planning

Email: zhiweid@cs.princeton.edu