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Abstract. Mergers are procedures that, with the aid of a short random
string, transform k (possibly dependent) random sources into a single
random source, in a way that ensures that if one of the input sources
has min-entropy rate δ then the output has min-entropy rate close to
δ. Mergers were first introduced by Ta-Shma [28th STOC, pp. 276-285,
1996] and have proven to be a very useful tool in explicit constructions
of extractors and condensers. In this work we present a new analysis of
the merger construction of Lu et al [35th STOC, pp. 602-611, 2003]. We
prove that the merger’s output is close to a distribution with min-entropy
rate of at least 6

11δ. We show that the distance from this distribution is
polynomially related to the number of additional random bits that were
used by the merger (i.e its seed). We are also able to prove a bound of
4
7δ on the min-entropy rate at the cost of increasing the statistical error.
Both results are improvements to the previous known lower bound of
1
2δ (however, in the 1

2δ result the error decreases exponentially in the
length of the seed). To obtain our results we deviate from the usual linear
algebra methods that were used by Lu et al and introduce techniques
from additive number theory.
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1. Introduction

Mergers are procedures that take as input k samples, taken from k (possibly
dependent) random sources, each ranging over n-bit long strings. It is assumed
that one of these random sources, whose index is unknown, is sufficiently ran-
dom, in the sense that it has min-entropy at least δn (A source has min-entropy
at least b if none of its values is obtained with probability larger than 2−b). We
want the merger to output an n′-bit string (n′ could be smaller than n) that
will be close to having min-entropy at least δ′n′, where δ′ is not considerably
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smaller than δ. To achieve this, the merger is allowed to use an additional small
number of truly random bits, called a seed. The goals in merger constructions
are (1) to minimize the seed length, (2) to maximize the min-entropy of the
output, and (3) to minimize the error (that is, the statistical distance between
the merger’s output and some high min-entropy source).

The notion of merger was first introduced by Ta-Shma (1996), in the context
of explicit constructions of extractors. An extractor is a function that trans-
forms a source with min-entropy b into a source which is close to uniform, with
the aid of an additional random seed. For a more detailed discussion of extrac-
tors see Shaltiel (2002). Recently, Lu, Reingold, Vadhan & Wigderson (2003)
gave a very simple and beautiful construction of mergers based on Locally-
Decodable-Codes. This construction was used in Lu et al. (2003) as a building
block in an explicit construction of extractors with nearly optimal parameters.
More recently, Raz (2005) generalized the construction of Lu et al. (2003), and
showed how this construction (when combined with other techniques) can be
used to construct condensers with constant seed length. (A condenser is a
function that transforms a source with min-entropy rate δ into a source which
is close to having min-entropy rate δ′ > δ, with the aid of an additional random
seed.) The analysis of the merger constructed in Raz (2005) was subsequently
refined in Dvir & Raz (2005).

The merger constructed by Lu et al. (2003) takes as input k strings of length
n, one of which has min-entropy b, and outputs a string of length n that is close
to having min-entropy at least 1

2
b. Loosely speaking, the output of the merger

is computed as follows: treat each input block as a vector in the vector space
Fm, where F is some small finite field, and output a uniformly chosen linear
combination of these k vectors. The k scalars defining this linear combination
are the seed of the merger. The analysis of this construction is based on the
following simple idea: In every set of linear combinations with density larger
than 1

|F | there exist two linear combinations that, when put together, deter-

mine the ’good’ source (that is, the ’good’ source can be computed as a linear
combination from both of them deterministically). More precisely, such sets
must contain two linear combinations that differ only in the coefficient mul-
tiplying the ’good’ source. Therefore, one of these linear combinations must
have at least half the entropy of the ’good’ source (this reasoning extends also
to min-entropy). As a result we get that for most seed values (at least 1− 1

|F |
fraction) the output has high min-entropy, and the result follows. This is of
course an over-simplified explanation, but it gives the general idea behind the
proof.

In this paper we present an alternative analysis to the one just described.
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Our analysis relies on two results from additive-number theory. The first is
Roth’s Theorem on arithmetic progressions of length three (Roth 1953). This
theorem states that there exists a function δ(N) that tends to zero when N
goes to infinity such that in every subset of {1, . . . , N}, that has density at least
δ(N), there exists an arithmetic progression of length three. For our purposes
we use a quantitative version of this theorem proven by Bourgain (1999b), that
gives the best bound on δ(N) known today. The second result that we rely on is
a lemma of Bourgain (1999a) that deals with ”sum-sets” and ”difference-sets”
of integers (we actually use a stronger version of the lemma that was proved
by Katz & Tao (1999)). Roughly speaking, the lemma says that if A,B are
two subsets of integers and their sum-set A + B = {a + b | a ∈ A, b ∈ B} is
very small, then their difference-set A−B = {a− b | a ∈ A, b ∈ B} cannot be
very large (for a precise formulation see Section 4). We note that this is not
the first time that results from additive number-theory are used in the context
of randomness extraction. A recent result of Barak, Impagliazzo & Wigderson
(2004) uses results from this field to construct multi-source extractors.

The analysis in our case is somewhat more involved then the one in Lu et al.
(2003). Let us identify a fixed linear combination of the source blocks with a
vector of coefficients. Each such vector is a ”seed” of the merger. Let us also
assume that the first source is the one with entropy at least b (i.e the ”good”
source). The analysis of Lu et al. (2003) argues that every pair of seeds that
differ only in the first coordinate cannot be both ”bad” (a seed is considered
”bad” if the output of the merger on this seed has entropy lower than 1

2
b). This

is because together they determine the ”good” source. In the new analysis a
seed is considered ”bad” if the entropy of the output of the merger on this seed
is lower than 6

11
b. The general approach is the same as in Lu et al. (2003), we

will show that every set of seeds of density larger than some γ must contain at
least one ”good” seed. The argument for showing this proceeds in two steps:
In the first step we use Roth’s Theorem to claim that every large enough set
of seeds contains three seeds which are identical in all coordinates other than
the first coordinate, and such that the values appearing in the first coordinate
in each seed form an arithmetic progression of length three. The second step
of the analysis uses the lemma of Katz & Tao (1999) to claim that at least one
of the seeds in this triple must be ”good”.

To see why the lemma of Katz & Tao (1999) is relevant consider three seeds
s1, s2, s3 of the form just described (each si represents a vector of coefficients).
Let Y1, Y2, Y3 denote the random variables representing the output of the merger
on these three seeds respectively. Since s1 + s3 = 2s2 and s1 − s3 ∈ F× {0}k−1

we have that the sum Y1 +Y3 equals 2Y2 and that the difference Y1−Y3 is equal
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to some constant times the ”good” source. If all three seeds were ”bad” we
could construct two sets (namely the supports of Y1 and Y3) such that (a) their
sum-set is small, since Y2 has low entropy (few values) and (b) their difference-
set is large, since the good source has high entropy (many values) . Choosing
the right parameters we get a contradiction to the lemma of Katz & Tao (1999)
stated above. To summarize:

1. By Roth’s Theorem, in every set of seeds (linear combinations) with den-
sity larger than some constant γ we can find three elements with some
nice structure (arithmetic progression in the first coordinate and identical
in all the rest).

2. Using Katz & Tao (1999), we show that every three seeds with this struc-
ture cannot be all ”bad”.

Combining these two facts we conclude that at most an γ fraction of the seeds
can be ”bad”, and the result follows.

The end result of this new analysis is that, assuming the min-entropy of
the ”good” source is b, the output of the merger described above is close (in
statistical distance) to a distribution with min-entropy at least 6

11
b improving

over the lower bound of 1
2
b established by Lu et al. (2003). Using a more

involved argument (using longer arithmetic progressions) we are able to show
that the output distribution is close (but with a worse bound on the distance)
to a distribution with min-entropy at least 4

7
b. One drawback of our analysis

is that in our first result the length of the seed is required to be O(k · γ−2)
in order for the output distribution to be γ-close to a distribution with high
min-entropy, where in the conventional analysis (i.e. in Lu et al. 2003) the seed
length can be as short as O(k · log(γ−1)). In our second result we demand that
the seed is even longer.1 This however does not present a problem in many of
the current applications of mergers, where the error parameter and the number
of input sources are both constants and the seed length is also required to be
a constant. One place where our analysis can be used in order to simplify an
existing construction is in the extractor construction of Raz (2005). There,
the output of the merger is used as an input to an extractor that requires the
min-entropy rate of its input to be larger than one-half. In Raz (2005) this
problem is addressed by a more complicated merger construction whose output
length is shorter than n. our analysis shows that the more simple construction
of Lu et al. (2003) could be used instead, since its output min-entropy rate is
larger than one-half.

1To understand the tradeoff between the distance and the seed length in our second result
the reader should read Theorem 2.7.
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Organization. In Section 2 we give a precise formulation of the problem
and state our results, as well as discussing the relation between linear mergers
and the Kakeya problem. In Section 3 we present in detail our analysis of the
linear merger construction and prove the 6/11 bound. The analysis presented
in Section 3 relies on two central claims, which we prove in Section 4. The
improved bound of 4/7 is proved in Section 5. Section 6 deals with encoding
binary inputs as vectors over Fp.

2. Formal Setting

2.1. Somewhere-Random-Sources. Let Γ denote a finite alphabet. A Γn

random source is a random variable X that takes values in Γn. We denote by
supp(X) ⊂ Γn the support of X (i.e. the set of values on which X has non-zero
probability). For two Γn random sources X and Y , we define the statistical
distance (or simply distance) between X and Y to be

∆(X,Y ) , 1

2

∑
a∈Γn

|Pr[X = a]−Pr[Y = a]| .

We say that a Γn random source X has min-entropy ≥ b if for every x ∈ Γn

the probability for X = x is at most 2−b.

Definition 2.1. Min-entropy.
Let X be a Γn random source. The min-entropy of X is defined as

H∞ (X) , min
x∈supp(X)

log2

(
1

Pr[X = x]

)
.

Definition 2.2. (Γn, b)-Source.
We say that X is a (Γn, b)-source, if X is a Γn random source, and H∞ (X) ≥

b.

A somewhere-(Γn, b)-source is a source comprised of several blocks, such
that at least one of the blocks is a (Γn, b)-source. We stress that we allow the
other source blocks to depend arbitrarily on the (Γn, b)-source, and on each
other.

Definition 2.3. (Γn, b)1:k-Source.
A k-places-somewhere-(Γn, b)-source, or shortly, an (Γn, b)1:k-source, is a

random variable X = (X1, . . . , Xk), such that every Xi is a Γn random source,
and at least one Xi is of min-entropy ≥ b.

We note that any merger construction that applies to the sources of Defi-
nition 2.3 extends also to a convex combination of such sources.
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2.2. Mergers. A merger is a function transforming a (Γn, b)1:k-source into
a source that is γ-close (i.e. it has statistical distance ≤ γ) to an (Γm, b′)-
source. Naturally, we want b′/m to be as large as possible, and γ to be as
small as possible. We allow the merger to use an additional small number of
truly random bits, called a seed. A Merger is strong if for almost all possible
assignments to the seed, the output is close to be a (Γm, b′)-source. A merger
is explicit if it can be computed in polynomial time.

Definition 2.4. Merger.

A function M : {0, 1}d × (Γn)k → Γm is a [d, (Γn, b)1:k 7→ (Γm, b′) ∼ γ]-
merger if for every (Γn, b)1:k-source X, and for an independent random variable
Z uniformly distributed over {0, 1}d, the distribution M(Z, X) is γ-close to a
distribution of an (Γm, b′)-source. We say that M is strong if the average over
z ∈ {0, 1}d of the minimal distance between the distribution of M(z, X) and a
distribution of an (Γm, b′)-source is ≤ γ.

We now present the merger of Lu et al. (2003), which we wish to analyze.
We will be interested only in the case were the underlying field is Fp for a prime
p.

Construction 2.5. (Lu et al. 2003).

Let n, k be integers, p a prime number. We define a function

M : {0, 1}d × (
Fn

p

)k → Fn
p ,

with

d = bk · log2 pc,
in the following way: Let φ : {0, 1}d 7→ Fk

p be some injective mapping (such a φ
exists since 2d ≤ pk and can be computed in polynomial time). We map each
seed z ∈ {0, 1}d into the vector φ(z) = (z1, . . . , zk) ∈ Fk

p. Let x = (x1, . . . , xk) ∈(
Fn

p

)k
. The value of M(z, x) is computed as follows:

M(z, x) =
k∑

i=1

zi · xi

where the operations are preformed in the vector space Fn
p . That is, the merger

M outputs a different linear combination of the blocks of x for every seed z.



An Improved Analysis of Linear Mergers 7

2.3. Our Results. Our first theorem improves the bound of 1/2 on the min-
entropy rate of the merger from Construction 2.5 to 6/11. We write exp(f) to
denote 2O(f).

Theorem 2.6. Let 0 < γ < 1 be any constant, k > 0 a constant integer, and
let p be a prime larger than exp(γ−2). Let

M : {0, 1}d × (
Fn

p

)k → Fn
p ,

be as in Construction 2.5, where d = bk · log2 pc. Then for any constant α > 0
there exists a constant b0 such that for all n ≥ b ≥ b0, M is a [d, (Fn

p , b)1:k 7→
(Fn

p , b′) ∼ γ]-strong merger with

b′ = (6/11− α) · b.

From Theorem 2.6 we see that in order to get a merger with error γ we need
to choose the underlying field to be of size at least exp(γ−2). It is well known
that for every integer m, there is a prime between m and 2m. Therefore we
can take p to be O (exp(γ−2)) and have that the length of the random seed is

d = bk · log2 pc = O
(
k · γ−2

)

bits long. Hence, for constant γ and k, the length of the random seed used by
the merger is constant.

We can further improve the bound on the min-entropy rate to 4/7 at the
cost of worse error dependency. We write a ↑ b for ab. Also a ↑ b ↑ c should be
interpreted as a ↑ (b ↑ c).

Theorem 2.7. Let 0 < γ < 1 be any constant, k > 0 a constant integer, and
let p be a prime larger than F (γ) , 2 ↑ 2 ↑ (γ/2)−1 ↑ 2 ↑ 2 ↑ 16. Let

M : {0, 1}d × (
Fn

p

)k → Fn
p ,

be as in Construction 2.5, where d = bk · log2 pc. Then for any constant α > 0
there exists a constant b0 such that for all n ≥ b ≥ b0, M is a [d, (Fn

p , b)1:k 7→
(Fn

p , b′) ∼ γ]-strong merger with

b′ = (4/7− α) · b.
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2.4. Relation to the Kakeya problem. The Kakeya problem is a long
standing open problem in mathematics: A set S ⊂ Rl is called Besicovitch if it
contains a unit line segment in every direction. It is conjectured, e.g. Bourgain
(1991, 1999a); Wolff (1995), that such a set must have Hausdorff dimension
l. A weaker version of the conjecture asserts that these sets must have upper
Minkowski dimension l (see Bourgain 1991 for definitions of Hausdorff and
Minkowski dimension).

The finite field analog of the problem is the following. Let F be a finite field.
A set S ⊂ Fl is called Besicovitch if for every u ∈ Fl there exist x ∈ S such
that the line x + t · u, where t runs over all the elements of F, is contained in
S. The Kakeya set conjecture for finite fields asserts that every Besicovitch set
has cardinality |F|l−o(1) (see Mockenhaupt & Tao 2004). Informally, this means
that it is impossible to compress lines in distinct directions into a small set.
This conjecture is proven in two dimensions but is open in higher dimensions.
The best bound is |S| ≥ |F|l/α, where 1 < α < 2 satisfies α3 − 4α + 2 = 0,
specifically α = 1.67513.... (see Katz & Tao 2002).

Consider the merger of Construction 2.5. It takes a random linear combi-
nation of the k random variables X1, . . . , Xk. Assume w.l.o.g. that the k-th
random variable is completely random in Fl. Then when we run over all the
linear combinations we get all vectors of the form (

∑k−1
i=2 zi ·Xi)+ zk ·Xk where

the zi-s are elements of F. Fixing z1, . . . , zk−1 we get the line in direction Xk. As
Xk is completely random we get that the output of this merger is a Besikovitch
set. Thus the Kakeya conjecture asserts that the output size is at least |F|l−o(1).
This shows the intimate connection of linear mergers to the Kakeya problem.

However for our purpose it is not enough to obtain a lower bound on the
size of the output of the merger. We have to show that the output is close
to a distribution with high min-entropy and not just to a distribution with a
large support. Moreover, we are also interested in the case where Xk is not
fully random but rather has high min-entropy. It turns out though that the
techniques that are used in order to prove some of the lower bounds on the
size of Besikovitch sets over finite fields can be applied to our scenario as well,
after some modifications. We stress again that we do not know how to prove
a general theorem that says that every lower bound for the Kakeya problem
yields a lower bound on the min-entropy of this merger.

3. Analysis of Construction 2.5

In this section we present our improved analysis of Construction 2.5, and prove
Theorem 2.6. The analysis will go along the same lines as in Dvir & Raz (2005)
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and will differ from it in two claims that we will prove in Section 4. We begin
with some notations that will be used throughout the paper.

3.1. Notations. For an integer n, we write [n] , {1, 2, . . . , n}. Let 0 <
γ < 1 be any constant, and let p ≥ exp(γ−2) be a prime number. Let X =

(X1, . . . , Xk) ∈
(
Fn

p

)k
be a somewhere (Fn

p , b)-source, and let us assume w.l.o.g.

that H∞ (X1) ≥ b. Let M : {0, 1}d × (
Fn

p

)k → Fn
p , be as in Construction 2.5,

where d = bk · log2 pc. Our goal is to analyze the min-entropy of M(Z,X)
where Z will denote a random variable uniformly distributed over {0, 1}d. In
particular, we would like to show that the random variable M(Z, X) is γ-close
to having min-entropy ≥ (6/11− α) · b for all constant α (see Theorem 2.6 for
the exact order of quantifiers).

We can extend the function M to be defined over Fk
p×

(
Fn

p

)k
in a natural way

by considering all possible linear combinations instead of just the 2d indexed
by φ

({0, 1}d
)

(see Construction 2.5 for the definition of φ). In the rest of this
section we will analyze the output of M when the seed is uniform over Fk

p.
Later, in Section 3.3, in the proof of Theorem 2.6, we will use the results of
this section to claim that the output behaves roughly the same when the seed
is distributed over {0, 1}d.

For every z ∈ Fk
p we denote by Yz , M(z, X) the random variable given

by the output of M on the fixed seed value z. Let u = pk be the number of
different seed values. Let Y , (Y1, . . . , Yu) ∈ (Fn

p )u. The random variable Y is
a deterministic function of X, and is comprised of u blocks. The block Yz is
an Fn

p random source representing the output of the merger on the fixed seed
value z. We will first analyze the distribution of Y as a whole, and then use
this analysis to describe the output of M on a uniformly chosen seed.

Definition 3.1. Let D(Ω) denote the set of all probability distributions over
a finite set Ω. Let P ⊂ D(Ω) be some property. We say that µ ∈ D(Ω) is γ-
close to a convex combination of distributions with property P , if there exists
constants α1, . . . , αt, γ > 0, and distributions µ1, . . . , µt, µ′ ∈ D(Ω) such that
the following three conditions hold:

1. µ =
∑t

i=1 αiµ
i + γµ′.

2.
∑t

i=1 αi + γ = 1.

3. ∀i ∈ [t] , µi ∈ P .

Let Y be the random variable defined above, and let µ : (Fn
p )u → [0, 1]

be the probability distribution of Y (i.e. µ(y) = Pr[Y = y]). We would
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like to show that µ is exponentially (in b) close to a convex combination of
distributions, each having a certain property which will be defined shortly.

Given a probability distribution µ on (Fn
p )u we define for each z ∈ [u] the

distribution µz : Fn
p → [0, 1] to be the restriction of µ to the z’s block. More

formally, we define

µz(y) ,
∑

y1,...,yz−1,yz+1,...,yu∈Fn
p

µ(y1, . . . , yz−1, y, yz+1, . . . , yu).

Definition 3.2. α-good distribution.
We say that a distribution µ : (Fn

p )u → [0, 1] is α-good if for at least
(1− γ/2) · u values of z ∈ [u], µz has min-entropy at least (6/11− α) · b.

The statement that we would like to prove is that the distribution of Y is
close to a convex combination of α-good distributions. As we will see later,
this will be enough to prove Theorem 2.6.

Lemma 3.3. Main Lemma.
Let Y = (Y1, . . . , Yu) be the random variable defined above, and let µ be

its probability distribution. Then, for any constant α > 0, µ is 2−Ω(b)-close to
a convex combination of α-good distributions.

We prove Lemma 3.3 in Section 3.2. The proof of Theorem 2.6, which
follows quite easily from Lemma 3.3, is very similar to the proof appearing in
Dvir & Raz (2005) and is deferred to Section 3.3.

3.2. Proof of Lemma 3.3. In order to prove Lemma 3.3 we prove the fol-
lowing slightly stronger lemma.

Lemma 3.4. Let X = (X1, . . . , Xk) be an (Fn
p , b)1:k-source, and let Y and µ be

as in Lemma 3.3. Then for any constant α > 0 there exists an integer t ≥ 1,
and a partition of (Fn

p )k into t + 1 sets W1, . . . , Wt,W
′, such that:

1. Pr
X
[X ∈ W ′] ≤ 2−Ω(b).

2. For every i ∈ [t] the probability distribution of Y |X ∈ Wi (that is - of
Y conditioned on the event X ∈ Wi) is α-good. In other words: for every
i ∈ [t] there exist at least (1− γ/2) · u values of z ∈ [u] for which

H∞(Yz|X ∈ Wi) ≥ (6/11− α) · b.

Before proving Lemma 3.4 we show how this lemma can be used to prove
Lemma 3.3.
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Proof of Lemma 3.3: The lemma follows immediately from Lemma 3.4 and
from the following equality, which holds for every partition W1, . . . , Wt,W

′, and
for every y.

Pr[Y = y] =
t∑

i=1

Pr[X ∈ Wi] ·Pr[Y = y |X ∈ Wi]

+ Pr[X ∈ W ′] ·Pr[Y = y |X ∈ W ′].

If the partition W1, . . . , Wt,W
′ satisfies the two conditions of Lemma 3.4 then

from Definition 3.1 it is clear that Y is exponentially (in b) close to a convex
combination of α-good distributions.

Proof of Lemma 3.4: Every random variable Yz is a function of X, and so
it partitions the set (Fn

p )k in the following way:

(Fn
p )k =

⋃

y∈Fn
p

(Yz)
−1(y),

where (Yz)
−1(y) ,

{
x ∈ (Fn

p )k |Yz(x) = y
}
. For each z ∈ [u] we define the set

Bz ,
⋃

{y | Pr[Yz=y]>2−(6/11−α/2)·b}
(Yz)

−1(y)

=
{
x′ ∈ (Fn

p )k
∣∣ Pr

X
[Yz(X) = Yz(x

′)] > 2−(6/11−α/2)·b } .

Intuitively, Bz contains all values of x that are ”bad” for Yz, where in
”bad” we mean that Yz(x) is obtained with relatively high probability in the
distribution Yz(X).

Definition 3.5. good triplets.
Let (z1, z2, z3) ∈ [u]3 be a triplet of seed values. Since each seed value is

actually a vector in Fk
p we can write each zi (i = 1, 2, 3) as a vector (zi1, . . . , zik),

where each zij is in Fp. We say that the triplet (z1, z2, z3) is good if the following
two conditions hold:

1. For all 2 ≤ j ≤ k, z1j = z2j = z3j.

2. There exists a positive integer 0 < a < p such that z21 = z11 + a and
z31 = z11 + 2a, where the equalities are over Fp.
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That is, the triplet (z1, z2, z3) is good if the vectors z1, z2, z3 are identical in all
coordinates different from one, and their first coordinates form an arithmetic
progression of length three in Fp.

The next two claims are the place where our analysis differs from that of
Lu et al. (2003) and Dvir & Raz (2005). We devote Section 4 to the proofs of
these two claims. The first claim shows that the intersection of the ”bad” sets
Bz1 , Bz2 , Bz3 for a good triplet (z1, z2, z3) is small:

Claim 3.6. For every good triplet (z1, z2, z3) it holds that

Pr
X
[X ∈ Bz1 ∩Bz2 ∩Bz3 ] ≤ 2−( 11

12
α)·b.

The second claim shows that every set of seed values whose density is larger
than γ/2 contains a good triplet.

Claim 3.7. Let T ⊂ [u] be such that |T | > (γ/2) · u. Then T contains a good
triplet.

We continue the proof along the same lines as in Dvir & Raz (2005). We
define for each x ∈ (Fn

p )k a vector π(x) ∈ {0, 1}u in the following way :

∀z ∈ [u] , π(x)z = 1 ⇐⇒ x ∈ Bz.

For a vector π ∈ {0, 1}u, let w(π) denote the weight of π (i.e. the number of
1’s in π). Since the weight of π(x) denotes the number of seed values for which
x is ”bad”, we would like to show that for a random value of x, w(π(x)) is
small with high probability. This can be proven by combining Claim 3.6 with
Claim 3.7, as shown by the following claim.

Claim 3.8.

Pr
X
[w(π(X)) > (γ/2) · u] ≤ u · (p− 1) · 2−( 11

12
α)·b.

Proof. If x is such that w(π(x)) > (γ/2)·u then, by Claim 3.7, we know that
there exists a good triplet (z1, z2, z3) such that x ∈ Bz1 ∩Bz2 ∩Bz3 . Therefore
we have

Pr
X
[w(π(X)) > (γ/2) · u] ≤

Pr
X
[∃ a good triplet (z1, z2, z3) s.t x ∈ Bz1 ∩Bz2 ∩Bz3 ].

Now, using the union bound and Claim 3.6 we can bound this probability

by u · (p − 1) · 2−( 11
12

α)·b, (the number of good triplets is trivially bounded by
u · (p− 1)). ¤
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From Claim 3.8 we see that every x (except for an exponentially small set)
is contained in at most (γ/2) ·u sets Bz. The idea is now to partition the space
(Fn

p )k into sets according to the value of π(x). If we condition the random
variable Y on the event π(X) = π0, where π0 is of small weight, we will get an
α-good distribution. We now explain this idea in more details. We define the
following sets

BAD1 , {π′ ∈ {0, 1}u | w(π′) > (γ/2) · u} ,

BAD2 ,
{
π′ ∈ {0, 1}u | Pr

X
[π(X) = π′] < 2−(α/2)·b} ,

BAD , BAD1 ∪BAD2.

The set BAD ⊂ {0, 1}u contains values π′ ∈ {0, 1}u that cannot be used in
the partitioning process described in the last paragraph. There are two reasons
why a specific value π′ ∈ {0, 1}u is included in BAD. The first reason is that
the weight of π′ is too large (i.e. larger than (γ/2) · u), these values of π′ are
included in the set BAD1. The second less obvious reason for π′ to be excluded
from the partitioning is that the set of x’s for which π(x) = π′ is of extremely
small probability. These values of π′ are bad because we can say nothing about
the min-entropy of Y when conditioned on the event π(X) = π′ .

Having defined the set BAD, we are now ready to define the partition
required by Lemma 3.4. Let {π1, . . . , πt} = {0, 1}u\BAD. We define the sets
W1, . . . , Wt, W

′ ⊂ (Fn
p )k as follows:

◦ W ′ = {x | π(x) ∈ BAD}.
◦ ∀i ∈ [t] , Wi = {x | π(x) = πi}.
Clearly, the sets W1, . . . , Wt,W

′ form a partition of (Fn
p )k. We will now

show that this partition satisfies the two conditions required by Lemma 3.4.
To prove the first part of the lemma note that the probability of W ′ can be
bounded by (using Claim 3.8 and the union-bound)

Pr
X
[X ∈ W ′] ≤ Pr

X
[π(X) ∈ BAD1] + Pr

X
[π(X) ∈ BAD2]

≤ u · (p− 1) · 2−( 11
12

α)·b + 2u · 2−(α/2)·b = 2−Ω(b)

(recall that u = pk is a constant). We now prove that W1, . . . , Wt satisfy the
second part of the lemma. Let i ∈ [t]. We know that for at least (1− γ/2) · u
values of z ∈ [u] it holds that (πi)z = 0. Let z ∈ [u] be such that (πi)z = 0.
Let y ∈ Fn

p be any value. If Pr[Yz = y] > 2−(6/11−α/2)·b then Pr[Yz = y |X ∈
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Wi] = 0 (this follows from the way we defined the sets Bz and Wi). If on the
other hand Pr[Yz = y] ≤ 2−(6/11−α/2)·b then

Pr[Yz = y | X ∈ Wi] ≤ Pr[Yz = y]

Pr[X ∈ Wi]

≤ 2−(6/11−α/2)·b/2−(α/2)·b

= 2−(6/11−α)·b.

Hence, for all values of y we have Pr[Yz = y | X ∈ Wi] ≤ 2−(6/11−α)·b. We can
therefore conclude that for all i ∈ [t], H∞(Yz|X ∈ Wi) ≥ (6/11 − α) · b for at
least (1− γ/2) · u values of z ∈ [u] . This completes the proof of Lemma 3.4. ¤

3.3. Proof of Theorem 2.6. Let Y = (Y1, . . . , Yu) and µ be as in Lemma 3.3.
Using Lemma 3.3 we can write µ as a convex combination of distributions

(3.1) µ =
t∑

i=1

αiµ
i + γ′µ′,

with γ′ = 2−Ω(b), and such that for every i ∈ [t] the distribution µi is α-good.
That is, for at least (1 − γ/2) · u values of z ∈ [u], the distribution (µi)z has
min-entropy at least b′ = (6/11 − α) · b (when writing (µi)z, the superscript i
denotes the index of the distribution, and the subscript z denotes its restriction
to the block indexed by z). Next, define for every z ∈ [u] the set Hz ⊂ [t] as
follows:

Hz , {i ∈ [t] : H∞ (
(µi)z

)
< b′}.

That is, Hz ⊂ [t] is the set of indices of all distributions among {µ1, . . . , µt},
for which (µi)z has min-entropy smaller than b′. Additionally, define for every
z ∈ [u],

ez ,
∑
i∈Hz

αi.

Claim 3.9. Let ∆(Yz, (Fn
p , b

′)) denote the minimal distance between Yz and
an (Fn

p , b
′)-source. Then for every z ∈ [u]

∆(Yz, (Fn
p , b

′)) ≤ ez + γ′.

Proof. For every z ∈ [u] let µz(y) = Pr[Yz = y] be the probability distri-
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bution of Yz. From (3.1) we can write µz as a convex combination

µz =
t∑

i=1

αi · (µi)z + γ′µ′z

=

(∑

i6∈Hz

αi · (µi)z

)
+

(∑
i∈Hz

αi · (µi)z + γ′µ′z

)

= (1− ez − γ′) · µ′′ + (ez + γ′) · µ′′′,
where µ′′ is the probability distribution of an (Fn

p , b′) source, and µ′′′ is some
other distribution. Clearly, the statistical distance ∆(µz, µ

′′) is at most ez +γ′,
and since µ′′ is an (Fn

p , b′) source, we have that ∆(Yz, (Fn
p , b

′)) ≤ ez + γ′. ¤
The next claim analyzes the behavior of the merger when the seed is sampled

as in Construction 2.5. That is, when it is distributed over a subset of Fk
p of

size 2d.

Claim 3.10. Let φ : {0, 1}d 7→ Fk
p be the mapping from construction 2.5 and

let Z be a random variable uniformly distributed over φ({0, 1}d) ⊂ [u]. Then,
the expectation of eZ is at most γ.

Proof. For each i ∈ [t] define the following indicator random variable

χi =

{
1, i ∈ HZ ;
0, i 6∈ HZ .

Since

2d ≥ 2log2(p)·k−1 =
1

2
· pk,

we have that for every i ∈ [t] the probability that i is in HZ is at most twice
the probability that i is in HZ′ for Z ′ uniformly distributed over Fk

p. This last
probability is bounded by γ/2 and so we can conclude that for every i ∈ [t],
E[χi] ≤ γ. We can thus write

eZ =
t∑

i=1

χi · αi.

By linearity of expectation we have

E[eZ ] =
t∑

i=1

E[χi] · αi ≤ γ ·
t∑

i=1

αi ≤ γ.

¤
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Combining Claim 3.9 and Claim 3.10, and recalling that γ′ = 2−Ω(b), we see
that

E[∆(YZ , (Fn
p , b′))] ≤ E[eZ ] + γ′ ≤ γ + 2−Ω(b),

where the expectations are taken over Z, which is chosen uniformly in φ({0, 1}d) ⊂
Fk

p. Now, for values of b larger than some constant b0, this expression is smaller
than 2γ. This completes the proof of Theorem 2.6. ¤

4. Proving Claim 3.6 and Claim 3.7 Using Results From
Additive Number Theory

In this section we prove Claim 3.6 and Claim 3.7. These two claims are the
only place in which our analysis differs from that of Lu et al. (2003) and Dvir &
Raz (2005). In the proofs we use two results from additive number theory. The
first is a quantitative version of Roth’s theorem (Roth 1953) given by Bourgain
(1999b). The second is a Lemma of Katz & Tao (1999) that deals with sum-sets
and difference-sets.

4.1. Proof of Claim 3.6. The proof of the claim relies on the following
result from additive number theory due to Katz & Tao (1999).

Lemma 4.1. (Katz & Tao 1999).
Let A,B be subsets of any abelian group. Let Γ ⊂ A×B, and define

S , {a + b | (a, b) ∈ Γ},
D , {a− b | (a, b) ∈ Γ}.

Suppose that there exists K > 0 such that |A|, |B|, |S| ≤ K, then

|D| ≤ K11/6.

Before we can apply Lemma 4.1 we need some notations. Let U , Bz1 ∩
Bz2 ∩Bz3 . We define for every i = 1, 2, 3 the set

Vi , {Yzi
(x) | x ∈ U} .

Next, we define a subset Γ ⊂ V1 × V3 as follows

Γ , {(v1, v3) | ∃x ∈ U s.t Yz1(x) = v1 and Yz3(x) = v3}.
We now define the sets S and D as in Lemma 4.1, where the roles of A and B
are taken by V1 and V3.

S , {v1 + v3 | (v1, v3) ∈ Γ},
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D , {v1 − v3 | (v1, v3) ∈ Γ}.
We also define

K , 2(6/11−α/2)·b,

and
U1 , {x1 ∈ Fn

p | ∃x2, . . . , xk ∈ Fn
p s.t (x1, . . . , xk) ∈ U}.

The following claim states several facts that, when combined, will enable
us to use Lemma 4.1 on the sets we have defined.

Claim 4.2. The following is true:

1. |V1|, |V2|, |V3| ≤ K.

2. |S| ≤ |V2| ≤ K.

3. |U1| ≤ |D|.

Proof. 1. Follows directly from the definition of the sets Bzi
and Vi.

Each value v ∈ Vi is a ”heavy element” of the random variable Yzi
. That

is, the probability that Yzi
= v is at least 2−(6/11−α/2)·b = K−1, and so

there can be at most K such values.

2. What we will show is that the set S is contained in the set 2V2 , {2·v | v ∈
V2} (these two sets are actually equal, but we will not need this fact). To
see this, recall that from the definition of a good triplet we have that for
every x ∈ (Fn

p )k

(4.1) Yz1(x) + Yz3(x) = 2 · Yz2(x).

Let v ∈ S. From the definition of S (and of Γ) we know that there
exists x ∈ U and v1 ∈ V1, v3 ∈ V3 such that Yz1(x) = v1, Yz3(x) = v3 and
v = v1 + v3. From (4.1) we now see that v = 2 · Yz2(x), and therefore
v ∈ 2V2. The inequality now follows from the fact that |V2| = |2V2|.

3. This follows in a similar manner to 2. We will show that the set U1 is
contained in the set c · D , {c · v | v ∈ D}, for some 0 < c < p (again,
the two sets are actually equal, but we will not use this fact). From the
definition of a good triplet we know that there exists 0 < c < p such that
for every x = (x1, . . . , xk) ∈ (Fn

p )k

(4.2) c · (Yz1(x)− Yz3(x)) = x1.
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Let x1 ∈ U1. From the definition of U1 it follows that there exist
x2, . . . , xk ∈ Fn

p such that x = (x1, . . . , xk) ∈ U . Using (4.2) we see
that x1 ∈ c · D, since Yz1(x) − Yz3(x) ∈ D by definition. Again, the
inequality now follows from |D| = |c ·D|.

¤

From the first two parts of Claim 4.2 we see that we can apply Lemma 4.1
with A = V1 and B = V3 to get that |D| ≤ K11/6. Substituting K we see that:

|D| ≤ 2b·(6/11−α/2)·11/6 = 2b·(1− 11
12

α),(4.3)

Using the third part of Claim 4.2 and (4.3) we conclude that

(4.4) |U1| ≤ |D| ≤ 2b·(1− 11
12

α).

We can therefore bound the probability of U by

Pr
X
[X ∈ U ] ≤ Pr

X1
[X1 ∈ U1] ≤ 2−b · |U1| ≤ 2−b · 2b·(1− 11

12
α) = 2−( 11

12
α)·b

(the second inequality follows from the fact that the min-entropy of X1 is at
least b). This completes the proof of Claim 3.6. ¤

4.2. Proof of Claim 3.7. The claim follows from Roth’s theorem (Roth
1953) on arithmetic progressions of length three. For our purposes we require
the quantitative version of this theorem as proven by Bourgain (1999b).

Theorem 4.3. (Bourgain 1999b).
Let δ > 0, let N ≥ exp(δ−2) and let A ⊂ {1, . . . , N} be a set of size at least

δN . Then A contains an arithmetic progression of length three.

Each element in T is a vector in Fk
p. A simple counting argument shows that

T must contain a subset T ′ such that

1. |T ′| > (γ/2) · p.

2. All vectors in T ′ are identical in all coordinates different than one.

Using Theorem 4.3 and using the fact that p was chosen to be greater than
exp(γ−2), we conclude that there exists a triplet in T ′ such that the first co-
ordinates of this triplet form an arithmetic progression. This is a good triplet,
since in T ′ the vectors are identical in all coordinates different than one.
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5. Improving the bound to 4/7

In this section we prove Theorem 2.7, which gives a stronger bound of 4/7 on
the min-entropy rate of the merger from Construction 2.5. In order to achieve
this bound we need the size of the underlying field, p, to be much larger than
before (as a function of the error parameter γ). However, for constant error
(which is an interesting case by itself) this stronger bound also requires a field
of constant size. The proof is very similar to the proof of Theorem 2.6 and so
the proof given in this section will be less detailed than the proof given in the
last two sections.

The key to the proof of the 4/7 bound is the following lemma of Katz and
Tao which is similar in spirit to Lemma 4.1.

Lemma 5.1. (Katz & Tao 1999).
Let A,B be subsets of any abelian group. Let Γ ⊂ A×B, and define

S1 , {a + b | (a, b) ∈ Γ},
S2 , {a + 2b | (a, b) ∈ Γ},
D , {a− b | (a, b) ∈ Γ}.

Suppose that there exists K > 0 such that |A|, |B|, |S1|, |S2| ≤ K, then

|D| ≤ K7/4.

It turns out that by making some minor changes to the proof of Theorem 2.6
we can use this lemma in our proof to get the bound of 4/7. The main change
needed is to consider arithmetic projections of length seven instead of length
three. Luckily we have Szemeredi’s theorem for arithmetic projections of any
length. For our purposes we require a quantitative version of this theorem due
to Gowers (2001).

Theorem 5.2. (Gowers 2001).
Let 0 < δ ≤ 1/2, let k be a positive integer, let N ≥ 2 ↑ 2 ↑ δ−1 ↑ 2 ↑ 2 ↑

(k + 9) and let A ⊂ {1, . . . , N} be a set of size at least δN . Then A contains
an arithmetic progression of length k.

We use the same notations as in Section 3. We ”re-define” α-good distri-
butions. This time with 6/11 replaced with 4/7.

Definition 5.3. α-good distribution.
We say that a distribution µ : (Fn

p )u → [0, 1] is α-good if for at least
(1− γ/2) · u values of z ∈ [u], µz has min-entropy at least (4/7− α) · b.
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As before, it is enough to prove the following lemma.

Lemma 5.4. Let X = (X1, . . . , Xk) be an (Fn
p , b)1:k-source, and let Y and µ be

as in Section 3. Then for any constant α > 0 there exists an integer t ≥ 1, and
a partition of (Fn

p )k into t + 1 sets W1, . . . , Wt, W
′, such that:

1. Pr
X
[X ∈ W ′] ≤ 2−Ω(b).

2. For every i ∈ [t] the probability distribution of Y |X ∈ Wi (that is - of
Y conditioned on the event X ∈ Wi) is α-good. In other words: for every
i ∈ [t] there exist at least (1− γ/2) · u values of z ∈ [u] for which

H∞(Yz|X ∈ Wi) ≥ (4/7− α) · b.

5.1. Proof of Lemma 5.4. Every Yz partitions (Fn
p )k in the following way:

(Fn
p )k =

⋃

y∈{0,1}n

(Yz)
−1(y).

For each z ∈ [u] we define the set

Bz ,
⋃

{y | Pr[Yz=y]>2−(4/7−α/2)·b}
(Yz)

−1(y)

As mentioned in the beginning of this section, we need to consider arithmetic
progressions of length seven instead of three. This motivates the following
definition.

Definition 5.5. good 7-tuple.
Let (z1, ..., z7) ∈ [u]7 be a 7-tuple of seed values. Write each zi (i = 1, ..., 7)

as a vector (zi1, . . . , zik). We say that the 7-tuple (z1, ..., z7) is good if the
vectors z1, ..., z7 are identical in all coordinates different from one, and their
first coordinates form an arithmetic progression of length seven in Fp.

The next claim replaces Claim 3.6.

Claim 5.6. For every good 7-tuple (z1, ..., z7) it holds that

Pr
X
[X ∈ Bz1 ∩ ... ∩Bz7 ] ≤ 2−( 7

8
α)·b.

We defer the proof of this claim to the end of this section and continue with
the proof of Lemma 5.4. The next claim replaces Claim 3.7.
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Claim 5.7. Let T ⊂ [u] be such that |T | > (γ/2) · u. Then T contains a good
7-tuple.

Proof. Same as the proof of Claim 3.7, but using Theorem 5.2 (for k = 7)
instead of Theorem 4.3. ¤

The rest of the proof of Lemma 5.4 is exactly the same as in the proof of
Lemma 3.4, and follows from combining Claim 5.6 with Claim 5.7. ¤

5.2. Proof of Claim 5.6. As in the proof of Claim 3.6 we let K = 2(4/7−α/2)·b

and define the sets
U , Bz1 ∩ ... ∩Bz7 ,

U1 , {x1 ∈ Fn
p | ∃x2, . . . , xk ∈ Fn

p s.t (x1, . . . , xk) ∈ U},
Vi , {Yzi

(x) | x ∈ U} ,

Γ , {(v1, v7) | ∃x ∈ U s.t Yz1(x) = v1 and Yz7(x) = v7},
S1 , {v1 + v7 | (v1, v7) ∈ Γ},
S2 , {v1 + 2v7 | (v1, v7) ∈ Γ},
D , {v1 − v7 | (v1, v7) ∈ Γ}.

The following claim replaces Claim 4.2, and will enable us to use Lemma 5.1
on the sets we have defined.

Claim 5.8. the following is true:

1. For i = 1, ..., 7, |Vi| ≤ K.

2. |S1|, |S2| ≤ K.

3. |U1| ≤ |D|.
Proof. The proofs of (1) and (3) are exactly the same as in Claim 4.2. To
prove (2) notice that S1 is contained in 2V4 and that S2 is contained in 3V5. ¤
We apply Lemma 5.1 with A = V1 and B = V7 to get that |D| ≤ K7/4.
Substituting K and using part 3 of the Claim 5.8 we get

(5.1) |U1| ≤ |D| ≤ 2b·(1− 7
8
α).

Therefore,

Pr
X
[X ∈ U ] ≤ Pr

X1
[X1 ∈ U1] ≤ 2−b · |U1| ≤ 2−b · 2b·(1− 7

8
α) = 2−( 7

8
α)·b.

¤
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6. Encoding Binary Sources as Vectors in Fn
p

The merger from Construction 2.5 works when its inputs are vectors in Fn
p . It

is usually desirable to construct mergers that take binary strings as inputs. In
this section we prove analogs of Theorem 2.6 and Theorem 2.7 for mergers over
binary inputs. We note that the issues dealt with in this section are common
to many papers on extractors and are not new to this paper.

Let n > 1 be an integer, p a prime number, and set

ñ ,
⌈

n

log2 p

⌉

We first define a mapping from binary strings to vectors over Fp

ϕ : {0, 1}n 7→ Fñ
p

in the following way: for x ∈ {0, 1}n we treat x as an integer in [2n − 1]. Since
x < 2n ≤ pñ there exist a1, . . . , añ ∈ Fp such that

x = a1 + a2p + a3p
2 + . . . + añpñ−1.

The mapping ϕ simply outputs the vector

ϕ(x) , (a1, . . . , añ).

Since base p expansion is unique we get that ϕ is an injection. This proves the
following claim:

Claim 6.1. Let ϕ : {0, 1}n 7→ Fñ
p be the mapping defined above and let X

be a ({0, 1}n, b) random source. Then ϕ(X) is an (Fñ
p , b) random source.

Next, we define a mapping which takes vectors over Fp and outputs binary
vectors. Let n, p and ñ be as before. We define a mapping

ψ : Fñ
p 7→ {0, 1}n

as follows:

ψ(a1, . . . , añ) ,
(

ñ∑
i=1

ai · pi−1

)
mod 2n,

(since the output is a number smaller than 2n we can write it in binary using
n bits). Of course, ψ is not one-to-one, but the loss of entropy when applying
ψ on a random source can be shown to be bounded by log2 p. Since in our case
p is a constant, this loss will not be noticeable.
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Claim 6.2. Let ψ : Fñ
p 7→ {0, 1}n be the mapping defined above and let X be

an (Fñ
p , b) random source, with b > log2 p. Then ψ(X) is a ({0, 1}n, b− log2 p)

random source.

Proof. We have
ñ ≤ n

log2 p
+ 1

Or

2n ≥ pñ · 1

p
.

Therefore, for every y in the range of ψ there are at most p elements that ψ
maps to it. This implies that ψ can reduce the min entropy of its input by at
most log2 p. ¤

The following Corollary is immediate:

Corollary 6.3. Let ψ : Fñ
p 7→ {0, 1}n be the mapping defined above. Let

1 > γ > 0 and let X be γ-close to an (Fñ
p , b) random source, with b > log2 p.

Then ψ(X) is γ-close to a ({0, 1}n, b− log2 p) random source.

We conclude by composing ϕ and ψ with the merger from Construction 2.5
to get a merger over {0, 1}n.

Construction 6.4. Let n, p and ñ be as before. Let k be a constant integer
and let d = bk · log2 pc. Let

M : {0, 1}d × (
Fñ

p

)k → Fñ
p

Be as in Construction 2.5. We define

M̃ : {0, 1}d × ({0, 1}n)k → {0, 1}n,

as follows:
M̃(z, x1, . . . , xk) , ψ(M(z, ϕ(x1), . . . , ϕ(xk))).

From the two claims above we can easily prove the following analog of
Theorem 2.6.

Theorem 6.5. Let 0 < γ < 1 be any constant, k > 0 a constant integer, and
let p be a prime larger than exp(γ−2). Let

M̃ : {0, 1}d × ({0, 1}n)k → {0, 1}n,
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be as in Construction 6.4, where d = blog2 p · kc. Then for any constant α > 0
there exists a constant b0 such that for all n ≥ b ≥ b0, M is a [d, ({0, 1}n, b)1:k 7→
({0, 1}n, b′) ∼ γ]-strong merger with

b′ = (6/11− α) · b.

Proof. Let X = (X1, . . . , Xk) be a somewhere ({0, 1}n, b) source. Then,
from Claim 6.1, we have that ϕ(X) , (ϕ(X1), . . . , ϕ(Xk)) is a somewhere
(Fñ

p , b) source. We apply Theorem 2.6 with the same γ but with α replaced
by α

2
to get that the average (over z) distance between M(z, ϕ(X)) and an

(Fn
p , ( 6

11
− α

2
)b)-source is at most γ. Now, using Corollary 6.3 we have that the

average distance between ψ(M(z, ϕ(X))) and a ({0, 1}n, b′) source is at most
γ where

b′ = (
6

11
− α

2
)b− log2 p ≥ (

6

11
− α)b,

if b ≥ 2·log2 p
α

. Taking b0 to be larger than 2·log2 p
α

(this is still a constant) we are
done. ¤

An analog of Theorem 2.7 can be proved in the same way:

Theorem 6.6. Let 0 < γ < 1 be any constant, k > 0 a constant integer, and
let p be a prime larger than F (γ) , 2 ↑ 2 ↑ (γ/2)−1 ↑ 2 ↑ 2 ↑ 16. Let

M̃ : {0, 1}d × ({0, 1}n)k → {0, 1}n,

be as in Construction 6.4, where d = bk · log2 pc. Then for any constant α > 0
there exists a constant b0 such that for all n ≥ b ≥ b0, M is a [d, ({0, 1}n, b)1:k 7→
({0, 1}n, b′) ∼ γ]-strong merger with

b′ = (4/7− α) · b.

Acknowledgements

The authors would like to thank Ran Raz and Omer Reingold for helpful con-
versations. We thank Avi Wigderson for bringing to our attention the con-
nection between linear mergers and the Kakeya conjecture. We thank Oded
Goldreich for valuable comments that improved the presentation of the results.
A.S. would also like to thank Oded Goldreich for helpful discussions on related
problems. Z.D was supported by Israel Science Foundation (ISF) grant.



An Improved Analysis of Linear Mergers 25

References

Boaz Barak, Russell Impagliazzo & Avi Wigderson (2004). Extracting Ran-
domness Using Few Independent Sources. In 45th Symposium on Foundations of
Computer Science (FOCS 2004), 384–393.

Jean Bourgain (1991). Besicovitch-type maximal operators and applications to
Fourier analysis. Geom. Funct. Anal. 22, 147–187.

Jean Bourgain (1999a). On the dimension of Kakeya sets and related maximal
inequalities. Geom. Funct. Anal. (9), 256–282.

Jean Bourgain (1999b). On triples in arithmetic progression. Geom. Funct. Anal.
(9), 968–984.

Zeev Dvir & Ran Raz (2005). Analyzing Linear Mergers. Electronic Colloquium
on Computational Complexity (ECCC) (025).

Timothy Gowers (2001). A new proof of Szemeredi’s theorem. Geom. Funct.
Anal. (11), 465–588.

Nets Katz & Terence Tao (1999). Bounds on arithmetic projections, and appli-
cations to the Kakeya conjecture. Math. Res. Letters 6, 625–630.

Nets Katz & Terence Tao (2002). New bounds on Kakeya problems. Journal
d’Analyse de Jerusalem 87, 231–263.

Chi-Jen Lu, Omer Reingold, Salil Vadhan & Avi Wigderson (2003). Extrac-
tors: optimal up to constant factors. In 35th Symposium on Theory of Computing
(STOC 2003), 602–611. ACM Press. ISBN 1-58113-674-9.

Gerd Mockenhaupt & Terence Tao (2004). Restriction and Kakeya phenomena
for finite fields. Duke Math. J. 121, 35–74.

Ran Raz (2005). Extractors with Weak Random Seeds. In 37th Symposium on
Theory of Computing (STOC 2005), 11–20.

Klaus F Roth (1953). On certain sets of integers. J. Lond. Math. Soc. (28),
104–109.

Ronen Shaltiel (2002). Recent Developments in Extractors. Bulletin of the Eu-
ropean Association for Theoretical Computer Science 77, 67–95.

Amnon Ta-Shma (1996). On extracting randomness from weak random sources
(extended abstract). In 28th Symposium on Theory of Computing (STOC 1996),
276–285. ACM Press. ISBN 0-89791-785-5.



26 Dvir & Shpilka

Thomas Wolff (1995). An improved bound for Kakeya type maximal functions.
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