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LOCALLY DECODABLE CODES WITH TWO QUERIES AND
POLYNOMIAL IDENTITY TESTING FOR DEPTH 3 CIRCUITS∗

ZEEV DVIR† AND AMIR SHPILKA‡

Abstract. In this work we study two, seemingly unrelated, notions. Locally decodable codes
(LDCs) are codes that allow the recovery of each message bit from a constant number of entries of
the codeword. Polynomial identity testing (PIT) is one of the fundamental problems of algebraic
complexity: we are given a circuit computing a multivariate polynomial and we have to determine
whether the polynomial is identically zero. We improve known results on LDCs and on polynomial
identity testing and show a relation between the two notions. In particular we obtain the following
results: (1) We show that if E : Fn �→ Fm is a linear LDC with two queries, then m = exp(Ω(n)).
Previously this was known only for fields of size � 2n [O. Goldreich et al., Comput. Complexity,
15 (2006), pp. 263–296]. (2) We show that from every depth 3 arithmetic circuit (ΣΠΣ circuit), C,
with a bounded (constant) top fan-in that computes the zero polynomial, one can construct an LDC.
More formally, assume that C is minimal (no subset of the multiplication gates sums to zero) and
simple (no linear function appears in all the multiplication gates). Denote by d the degree of the
polynomial computed by C and by r the rank of the linear functions appearing in C. Then we can
construct a linear LDC with two queries that encodes messages of length r/polylog(d) by codewords
of length O(d). (3) We prove a structural theorem for ΣΠΣ circuits, with a bounded top fan-in, that
compute the zero polynomial. In particular we show that if such a circuit is simple, minimal, and of
polynomial size, then its rank, r, is only polylogarithmic in the number of variables (a priori it could
have been linear). (4) We give new PIT algorithms for ΣΠΣ circuits with a bounded top fan-in:
(a) a deterministic algorithm that runs in quasipolynomial time, and (b) a randomized algorithm
that runs in polynomial time and uses only a polylogarithmic number of random bits. Moreover,
when the circuit is multilinear, our deterministic algorithm runs in polynomial time. Previously
deterministic subexponential time algorithms for PIT in bounded depth circuits were known only
for depth 2 circuits (in the black box model) [D. Grigoriev, M. Karpinski, and M. F. Singer, SIAM
J. Comput., 19 (1990), pp. 1059–1063; M. Ben-Or and P. Tiwari, Proceedings of the 20th Annual
ACM Symposium on Theory of Computing, ACM Press, New York, 1988, pp. 301–309; A. R. Klivans
and D. Spielman, Proceedings of the 33rd Annual ACM Symposium on Theory of Computing, ACM
Press, New York, 2001, pp. 216–223]. In particular, for the special case of depth 3 circuits with three
multiplication gates our result resolves an open question asked by Klivans and Spielman.
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1. Introduction. Locally decodable codes (LDCs) are error correcting codes
that allow the recovery of each symbol of the message from a constant number of
entries of the codeword. Polynomial identity testing (PIT) is one of the fundamental
problems of algebraic complexity: we are given a circuit computing a multivariate
polynomial, and we have to determine whether the polynomial is identically zero. In
this paper we show a relation between these two notions—roughly, from every depth 3
circuit which is identically zero, one can construct an LDC. Using this relation and a
new lower bound on LDCs, we devise new PIT algorithms for depth 3 circuits.
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1.1. Locally decodable codes. LDCs are error correcting codes that allow the
recovery of each symbol of the message, from a corrupted codeword, by looking at
only a constant number of entries of the corrupted word. Roughly, a (q, δ, ε)-locally
decodable code encodes x ∈ F

n to E(x) ∈ F
m such that for each index i ∈ [n], xi

can be recovered from E(x) with probability1 > 1
|F| + ε by reading only q (random)

entries, even if E(x) was corrupted in δm positions.

LDCs have many applications—they are related to private information retrieval
(PIR) schemes [13, 26, 18], and they can be used for amplification of hardness [19, 20,
3] and for the construction of hard-core predicates for one-way permutations [30, 15].
(See [49] for a survey on LDCs.)

The notion of LDCs was explicitly discussed in [4] and explicitly defined in [26].
Implicit constructions of local decoders can be found in the context of random self-
reducibility and self-correcting computations (see, e.g., [32, 6, 16, 17, 15]). There
are two main questions related to LDCs: finding explicit constructions and proving
limits of such constructions (i.e., proving lower bounds on the length of the encoding).
Explicit constructions were given by [4, 7, 8]. The best current construction is due to
Beimel et al. [8], who gave an LDC with q queries of length m = exp(nO(log log q/q log q)).

The problem of proving lower bounds was first studied by Katz and Trevisan [26],
who proved that for every LDC with q queries, the length of the codeword, m, is at

least n1+ 1
q−1 . This is currently the best lower bound for general LDCs (see also [14]).

It is a very challenging open question to give tight lower bounds (or upper bounds)
on the length of LDCs. Due to the difficulty of the problem many works focused
on the case of codes with two queries (q = 2). Exponential lower bounds were first
proved for linear codes [18, 37] and then, by techniques from quantum computation,
for nonlinear codes over GF (2) [28]. The bound of Goldreich et al. [18] actually holds
for linear LDCs with two queries over any finite field, namely, that m is at least
2Ω(n)−log(|F|), where F is the underlined field. This result is (nearly) tight when the
field is of constant size; however, it gives no significant bound for infinite fields.

1.2. Polynomial identity testing. PIT is a fundamental problem in algebraic
complexity: we are given a multivariate polynomial (in some representation) over some
field F, and we have to determine whether it is identically zero.2 The importance of
this problem follows from its many applications: algorithms for primality testing [1, 2],
for deciding if a graph contains a perfect matching [33, 34, 11], and more, are based on
reductions to the PIT problem. (See the introduction of [31] for more applications.)

Determining the complexity of PIT is one of the greatest challenges of theoretical
computer science. It is one of a few problems (and in some sense PIT is the most
general problem) for which we have coRP algorithms but no deterministic subexpo-
nential time algorithms. Kabanets and Impagliazzo [25] suggested an explanation for
the lack of algorithms. They showed that efficient deterministic algorithms for PIT
imply that NEXP does not have polynomial size arithmetic circuits. Specifically, if
PIT has deterministic polynomial time algorithms, then either the permanent cannot
be computed by polynomial size arithmetic circuits or NEXP �⊂ P/poly.

The first randomized algorithm for PIT was discovered independently by Schwartz
[42] and Zippel [50]. Their well-known algorithm simply evaluates the polynomial at a
random point and accepts iff the polynomial vanishes at the point. If the polynomial

1If F is infinite, then the probability of success is > ε.
2Note that we want the polynomial to be identically zero and not just to be equal to the zero

function. For example, x2 − x is the zero function over GF (2) but not the zero polynomial.
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is of degree d and each variable is randomly chosen from a domain S, then the error
probability is bounded by d/|S|. Two kinds of works followed the Schwartz–Zippel al-
gorithm: randomized algorithms that use fewer random bits [12, 31, 1] and algorithms
for restricted models of arithmetic circuits. In [22, 9, 29] polynomial time determinis-
tic PIT algorithms for depth 2 arithmetic circuits were given. More recently, [41] gave
a polynomial time PIT algorithm for noncommutative formulas. All algorithms, with
the exception of [1, 41], are black box algorithms. That is, these algorithms do not
have access to a circuit computing the polynomial, and they can evaluate it only on
different inputs (as in the Schwartz–Zippel algorithm).

A result of a different nature was proved by Kabanets and Impagliazzo [25]. They
designed a deterministic quasi-polynomial time algorithm based on unproved hardness
assumptions. Namely, in Theorem 7.7 of [25] it is shown that if there is a family
{pn} of exponential time computable polynomials in n variables over Z such that the
arithmetic circuit complexity of pn is exp(nΩ(1)), then there is an exp(poly(logn)) time
algorithm for identity testing for any polynomial size arithmetic circuit that computes
polynomials with at most a polynomial degree and polynomial size coefficients.

1.3. Depth 3 arithmetic circuits. Proving lower bounds for general arith-
metic circuits is the greatest challenge of algebraic complexity. Unfortunately, except
for the lower bounds of Strassen [47] and Baur and Strassen [5], no lower bounds are
known for general arithmetic circuits. Due to the difficulty of the problem, research
focused on restricted models such as monotone circuits and bounded depth circuits.
Exponential lower bounds were proved on the size of monotone arithmetic circuits
[43, 24], and linear lower bounds were proved on their depth [44, 48]. However, unlike
the situation in the Boolean case, only weak lower bounds were proved for bounded
depth arithmetic circuits [38, 40]. Thus, a more restricted model was considered—the
model of depth 3 arithmetic circuits (also known as ΣΠΣ circuits). A ΣΠΣ circuit
computes a polynomial of the form

C =
k∑

i=1

di∏
j=1

Lij(x),(1)

where the Lij are linear functions. Grigoriev and Karpinski [21] and Grigoriev and
Razborov [23] proved exponential lower bounds on the size of ΣΠΣ circuits computing
the permanent and determinant over finite fields. Over infinite fields exponential lower
bounds are known only for the restricted models of multilinear3 ΣΠΣ circuits and for
homogeneous ΣΠΣ circuits [35, 36]. For general ΣΠΣ circuits over infinite fields only
the quadratic lower bound of [46] is known. Thus, proving exponential lower bounds
for ΣΠΣ circuits over C is a major open problem in arithmetic circuit complexity.

In this work we are interested in the problem of PIT for depth 3 circuits. As
mentioned earlier there are no efficient PIT algorithms for arithmetic circuits, even if
we just consider bounded depth circuits. Thus, finding efficient algorithms for PIT in
ΣΠΣ circuits seems like the first step toward proving more general results.

1.4. Our results. Lower bounds for linear LDCs with two queries. We
study linear LDCs with two queries over arbitrary fields and prove lower bounds on
their length. The first such lower bound was proved by Goldreich et al. [18], as follows.

3More accurately for pure multilinear ΣΠΣ circuits.



POLYNOMIAL IDENTITY TESTING FOR DEPTH 3 CIRCUITS 1407

Theorem 1.1 (Theorem 1.4 of [18]). Let δ, ε ∈ [0, 1], F be a field, and let
E : F

n → F
m be a linear (2, δ, ε)-LDC. Then

m ≥ 2
ε δ n
16 −1−log2 |F|.

Note that this result makes sense only when |F| is finite. We prove the following
theorem.

Theorem 1.2. Let δ, ε ∈ [0, 1], F be a field, and let E : F
n → F

m be a linear
(2, δ, ε)-LDC. Then

m ≥ 2
ε δ n

4 −1.

Compared with Theorem 1.4 of [18], our result removes the dependance on the
size of the field in the exponent and works for every field size, finite and infinite. The
idea of the proof is similar to the one in [18]—we show that, given a linear 2-LDC
over an arbitrary field F, we can construct from it a linear 2-LDC over GF (2), with
almost the same parameters, and then we use the lower bound of [18] for codes over
GF (2).

Relation between depth 3 circuits and LDCs. The main result of the paper is that
from every ΣΠΣ circuit that computes the zero polynomial, one can construct a linear
LDC with two queries. Relations between arithmetic circuits and error correcting
codes were known before [10, 45]; however, this is the first time that LDCs appear in
the context of arithmetic circuits. More formally, let C be a ΣΠΣ circuit, as in (1),
computing the zero polynomial. We say that C is minimal if no proper subset of the
multiplication gates sums to zero. We say that C is simple if there is no linear function
that appears in all the multiplication gates (up to a multiplicative constant). Denote
with r the rank of the linear functions appearing in C.

Theorem 1.3. Let k ≥ 3, d ≥ 2, and let C ≡ 0 be a simple and minimal ΣΠΣ
circuit of degree d, with k multiplication gates and n inputs. Let r = rank(C). Then
we can construct a linear (2, 1

12 ,
1
4 )-LDC E : F

n1 → F
n2 with

r

2O(k2) log(d)k−3
≤ n1 and n2 ≤ k · d.

Thus, if k is a constant, then we can construct a linear (2, 1
12 ,

1
4 )-LDC that encodes

messages of length r/polylog(d) by codewords of length O(d). As a corollary of
Theorems 1.2 and 1.3 we get the next theorem.

Theorem 1.4. Let k ≥ 3, d ≥ 2, and let C ≡ 0 be a simple and minimal ΣΠΣ
circuit of degree d with k multiplication gates and n inputs; then r ≤ 2O(k2) log(d)k−2.

Notice that the bound on r depends only on the degree and the number of mul-
tiplication gates and not on the number of variables! If the degree is polynomial in n
(i.e., the circuit is of polynomial size), then the rank is bounded by polylog(n), where
a priori the rank could have been n.

PIT algorithms for depth 3 circuits. We design algorithms for PIT of depth 3
circuits with a constant number of multiplication gates. In particular we get a de-
terministic quasi-polynomial time algorithm and a randomized polynomial time al-
gorithm that uses only polylog random bits. If the circuit is multilinear, i.e., every
multiplication gate computes a multilinear polynomial, then we give a deterministic
polynomial time algorithm for PIT. Our algorithms are non black box—all of them
use the circuit computing the polynomial. The basic idea is to look for a minimal zero
subcircuit and then, using Theorem 1.4, to write the linear functions in the circuit
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as linear functions in r ≤ 2O(k2) log(d)k−2 variables. Then we expand the monomials
computed by the circuit and verify in a brute force manner that the resulting poly-
nomial is zero. Thus the running time of our algorithm is the combined time that it
takes to go over all subcircuits and the time that it takes to write all the monomials of
a degree d polynomial in ≤ 2O(k2) log(d)k−2 variables. We thus obtain the following
result.

Theorem 1.5. Let C be a ΣΠΣ circuit of degree d, with k multiplication gates
and n inputs. Then we can check if C ≡ 0:

1. Deterministically, in time exp
(
2O(k2) logk−1(d)

)
. Thus, for a constant k the

running time is exp(polylog(d)).

2. Probabilistically, in time 2O(k) poly(d, 1
ε ), using 2O(k2) logk−2(d) log(1/ε) ran-

dom bits, with error probability ε. For constant k the running time is poly(d, 1
ε ),

and the number of random bits is polylog(d) log(1/ε).
3. If C is also multilinear, then we can check if C is identically zero determin-

istically in time exp(2O(k2)) · poly(d). For constant k the running time is
poly(d).

Prior to our work the only algorithms that were designed for bounded depth cir-
cuits were the deterministic algorithm of [41] for pure multilinear depth 3 circuits and
the black box algorithms of [22, 9, 29] for polynomials computed by depth 2 circuits
(also known as sparse polynomials). None of the algorithms for sparse polynomials
work in the case of depth 3 circuits, as such circuits can compute polynomials with
exponentially many monomials. In fact, Klivans and Spielman [29] ask whether one
could derandomize PIT for ΣΠΣ circuits with only three multiplication gates (k = 3
in our notation). We give a deterministic algorithm that runs in quasi-polynomial
time for this case, thus resolving the question of [29]. We note that a complete deran-
domization is to give a polynomial time algorithm for the problem, as was recently
achieved by Kayal and Saxena [27]. We discuss their result in the next subsection.

1.5. Recent results. Kayal and Saxena [27] managed to give a polynomial time
algorithm for PIT of depth 3 circuits with bounded top fan-in. Namely, they give an
algorithm that runs in time polynomial in dk, n, where k is the top fan-in, d is the
degree of the circuit, and n is the number of variables. This result gives a complete
derandomization of identity testing for depth 3 circuits with bounded top fan-in. In
addition Kayal and Saxena give constructions of identically zero depth 3 circuits over
F = GF (p) with k = p for odd p, and k = 3 for p = 2, of degree d and rank r = logp(d)
(see Theorem 1.4).

We note, however, that for multilinear depth 3 circuits we give a polynomial time
algorithm even when the top fan-in is O(

√
log log n) (Theorem 1.5, item 3), whereas

[27] is polynomial time only when the top fan-in is constant.

1.6. Organization. In section 2 we analyze linear LDCs and derive Theorem 1.2.
Section 3 is devoted to ΣΠΣ circuits and their properties and serves as an introduc-
tion to the main part of the paper. In section 4 we give the proof of Theorem 1.3 and
discuss the relation between ΣΠΣ circuits and LDCs. Finally, in sections 5 and 6 we
use our results to prove a structural theorem for zero ΣΠΣ circuits and devise PIT
algorithms based on this theorem.

2. Locally decodable codes. In this section we prove Theorem 1.2. We start
by formally defining LDCs.

For a natural number n, let [n] � {1, . . . , n}. Let F be a field. For a vector x ∈ F
n

we write xi for the ith coordinate of x. We denote by ei the ith unit vector. For two
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vectors y, z ∈ F
m, denote by Δ(y, z) the number of coordinates in which y and z

differ.
Definition 2.1. Let δ, ε ∈ [0, 1], and let q be an integer. We say that E : F

n →
F
m is a (q, δ, ε)-locally decodable code if there exists a probabilistic oracle machine A

such that
• in every invocation, A makes at most q queries (nonadaptively);
• for every x ∈ F

n, for every y ∈ F
m with Δ(y,E(x)) < δm, and for every

i ∈ [n], we have

|F| < ∞ : Pr [Ay(i) = xi] ≥ 1
|F| + ε,

|F| = ∞ : Pr [Ay(i) = xi] ≥ ε,

where the probability is taken over the internal coin tosses of A.
We say that the code E is a linear code if E is a linear transformation between
F
n and F

m.
We are now ready to prove Theorem 1.2. We repeat its formulation here.
Theorem 1.2 (restated). Let δ, ε ∈ [0, 1], F be a field, and let E : F

n → F
m be a

linear (2, δ, ε)-LDC. Then

m ≥ 2
ε δ n

4 −1.

Our proof will build on the methods of [18], together with a novel reduction from
LDCs over arbitrary fields to LDCs over GF (2). We start by reviewing the results
of [18]. The first step of their proof, given by the following lemma, is a reduction
from the problem of proving lower bounds for LDCs to a graph-theoretic problem.
The first such reduction was given in [26], where it was used to prove lower bounds
on general LDCs. We note that in [18] the lemma was proved only over finite fields;
however, it is easy to modify the proof to work for infinite fields as well.

Lemma 2.2 (implicit in [18]). Let E : F
n → F

m be a linear (2, δ, ε)-LDC, and let
a1, . . . , am ∈ F

m be vectors such that

E(x) = (〈a1, x〉, . . . , 〈am, x〉)

( 〈·, ·〉 denotes the standard inner product). Then, for every i ∈ [n], there exists a
set Mi ⊂ [m] × [m] of at least ε δ m

4 disjoint pairs such that for every (j1, j2) ∈ Mi,
ei ∈ Span{aj1 , aj2}.

From Lemma 2.2 we see that to prove lower bounds for two-query LDCs, it is
sufficient to deal with the more combinatorial setting in which a given multiset of
vectors contains many disjoint pairs spanning each unit vector.

The next step in the proof of [18] is a reduction from arbitrary finite fields to
GF (2). The next lemma summarizes the reduction given by [18].

Lemma 2.3 (implicit in [18]). Let F be a finite field, and let a1, . . . , am ∈ F
n.

For every i ∈ [n] let Mi ⊂ [m] × [m] be a set of disjoint pairs of indices such that
ei ∈ Span{aj1 , aj2} for every (j1, j2) ∈ Mi. Then, there exist m′ vectors b1, . . . , bm′ ∈
{0, 1}n and n sets M ′

1, . . . ,M
′
n ⊂ [m′] × [m′] of disjoint pairs such that

1. for every (j1, j2) ∈ M ′
i , bj1 ⊕ bj2 = ei,

2. m′ = (|F| − 1)m, and
3.

∑n
i=1 |Mi| ≤ 2m + 2

|F|−1

∑n
i=1 |M ′

i |.
The third and final step in the proof of [18] is a lemma which bounds the size of

the matchings Mi, when the underlying field is GF (2).
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Lemma 2.4 (see [18]). Let a1, . . . , am be elements of {0, 1}n. For every i ∈ [n]
let Mi ⊂ [m] × [m] be a set of disjoint pairs of indices such that ei = aj1 ⊕ aj2 for
every (j1, j2) ∈ Mi. Then

n∑
i=1

|Mi| ≤
1

2
m log(m).

Notice that by Lemma 2.3 we have that m = m′/|F|. Therefore, to get significant
bounds from the combination of Lemmas 2.2, 2.3, and 2.4, we need |F| to be much
smaller than 2n. Thus, for very large fields (in particular, infinite fields) we do not
get a significant result.

Our proof differs from that of [18] only in its second part—the reduction from F

to GF (2). Our reduction holds for any field, in particular for infinite F, and does not
involve the field size as a parameter.

Lemma 2.5. Let F be any field, and let a1, . . . , am ∈ F
n. For every i ∈ [n] let

Mi ⊂ [m] × [m] be a set of disjoint pairs of indices such that ei ∈ Span{aj1 , aj2}
for every (j1, j2) ∈ Mi. Then, there exist m vectors b1, . . . , bm ∈ {0, 1}n, and n sets
M ′′

1 , . . . ,M
′′
n ⊂ [m] × [m] of disjoint pairs, such that

1. for every (j1, j2) ∈ M ′′
i , bj1 ⊕ bj2 = ei, and

2.
∑n

i=1 |Mi| ≤ 2
∑n

i=1 |M ′′
i | + m.

Before giving the proof of the lemma we combine Lemmas 2.2, 2.5, and 2.4 to
prove Theorem 1.2.

Proof of Theorem 1.2. Let a1, . . . , am ∈ F
n be vectors such that

E(x) = (〈a1, x〉, . . . , 〈am, x〉).

From Lemma 2.2, we know that there exist n sets, M1, . . . ,Mn ⊂ [m]× [m], of disjoint
pairs of indices, such that for every (j1, j2) ∈ Mi we have ei ∈ Span{aj1 , aj2}. We
also know that

∀ i ∈ [n], |Mi| ≥
ε δ m

4
.

Now, let b1, . . . , bm ∈ {0, 1}n and M ′′
1 , . . . ,M

′′
n ⊂ [m] × [m] be as in Lemma 2.5.

That is,
1. for every (j1, j2) ∈ M ′′

i , bj1 ⊕ bj2 = ei, and
2.

∑n
i=1 |Mi| ≤ 2

∑n
i=1 |M ′′

i | + m.
Using Lemma 2.4, we now have

n∑
i=1

|M ′′
i | ≤

1

2
m log(m).

This implies

n · ε δ m
4

≤
n∑

i=1

|Mi| ≤ 2

n∑
i=1

|M ′′
i | + m ≤ m log(m) + m,

which, after division by m, gives the bound stated by the theorem.
We now give the proof of Lemma 2.5.
Proof of Lemma 2.5. The proof will consist of two stages. First, we will remove

a relatively small number of “bad” pairs from the given matchings {Mi}; then we
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will transform the vectors a1, . . . , am to vectors in {0, 1}n, while preserving a large
portion of the pairs spanning the unit vectors.

Let (j1, j2) be a pair in Mi for some i such that either aj1 or aj2 are parallel to the
unit vector ei. Without loss of generality (w.l.o.g.) assume aj1 = c ·ei. We replace this
pair with the pair (j1, j1). We do the same for all pairs containing a vector parallel
to the unit vector spanned by this pair. This change does not affect the parameters
of the lemma and is done only to simplify the analysis.

Next, we define a function θ : F
n\{0} → [n] by

θ(v) = min{i : vi �= 0}.

For the rest of the proof we assume w.l.o.g. that in each pair (j1, j2) we have θ(aj1) ≤
θ(aj2). (Note that we can assume w.l.o.g. that the vectors a1, . . . , am are all different
from zero.) We remove from each matching Mi all the pairs (j1, j2) in which θ(aj1) =
i. (This includes all pairs (j1, j1) described in the previous paragraph, and more.)
Denote the resulting matching by M ′

i . We claim that the total number of pairs
removed in this stage is at most m.

Claim 2.6.

n∑
i=1

|Mi| ≤
n∑

i=1

|M ′
i | + m.(2)

Proof. Let p1 = (j1, j2) and p2 = (k1, k2) be two removed pairs. If p1 and p2

were in the same matching Mi, then they would be disjoint, and so j1 �= k1. If the
pairs belonged to two different matchings, say, Mi1 and Mi2 , then θ(aj1) = i1 and
θ(ak1

) = i2, and again we get that j1 �= k1. It follows that every removed pair has
a distinct first element in the set [m]. Therefore, the total number of removed pairs
cannot exceed m.

In the following we assume w.l.o.g. that the first nonzero coordinate of each aj is
one. (We can assume that because we are allowed to use arbitrary linear combinations
of the aj when spanning the ei.) The next claim asserts an important property of the
matchings M ′

i .
Claim 2.7. For every i ∈ [n] and (j1, j2) ∈ M ′

i ,

ei ∈ Span{aj1 − aj2}.

Proof. Let u = aj1 , v = aj2 . We know that there exist two nonzero coefficients
α, β ∈ F such that αu + βv = ei. (Both coefficients are nonzero because we removed
from Mi all pairs containing a vector parallel to ei.) From this property it is clear that
θ(u) ≤ i (remember that θ(u) ≤ θ(v)). As we removed all pairs in which θ(aj1) = i
we conclude that θ(u) < i. This in turn implies that θ(u) = θ(v) < i, because
if θ(v) > θ(u), then the vector αu + βv = ei would have a nonzero coordinate in
position θ(u) < i. Now, since vθ(v) = uθ(u) = 1 we have that α+ β = (αu+ βv)θ(u) =
(ei)θ(u) = 0. Hence ei ∈ Span{aj1 − aj2}.

Let us now proceed to the second stage of the proof of Lemma 2.5, in which we
move from the field F to GF (2). We will use a probabilistic argument to show the
existence of a transformation that maps F to GF (2), while preserving a large portion
of the pairs that span a given unit vector.

For each i ∈ [n], let aji denote the ith coordinate of the vector aj . Let V =
{aji}j∈[m], i∈[n] be the set of all field elements appearing in one of the vectors a1, . . . , am.



1412 ZEEV DVIR AND AMIR SHPILKA

We pick a random function f : V → {0, 1} and apply f to all the coordinates in all
the vectors. Let

bj = (f(aj1), . . . , f(ajn))

be the vector in {0, 1}n obtained from aj after the transformation. We say that a pair
(j1, j2) ∈ M ′

i “survived” the transformation if ei = bj1 ⊕ bj2 .

Claim 2.8. The expected number of surviving pairs is 1
2

∑n
i=1 |M ′

i |.
Proof. Consider a pair (j1, j2) ∈ M ′

i . Since ei ∈ Span{aj1 − aj2} we know that
the vectors aj1 , aj2 are identical in all coordinates different from i. Hence, the vectors
bj1 , bj2 will also be identical in those coordinates. From this we see that ei = bj1 ⊕ bj2
iff bj1 and bj2 differ in their ith coordinate. This happens with probability of one-half.
By linearity of expectation we can conclude that the expected number of surviving
pairs is at least half the number of original pairs, which was

∑n
i=1 |M ′

i |.
From the above claim we can assert that there exists a function f for which the

number of surviving pairs is at least 1
2

∑n
i=1 |M ′

i |. Thus, we have shown that there
exist a set of vectors b1, . . . , bm ∈ {0, 1}n and matchings M ′′

i ⊂ [m] × [m] such that
for every (j1, j2) ∈ M ′′

i , we have ei = bj1 ⊕ bj2 . Furthermore, we can assume that

n∑
i=1

|M ′
i | ≤ 2

n∑
i=1

|M ′′
i |,(3)

which completes the proof of the lemma, since now

n∑
i=1

|Mi| ≤
n∑

i=1

|M ′
i | + m ≤ 2

n∑
i=1

|M ′′
i | + m.

The next corollary combines the results of Lemmas 2.5 and 2.4 in a compact form.
This corollary will be used in the proof given in section 4.

Corollary 2.9. Let F be any field, and let a1, . . . , am ∈ F
n. For every i ∈

[n] let Mi ⊂ [m] × [m] be a set of disjoint pairs of indices (j1, j2) such that ei ∈
Span{aj1 , aj2}. Then

n∑
i=1

|Mi| ≤ m log(m) + m.

3. ΣΠΣ circuits. In this section we give some definitions related to ΣΠΣ cir-
cuits and describe some elementary operations that can be preformed on them. These
definitions and operations will be used in the following sections.

3.1. Definitions. In the following we treat vectors in F
n also as linear forms in

F[x1, . . . , xn].

Definition 3.1. Let u ∈ F
n, u = (u1, . . . , un). Then

u(x) = u1x1 + u2x2 + · · · + unxn.

Definition 3.2. Let v, u ∈ F
n\{0}. We write u ∼ v if there exists c ∈ F such

that u = c · v.
We proceed to the main definition of this section.
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Definition 3.3. Let F be a field. A ΣΠΣ circuit, C, over F, with n inputs and
k multiplication gates (i.e., top fan-in is k), is the formal expression

C(x) =

k∑
i=1

ci

di∏
j=1

Lij(x),

where for each i ∈ [k], j ∈ [di], Lij is a nonconstant linear function,

Lij(x) = L0
ij + L1

ij · x1 + · · · + Ln
ij · xn,

and ci, L
t
ij ∈ F for all i, j, t.

For every i ∈ [k] define Ni to be the ith multiplication gate of C:

Ni(x) �
di∏
j=1

Lij(x).

For each i ∈ [k], di is the degree of Ni. The number k denotes the number of different
multiplication gates and is referred to as the top fan-in of the circuit. The total degree
of C is max{di}, and the size of C is

∑k
i=1 di. We denote with rank(C) the rank

of C:

rank(C) � dim(Span{Lij : i ∈ [k], j ∈ [di]}).

Remark. When dealing with ΣΠΣ circuits, we will always assume that all the
linear functions appearing in the circuit are different from zero.

We are interested in ΣΠΣ circuits that compute the zero polynomial in F[x1, . . . , xn].
If C is such a circuit, we write C ≡ 0. When dealing with circuits of this kind, it is
sufficient to consider circuits of limited structure. This notion is made precise by the
following definition and the lemma that follows.

Definition 3.4. Let k, d > 0 be integers. A ΣΠΣ circuit C is called a ΣΠΣ(k, d)
circuit if the following three conditions hold:

• the top fan-in of C is k;
• d1 = d2 = · · · = dk = d; and
• for every i ∈ [k] and j ∈ [d], Lij is a homogeneous linear form, that is,
Lij(x) = L1

ij · x1 + · · ·+Ln
ij · xn. (The free coefficient in each linear function

is zero.)
When dealing with ΣΠΣ(k, d) circuits we will treat the linear functions Lij also

as vectors in F
n, that is, Lij = (L1

ij , . . . , L
n
ij).

Lemma 3.5. There exists a polynomial time algorithm such that, given as input
a ΣΠΣ circuit C, with top fan-in k and total degree d > 0, it outputs a ΣΠΣ(k, d)
circuit C′ such that C ≡ 0 iff C′ ≡ 0. The circuit C′ is called the corresponding
ΣΠΣ(k, d) circuit of C.

Proof. We introduce a new variable y and define C′ to be a circuit with input
variables x1, . . . , xn, y. Let

Lij(x) = L0
ij +

n∑
t=1

Lt
ij · xt

be a linear function appearing in C. Define

L′
ij(x, y) = L0

ij · y +

n∑
t=1

Lt
ij · xt,
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and define C′ to be

C′(x, y) =

k∑
i=1

ci y
d−di

di∏
j=1

L′
ij(x, y).

Clearly, C′ is a ΣΠΣ(k, d) circuit and can be computed from C in time polynomial
in the size of C. Note that if we write

C(x) =

d∑
i=0

Pi(x),

where Pi(x) denotes the homogeneous part of degree i of C(x), then

C′(x, y) =

d∑
i=0

Pi(x)yd−i.

Therefore C ≡ 0 iff C′ ≡ 0.
Lemma 3.5 shows that to achieve our final goal, which is to derive PIT algorithms

for ΣΠΣ circuits, it is sufficient to consider ΣΠΣ(k, d) circuits. For the rest of the
paper we will deal only with ΣΠΣ(k, d) circuits, and we shall sometimes refer to them
simply as ΣΠΣ circuits, omitting the suffix (k, d) where it is not needed.

3.2. Identically zero ΣΠΣ circuits.

Simple circuits. It might be the case that there exists a linear function, L, that
appears (up to a constant) in all multiplication gates of C. In this case, we can divide
each multiplication gate by L and get a simpler circuit C′, whose degree is smaller
than that of C by one. Clearly C ≡ 0 iff C′ ≡ 0. The next two definitions deal with
this case in a more general way.

Definition 3.6. Let C be a ΣΠΣ circuit, and let N1, . . . , Nk be its multiplication
gates. Define4

gcd(C) � g.c.d.(N1(x), . . . , Nk(x)).

Since each multiplication gate is a product of linear forms, Ni(x) =
∏di

j=1 Lij(x), we
get that gcd(C) is the product of all the linear forms that appear in all the multiplication
gates (up to multiplication by constants). Note also that gcd(C) can be easily computed
from C.

It is clear that C ≡ 0 iff C
gcd(C) ≡ 0. This fact motivates the following definition.

Definition 3.7. A ΣΠΣ circuit C is called simple if gcd(C) = 1. Let us also
define sim(C) to be the simple circuit obtained from C by dividing each multiplication
gate by gcd(C). It is clear that sim(C) is always simple and that

C(x) = sim(C)(x) · gcd(C)(x).

Example 3.8. Let

C(x) = (x1 + 2x2 + x3 + 1)(2x1 + 4x2 + 5x3 + 2)(2x1 + 4x2 + 2x3)

+ (x1 + 2x2 + x3 + 1)(6x1 + 4x2 + 5x3)(1x1 + 1x2 + 2x3 + 4)

+ (2x1 + 4x2 + 2x3 + 2)(4x2 + 1x3)(7x1 + 4x2 + 2x3).

4g.c.d. stands for greatest common divisor.
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Then

gcd(C) = x1 + 2x2 + x3 + 1,

and

sim(C)(x) = (2x1 + 4x2 + 5x3 + 2)(2x1 + 4x2 + 2x3)

+ (6x1 + 4x2 + 5x3)(1x1 + 1x2 + 2x3 + 4)

+ 2 · (4x2 + 1x3)(7x1 + 4x2 + 2x3).

Minimal circuits. Suppose we have two ΣΠΣ circuits C1 and C2, both of them
equal to zero. Let k1, k2 denote the top fan-in of C1 and of C2, respectively. We
can add C1 to C2 to create a new circuit C = C1 + C2, with top fan-in k1 + k2, that
will also be equal to zero. This new circuit C, however, can be broken down into two
smaller subcircuits that are zero. In the following we will be interested in circuits that
cannot be broken down into smaller subcircuits that are equal to zero. The next two
definitions deal with circuits of this type.

Definition 3.9. Let C be a ΣΠΣ circuit, and let ∅ �= T ⊆ [k]. Then CT is
defined to be the subcircuit of C composed of the multiplication gates whose indices
appear in T :

CT (x) �
∑
i∈T

ci

di∏
j=1

Lij(x) =
∑
i∈T

ciNi(x).

Definition 3.10. Let C ≡ 0 be a ΣΠΣ circuit. We say that C is minimal if for
every nonempty subset T ⊂ [k], apart from [k] itself, we have CT �≡ 0.

The following easy claim shows that most properties of a ΣΠΣ circuit C remain
when we move to the corresponding ΣΠΣ(k, d) circuit. The proof is immediate from
the proof of Lemma 3.5.

Claim 3.11. Let C be a ΣΠΣ circuit, and let C′ be the corresponding ΣΠΣ(k, d)
circuit (as defined in Lemma 3.5). Then we have the following:

• rank(C) ≤ rank(C′) ≤ rank(C) + 1.
• C is simple iff C′ is simple.
• C is minimal iff C′ is minimal.

Taking a linear transformation. We start with a simple operation of setting one
of the variables to zero. This operation can be looked at as projecting all the linear
functions in the circuit on a subspace of codimension 1.

Definition 3.12. Let C be a ΣΠΣ circuit, and let t ∈ [n]. Define C|xt=0 to be
the circuit obtained from C by setting the variable xt to zero. (This is the same as
changing the tth coordinate in each linear form Lij to zero.) The polynomial computed
by C|xt=0 is therefore

(C|xt=0)(x) = C(x1, . . . , xt−1, 0, xt+1, . . . , xn).

We can generalize the operation just defined by applying a general linear trans-
formation on the linear functions of the circuit.

Definition 3.13. Let

C(x) =

k∑
i=1

ci

d∏
j=1

Lij(x)
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be a ΣΠΣ(k, d) circuit on n variables, and let π : F
n → F

n be a linear transforma-
tion. Define π(C) to be the circuit obtained from C by applying π on all linear forms
appearing in the circuit.5 That is,

π(C)(x) =

k∑
i=1

ci

d∏
j=1

π(Lij)(x).

The following claim is easy to verify.
Claim 3.14. Let C be a ΣΠΣ(k, d) circuit, and let π : F

n → F
n be an invertible

linear transformation. Then
• C ≡ 0 iff π(C) ≡ 0,
• C is simple iff π(C) is simple,
• C is minimal iff π(C) is minimal, and
• rank(C) = rank(π(C)).

4. ΣΠΣ circuits and LDCs. In this section we prove Theorem 1.3, which is
the main result of the paper. This theorem shows the relation between ΣΠΣ circuits
and linear LDCs. It is more convenient to us to prove the theorem for ΣΠΣ(k, d)
circuits instead of general ΣΠΣ circuits. From Claim 3.11, we know that moving from
C to its corresponding ΣΠΣ(k, d) circuit does not affect any of the relevant properties
of C, so the following theorem is equivalent to Theorem 1.3.

Theorem 4.1. Let k ≥ 3, d ≥ 2, and let C ≡ 0 be a simple and minimal
ΣΠΣ(k, d) circuit, on n inputs, over a field F. Then, there exists a linear (2, 1

12 ,
1
4 )-

LDC E : F
n1 → F

n2 , with

rank(C)

P (k) log(d)k−3
≤ n1 and n2 ≤ k · d, where P (k) = 2O(k2).

We prove Theorem 4.1 by induction on k. We devote section 4.1 to the base case
of k = 3 and give the proof of the inductive step in section 4.2.

Before moving on to the proof of Theorem 4.1 we should explain why we are
dealing only with circuits whose top fan-in is at least 3. The reason for this is that
the structure of a zero ΣΠΣ(k, d) circuit with k = 1, 2 is trivial. If C has only one
multiplication gate (k = 1), then it is zero iff one of the linear functions appearing in
it is the zero function. The case of k = 2 is equally trivial, as seen by the next claim.

Claim 4.2. Let C = c1N1(x) + c2N2(x) be a ΣΠΣ(2, d) circuit. Suppose C ≡ 0.
Then, the linear functions, appearing in the two multiplication gates N1 and N2, are
the same, up to an ordering and multiplication by constants.

Proof. Since C ≡ 0, we have that c1N1(x) ≡ −c2N2(x). Each multiplication
gate Ni is a product of linear functions. Since every polynomial can be written, in a
unique way, as a product of irreducible polynomials, and since every linear function
is irreducible, we have that the linear functions in the two gates must be the same
(up to an ordering and multiplication by constants).

4.1. Proof of Theorem 4.1 for k = 3. Let r = rank(C). Then there exist
r linearly independent functions L1, . . . , Lr in C. Using Claim 3.14, we can assume
w.l.o.g. that for every t ∈ [r], Lt(x) = xt (or in other words, Lt = et). Consider
the circuit C|xt=0 for some t ∈ [r]. Clearly C|xt=0 ≡ 0. From the fact that the
function Lt = et appears in one of the multiplication gates, we know that this gate

5Remember that we identify linear forms with vectors in Fn.
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will become zero in C|xt=0. The following claim assures us that neither of the other
two multiplication gates will become zero in C|xt=0.

Claim 4.3. Let L and L′ be two linear functions appearing in two different
multiplication gates of C. Then L �∼ L′.

Proof. Assume for a contradiction that L divides both N1 and N2. As c3N3(x) =
−c1N1(x)− c2N2(x) we get that N3(x) is also divisible by L. But C is simple, so this
is a contradiction.

How can a circuit with two nonzero multiplication gates be zero? From Claim 4.2,
this is possible only if the two gates contain the same linear functions, up to an
ordering and multiplication by constants.

We thus get that every variable xt, t ∈ [r], induces a matching on the linear
functions of the circuit. This matching contains d pairs of linear functions such that
for every pair (L,L′) in the matching, we have that L and L′ belong to two different
multiplication gates and that L|xt=0 ∼ L′|xt=0. Denote with Mt the matching induced
by xt. The next claim gives us more information about the pairs appearing in those
matchings.

Claim 4.4. Let t ∈ [n], and let L,L′ ∈ F
n such that L �∼ L′, and L|xt=0 ∼ L′

xt=0.
Then

et ∈ Span{L,L′}.
Proof. Let L = (a1, . . . , an), L′ = (b1, . . . , bn). Since L|xt=0 ∼ L′|xt=0, we know

that there exists a constant c ∈ F such that for all j �= t we have aj = c · bj . The fact
that L �∼ L′ implies that at �= c · bt. It follows that et ∼ L − c · L′. In particular we
get that et ∈ Span{L,L′}.

From Claim 4.4 we see that every pair (L,L′) ∈ Mt spans the vector et. We
also have that all the matchings {Mt}t∈r are contained in a set of 3d linear functions
and that each matching contains d pairs. We can now construct a linear LDC in the
following way. For each i ∈ [3], j ∈ [d], let lij ∈ F

r be the projection of Lij on the
first r coordinates. Define E : F

r → F
3d by

Eij(x) = lij(x).

To show that E is a (2, 1
12 ,

1
4 )-LDC, we need to show a decoding algorithm for it.

For each t ∈ [r] we know that there are d disjoint pairs of code positions that span
et. (Note that taking the projection on the first r coordinates does not affect this
property.) To decode xt we simply pick a random pair, uniformly, among these d
pairs, and compute the linear combination giving et. Suppose we picked lij(x) and
li′j′(x). We know that there exist constants a, b ∈ F such that

a · lij + b · li′j′ = et.

Therefore

a · Ei,j(x) + b · Ei′,j′(x) = a · lij(x) + b · li′j′(x) = et(x) = xt.

If our codeword has at most 1
12 (3d) = d

4 corrupted positions, then at least 3
4 of

the d pairs are uncorrupted, and our algorithm will succeed with probability greater
than 3

4 .
In the notation of the theorem, we have n1 = r and n2 = 3d = kd. Let P (3) = 1;

then

n1 = r ≥ r

P (k) log(d)k−3
,

and the theorem follows for k = 3.
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4.2. Proof of Theorem 4.1 for k ≥ 4. The proof is by induction on k. The
idea behind the proof is the following. Assume that x1 appears as a linear function
in the circuit. A natural thing to do is to consider C|x1=0. This circuit contains fewer
multiplication gates, and so we would like to find an LDC in it by induction. A possible
problem is that the rank of every minimal subcircuit is low. We can overcome this
problem by showing that there are many variables x1, . . . , xm (m ≥ r/2k) such that
there exists I ⊂ [k] for which CI �≡ 0, but for every t ∈ [m], (CI)|xt=0 is identically zero
and minimal. In particular we show that this implies that the rank of CI is at least
m. We would like to construct a code from CI , so we consider, say, (CI)|x1=0. This
circuit is identically zero and minimal, but it is not necessarily simple. Therefore we
take sim((CI)|xt=0). However, it might be the case that the rank of this circuit is very
small, i.e., that we lost a lot of rank when we removed the g.c.d. We overcome this
difficulty by proving that there are relatively few (≈ log d) variables, say, x1, . . . , xlog d,
such that the span of the linear functions in sim((CI)|xt=0)t=1,...,log d contains almost
all the functions of CI . In particular, for some t, the rank of sim((CI)|xt=0) is relatively
high, so we can apply the induction hypothesis on this circuit. Proving the existence
of such t is the main technical difficulty of the proof (Claim 4.8). We now give the
formal proof.

Let k ≥ 4, and assume the correctness of Theorem 4.1 for all 3 ≤ k′ < k. Let

C(x) =
k∑

i=1

ci

d∏
j=1

Lij(x)

be a ΣΠΣ(k, d) circuit satisfying the conditions of the theorem. As in the proof for
k = 3, let r = rank(C), and w.l.o.g. assume that the circuit contains the first r unit
vectors e1, . . . , er. We can also assume that

r ≥ P (k) log(d)k−3,(4)

for otherwise the theorem is trivially true, since we can always construct a two-query
LDC whose message size is 1, satisfying the requirements of the theorem.

Claim 4.5. For every t ∈ [r] there exists a set It ⊂ [k] such that

1. 2 ≤ |It| ≤ k − 1 and
2. (C|xt=0)It is identically zero and minimal.

Proof. Let t ∈ [r]. Clearly C|xt=0 ≡ 0. Denote with k′ the number of multiplica-
tion gates in C that become zero when xt = 0. (These are exactly those multiplication
gates that contain a linear function parallel to et.) Since we assumed that C contains
et, we know that k′ ≥ 1. It is also easy to verify that k′ ≤ k − 2. (If k′ = k, then
C is not simple, and if k′ = k − 1, then C is not divisible by xt—as in Claim 4.3.)
Therefore, the circuit C|xt=0 is identically zero and contains at least two (and at most
k − 1) nonzero multiplication gates. Hence, we can decompose C|xt=0 into minimal
subcircuits, each of top fan-in at least two and at most k− 1. Take It to be the index
set of any one of these minimal subcircuits.

From Claim 4.5 we can conclude that there are m ≥ r
2k variables (w.l.o.g.

x1, . . . , xm) that have the same set It. Let I = I1 = · · · = Im, and define

Ĉ = sim(CI).

The next claim summarizes several facts we know about the circuit Ĉ.
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Claim 4.6.

1. Ĉ is a ΣΠΣ(k̂, d̂) circuit with 2 ≤ k̂ ≤ k − 1, 0 < d̂ ≤ d.
2. Ĉ is simple.
3. Ĉ �≡ 0.
4. For all t ∈ [m], Ĉ|xt=0 ≡ 0 and is minimal.
5. For all t ∈ [m], et does not appear in Ĉ.

Proof. Parts 1 and 2 follow from the definition of Ĉ (the fact that 0 < d̂ follows
from 3 and 4). Part 3 is true because we assumed that C is minimal. Part 4 follows
from the fact that Ĉ = sim(CI) and that (CI)|xt=0 ≡ 0 is minimal for all t ∈ [m].
Finally, 5 is a direct consequence of 4.

Let r̂ � rank(Ĉ). The next claim shows that the rank of our chosen subcircuit Ĉ
is not considerably smaller than the rank of C.

Claim 4.7. r̂ ≥ m (≥ r
2k ).

Proof. To prove the claim, we will show that the linear functions of Ĉ span the unit
vectors e1, . . . , em. Suppose, on the contrary, that there exists an index t ∈ [m] for
which et is not spanned by the linear functions of Ĉ. Assume w.l.o.g. that t = 1. There
exists an invertible linear transformation π : F

n → F
n that satisfies the following two

constraints:
• π(e1) = e1.
• The variable x1 does not appear in the circuit π(Ĉ). (Equivalently, all the

linear functions in π(Ĉ) are orthogonal to e1.)

From Claim 4.6 we know that Ĉ �≡ 0 and that Ĉ|x1=0 ≡ 0. Hence Ĉ(x) can be
written as

Ĉ(x) ≡ x1 · g(x),

where g(x) is a nonzero polynomial. We can look at the transformation π as a linear
change of variables and denote with π(g) the polynomial obtained from g(x) after this
change. Thus,

π(Ĉ)(x) ≡ π(x1) · π(g)(x) ≡ x1 · π(g)(x).(5)

Now, since g(x) �≡ 0, and since π is invertible, Claim 3.14 implies6 that π(g)(x) �≡ 0.
From this and from (5) we see that π(Ĉ)(x) is a nonzero polynomial divisible by x1.
This is a contradiction, since we assumed that x1 does not appear in π(Ĉ).

We would like to use the inductive hypothesis on a well-chosen circuit among
Ĉ|x1=0, . . . , Ĉ|xm=0. However, there are two obstacles in the way. The first is that the
top fan-in of Ĉ might be equal to 2 (the theorem holds only for k ≥ 3). This case is
rather simple, since we can use the analysis given in section 4.1 to construct an LDC
satisfying the conditions of the theorem. (A detailed analysis of this special case is

deferred to the end of this section.) From now on we assume that k̂ ≥ 3. The second
obstacle is that these circuits are not necessarily simple. We overcome this obstacle
by using the inductive hypothesis on sim(Ĉ|xt=0) instead. The next claim, whose
proof is deferred to section 4.3, tells us which of these circuits we should pick.

For each t ∈ [m], let rt � rank(sim(Ĉ|xt=0)).
Claim 4.8. There exists t ∈ [m] such that

rt ≥
r̂

2k+1 log(d)
.

6It is easy to see that this part of Claim 3.14 holds also for general polynomials and not just
ΣΠΣ circuits.
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Claim 4.8 assures us that one of the rt is large (we assume w.l.o.g. that t = 1).
We get that

r1 ≥ r̂

2k+1 log(d)
.(6)

Our next step is to apply the induction hypothesis to the circuit sim(Ĉ|x1=0). How-
ever, to use Theorem 4.1, we require that the degree of the given circuit be at least
two. The next claim shows that the degree of sim(Ĉ|x1=0) is indeed at least two.

Claim 4.9. Let d1 denote the degree of sim(Ĉ|x1=0). Then d1 ≥ 2.

Proof. If d1 < 2, then r1 < k. (The number of linear functions is at most k̂ < k.)
By (6) we get that

r̂ ≤ k2k+1 log(d).

Now, using the fact that r̂ ≥ m ≥ r
2k (Claim 4.7), we conclude that

r ≤ 2kr̂ ≤ k22k+1 log(d),

contradicting (4), for an appropriate choice of P (k) = 2O(k2).
Therefore sim(Ĉ|x1=0) satisfies all the conditions of Theorem 4.1. The induction

hypothesis, applied on sim(Ĉ|x1=0), asserts that there exists a (2, 1
12 ,

1
4 )-LDC, E :

F
n1 → F

n2 , with

n1 ≥ r1

P (k̂) log(d1)k̂−3
and n2 ≤ k̂ · d1 (≤ k · d).

Using (6) and the facts that k̂ ≤ k − 1 and r̂ ≥ m ≥ r
2k , we derive the following

inequalities:

n1 ≥ r1

P (k̂) log(d1)k̂−3

≥ r1
P (k − 1) log(d)k−4

≥ r̂

2k+1P (k − 1) log(d)k−3

≥ r

22k+1P (k − 1) log(d)k−3

≥ r

P (k) log(d)k−3

(for an appropriate choice of P (k) = 2O(k2)). This completes the proof of the inductive
step and of Theorem 4.1.

4.2.1. A special case: k̂ = 2. In this subsection we analyze a special case
of the proof of Theorem 4.1. This case is when k̂ (the top fan-in of the circuit Ĉ,
whose properties are detailed in Claim 4.6) is equal to 2. The analysis of this case

differs from the analysis of the general (k̂ ≥ 3) case because we cannot apply the
inductive hypothesis on Ĉ (or more precisely, on the circuits C|xt=0). We now show
how to complete the proof of the theorem (that is, to construct an LDC satisfying the
requirements of the thorem) in this case.
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Denote by N̂1 and N̂2 the two multiplication gates of Ĉ. We can write

Ĉ(x) ≡ c1N̂1(x) + c2N̂2(x).

Now, since Ĉ is simple and nonzero, we have

gcd(Ĉ) ≡ g.c.d.(N̂1(x), N̂2(x)) ≡ 1.

Next, let t ∈ [m], and consider what happens to Ĉ after we set xt to zero. We know
that Ĉ|xt=0 ≡ 0, and so

c1N̂1|xt=0 ≡ −c2N̂2|xt=0.

Now, since N̂1|xt=0 and N̂2|xt=0 are both nonzero (by Claim 4.6, e1, . . . , em do not
appear in Ĉ), we can deduce, as we did in section 4.1, that there exist m matchings

Mt, t ∈ [m], of size |Mt| = d̂, of linear functions appearing in Ĉ, such that for every
pair (L,L′) ∈ Mt, et ∈ Span{L,L′}. Projecting each linear function in Ĉ on the first
m coordinates, and using the construction from section 4.1, we see that there exists

a (2, 1
12 ,

1
4 )-LDC,7 E : F

m → F
2d̂. In the notation of the theorem, we have

n2 = 2d̂ ≤ kd

and

n1 = m ≥ r

2k
≥ r

P (k) log(d)k−3
,

as required by the theorem.

4.3. Proof of Claim 4.8. In this section we prove Claim 4.8. The following
notation is required for the proof.

4.3.1. Notation. Let N̂1, . . . , N̂k̂ denote the multiplication gates of Ĉ. We will

treat Ĉ, N̂1, . . . , N̂k̂ also as sets of indices. We shall abuse notation and write

Ĉ = {(i, j) | i ∈ [k̂], j ∈ [d̂]},

N̂i = {(i, j) | j ∈ [d̂]}.

For a set H ⊂ Ĉ, we denote with rank(H) the dimension of the vector space spanned
by the linear functions whose indices appear in H. That is,

rank(H) � dim (Span{Lij : (i, j) ∈ H}) .

For the rest of the proof we will treat subsets of Ĉ interchangeably as sets of indices
and as (multi)sets of linear functions.

We would next like to define, for each t ∈ [m], certain subsets of Ĉ that capture
the structure of Ĉ|xt=0. Fix some t ∈ [m], and consider what happens to Ĉ when we
set xt to be zero. The resulting circuit Ĉ|xt=0 is generally not simple and can therefore
be partitioned (see Definition 3.7) into two disjoint sets: a set containing the indices
of the linear functions appearing in gcd(Ĉ|xt=0), and a set containing the indices of the

7We could have taken δ to be 1
8

instead of 1
12

, because the number of multiplication gates is two
and not three.
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remaining linear functions (these are the linear functions appearing in sim(Ĉ|xt=0)).
To be more precise, denote by δt the degree of gcd(Ĉ|xt=0). In every multiplication
gate N̂i, there are δt linear functions such that the restriction of their product to the
linear space defined by the equation xt = 0 is equal to gcd(Ĉ|xt=0). In other words,
the product of these δt linear functions is equal to gcd(Ĉ) under the restriction xt = 0.
Denote the set of indices of these functions by Gi

t, and let Ri
t � N̂i\Gi

t be the set
of indices of the remaining linear functions of this multiplication gate. We thus have
(for some choice of constants {ci})

sim(Ĉ|xt=0) =

k̂∑
i=1

ci
∏

(i,j)∈Ri
t

(Lij |xt=0)

and

∀i ∈ [k̂], gcd(Ĉ|xt=0) =
∏

(i,j)∈Gi
t

(Lij |xt=0).

We now define, for each t ∈ [m], the sets Rt �
⋃k̂

i=1 R
i
t and Gt �

⋃k̂
i=1 G

i
t. The

following claim summarizes some facts that we will later need.
Claim 4.10. For every t ∈ [m],
1. Rt ∩Gt = ∅.
2. Ĉ = Rt ∪Gt.
3. |Gi

t| = |Gi′

t | for all i, i′.

4. |Gt| = k̂ · deg(gcd(Ĉ|xt=0)) = k̂ · δt.
5. Rt contains the indices of the linear functions appearing in sim(Ĉ|xt=0).
6. rt = rank(sim(Ĉ|xt=0)) = rank(Rt).

Proof. Items 1 and 2 follow directly from the definition of Rt and Gt as Ri
t and

Gi
t give a partition of the indices in N̂i. Items 3 and 4 hold as the linear factors

of gcd(Ĉ|xt=0) belong to all the multiplication gates. By definition, Ri
t is the set of

linear functions in N̂i that belong to sim(Ĉ|xt=0), which implies item 5. Finally, by
definition, rt = rank(sim(Ĉ|xt=0)) and by item 5 we have that Rt is the set of linear
functions appearing in sim(Ĉ|xt=0).

4.3.2. The proof. We finally give the proof of Claim 4.8. For convenience we
restate it here.

Claim 4.8 (restated). There exists t ∈ [m] such that

rt ≥
r̂

2k+1 log(d)
.

We start by assuming that the claim is false. In other words, we assume that for
every t ∈ [m]

rt <
r̂

2k+1 log(d)
.(7)

Having defined, for each t ∈ [m], the sets Rt and Gt, we would now like to
show that there exist a small (∼ log(d)) number of sets Rt such that their union
covers almost all of Ĉ. As rank(Ĉ) is relatively high, and for each t, rt = rank(Rt) is
(assumed to be) relatively small, we will get a contradiction. We construct the cover
step by step, and in each step we will find an index t ∈ [m] such that the set Rt covers
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at least half the linear functions not yet covered. This idea is made precise by the
following claim.

Claim 4.11. For every integer 1 ≤ q ≤ log(d̂) there exist q indices t1, . . . , tq ∈ [m]
for which ∣∣∣∣∣

q⋃
s=1

Rts

∣∣∣∣∣ ≥ k̂d̂(1 − 2−q).

Proof. The proof proceeds by induction on q.
Base case q = 1. To prove the claim for q = 1, it is sufficient to show that there

exists t ∈ [m] for which |Rt| ≥ 1
2 k̂d̂. Suppose, on the contrary, that for all t ∈ [m],

|Rt| < 1
2 k̂d̂. Claim 4.10 implies that for all t ∈ [m], |Gt| ≥ 1

2 k̂d̂. This in turn implies
(by item 3 of Claim 4.10) that for all t ∈ [m]

|G1
t | ≥

1

2
d̂.(8)

The next lemma shows that, under the conditions just described, the linear func-
tions of Ĉ “contain” a two-query LDC. We will then apply our results on LDCs from
section 2 (namely, Corollary 2.9) to derive a contradiction. Lemma 4.12 is more gen-
eral than what is required at this point; however, we will need it in its full generality
when we handle q > 1.

Lemma 4.12. Let C be a simple ΣΠΣ(k, d) circuit with n inputs. Let t ∈ [n],
it ∈ [k]. Denote δt = deg(gcd(C|xt=0)). Suppose that the linear functions in Nit are
ordered such that

gcd(C|xt=0) = (Lit1|xt=0)(x) · (Lit2|xt=0)(x) · · · · · (Litδt |xt=0)(x).

Then, there exists a matching, M = {P1, . . . ,Pg} ⊆ C × C, consisting of δt disjoint
pairs of linear functions, such that for each j ∈ [δt],

• the two linear functions in Pj span et, and
• the first element of Pj is Litj.

Proof. As the linear factors of gcd(C|xt=0) belong to all the multiplication gates
(of C|xt=0) we can reorder the linear functions in each gate Ni, i �= it, such that

∀j ∈ [δt] : L1j |xt=0 ∼ L2j |xt=0 ∼ · · · ∼ Litj |xt=0 ∼ · · · ∼ Lkj |xt=0.

As C is simple, it cannot be the case that, for some j, Litj divides all the multi-
plication gates. Therefore, for every j ∈ [δt] there exists an index α(j) ∈ [k] such that
Litj �∼ Lα(j)j . From Claim 4.4 it follows that

∀j ∈ [δt] : et ∈ Span{Litj , Lα(j)j}.

For each j ∈ [δt] let Pj = (Litj , Lα(j)j). Set M = {P1, . . . ,Pδt}. It is clear that each
Pj satisfies the two conditions of the lemma and that the Pj are disjoint.

We continue with the proof of Claim 4.11. From (8) and Lemma 4.12 we conclude

that for each t ∈ [m] there exists a matching Mt ⊂ C×C, containing at least 1
2 d̂ disjoint

pairs of linear functions, such that every pair in Mt spans et. Corollary 2.9 implies
that

1

2
d̂m ≤

m∑
t=1

|Mt| ≤ k̂d̂ log(k̂d̂) + k̂d̂,
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which gives

m ≤ 2k̂ log(k̂d̂) + 2k̂ < log(d)k−3P (k)2−k

(for an appropriate choice of P (k) = 2O(k2)). Now, since m ≥ r
2k , we have that

r < log(d)k−3P (k),

contradicting (4). Therefore our initial assumption was wrong and we conclude that

there exists t1 with |Rt1 | ≥ 1
2 k̂d̂. This completes the proof of Claim 4.11 for the case

of q = 1.
Induction step. Let us now assume that we have found q−1 indices t1, . . . , tq−1 ∈

[m] for which ∣∣∣∣∣
q−1⋃
s=1

Rts

∣∣∣∣∣ ≥ k̂d̂(1 − 2−(q−1)).

Let

R �
q−1⋃
s=1

Rts ,(9)

S � Ĉ\R.(10)

Then, by our assumption,

|S| ≤ k̂d̂2−(q−1).(11)

The proof goes along the same lines as the proof for q = 1: we show that there
exists an index t ∈ [m] such that Rt covers at least half of S. We will argue that if
such an index does not exist, then a contradiction to (4) can be derived. Our main
tools in doing so are Lemma 4.12 and Corollary 2.9.

Claim 4.13. There exists t ∈ [m] such that for all i ∈ [k̂],

|Gi
t ∩ S| < d̂2−q.

Roughly, the lemma states that there exists some variable, xt, such that most of
the linear functions in S do not belong to gcd(Ĉ|xt=0). In particular it implies that
Rt covers a large fraction of S, as needed.

Proof. Assume, on the contrary, that for every t ∈ [m] there exists it ∈ [k̂] for
which

|Git
t ∩ S| ≥ d̂2−q.

From Lemma 4.12 we get that, for every t ∈ [m], there exists a matching Mt,

consisting of d̂2−q disjoint pairs of linear functions, such that each pair spans et, and
that the first element in each pair is in Git

t ∩ S (from the lemma we actually get that
Mt contains deg(gcd(Ĉ|xt=0)) number of pairs, but we are interested only in the pairs
whose first element is in Git

t ∩ S).
We would now like to apply Corollary 2.9 on the matchings {Mt}t∈[m]; however,

for our needs, we would also like that all the linear functions in all the matchings
will belong to S. We achieve this by projecting all functions in R to zero. As the
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dimension of the linear functions in R is small (by our assumption that each rts is
small) we can find a linear transformation that sends the linear functions in R to zero
but leaves many of the linear functions {xt} linearly independent. This is formalized
in the next claim.

Claim 4.14. There exists a subset A ⊂ [m] of size |A| ≥ m
2 and a linear trans-

formation π : F
n → F

n such that
• ker(π) = Span(R),
• for all t ∈ A, π(et) = et.

Proof. Calculating, we get that

rank(R) = rank

(
q−1⋃
s=1

Rts

)
≤

q−1∑
s=1

rank(Rts) =

q−1∑
s=1

rts

≤ (q − 1)
r̂

log(d)2k+1
≤ r

2k+1
≤ m

2
,(12)

where the second inequality follows from (7), the third inequality follows from the fact

that q ≤ log d̂ ≤ log d and r̂ ≤ r, and the last inequality follows from the fact that
r
2k ≤ m. Let m′ = m−rank(R). From (12) we get that m′ ≥ m/2. In particular, there
exists a subset A ⊂ [m], of size |A| = m′, such that Span({xt | t ∈ A}) ∩ Span(R) =
{0}. Hence, there exists a linear transformation π : F

n → F
n such that

• ker(π) = Span(R),
• for all t ∈ A, π(et) = et.

This completes the proof of Claim 4.14.
Let A be the set obtained from the above claim and π the corresponding linear

transformation. We assume, w.l.o.g., that A = [m′]. From here on, we consider only
variables xt such that t ∈ [m′] (i.e., t ∈ A). Fix such t ∈ [m′], and let M ′

t = π(Mt).
In other words, M ′

t = {(π(L), π(L′))}(L,L′)∈Mt
. Clearly,

|M ′
t | = |Mt| ≥ d̂2−q.(13)

Note that the pairs in M ′
t still span et, as for any pair (L.L′) ∈ Mt, with et =

αL + βL′, we have that

et = π(et) = π(αL + βL′) = απ(L) + βπ(L′).

Since all the linear functions appearing in R were projected to zero, we know that
all the pairs in each M ′

t are contained in the multiset8 S′ � {π(L) : L ∈ S}.
After this long preparation we apply Corollary 2.9 to the matchings M ′

t and derive
the following inequality:

m′∑
t=1

|M ′
t | ≤ |S′| log(|S′|) + |S′|.(14)

As |S′| = |S| (remember that S′ is a multiset), we get by (11) that

|S′| ≤ k̂d̂2−(q−1).(15)

8Note that, as in the proof of Lemma 2.5, we can replace each pair in M ′
t that contains the zero

vector with a singleton.
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By (13), (14), and (15), it follows that

m′ · (d̂2−q) ≤
m′∑
t=1

|M ′
t | ≤ |S′| log(|S′|) + |S′|

≤ k̂d̂2−(q−1) log(k̂d̂2−(q−1)) + k̂d̂2−(q−1).

From the fact that k ≥ 4 and m′ ≥ m/2 (and some simple manipulations), we see

that for an appropriate choice of P (k) = 2O(k2)

m < 2−kP (k) log(d)k−3.

As m ≥ r
2k , we get that

r < P (k) log(d)k−3,

contradicting (4). This completes the proof of Claim 4.13.
Let us now proceed with the proof of Claim 4.11. Take tq to be the index described

by Claim 4.13, that is,

∀i ∈ [k̂] : |Gi
tq ∩ S| < d̂2−q.

In particular,

|Gtq ∩ S| < k̂d̂2−q.

Notice that by (9) and (10) and by the fact that Rtq and Gtq give a partition of Ĉ,
we get that the complement of

⋃q
s=1 Rts is exactly Gtq ∩ S. From this we get that

adding Rtq to R gives ∣∣∣∣∣
q⋃

s=1

Rts

∣∣∣∣∣ ≥ k̂d̂(1 − 2−q).

This completes the proof of Claim 4.11.
Having proved Claim 4.11, we are now just steps away from completing the proof

of Claim 4.8. Taking q to be �log(d̂)� in Claim 4.11, we get that there exist indices
t1, . . . , t�log(d̂)� ∈ [m] such that

∣∣∣∣∣∣
�log(d̂)�⋃

s=1

Rts

∣∣∣∣∣∣ ≥ k̂d̂− 2k̂ . . . .

Thus

r̂ − 2k̂ ≤ rank

⎛
⎝�log(d̂)�⋃

s=1

Rts

⎞
⎠ ≤

�log(d̂)�∑
s=1

rts .

The last inequality tells us that there exists some t ∈ [m] for which

rt ≥
r̂ − 2k̂

�log(d̂)�
≥ r̂ − 2k̂

log(d)
.(16)
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In order to finish the proof of Claim 4.8 we prove the following inequality.
Claim 4.15.

r̂ − 2k̂ ≥ r̂

2k+1
.

Proof. Using (4), we get

r̂ ≥ m ≥ 2−kr ≥ 2−kP (k) log(d)k−3.

Therefore we can choose P (k) = 2O(k2) such that

r̂ > 2k̂
2k+1

2k+1 − 1
.

This implies the inequality in the claim.
Combining Claim 4.15 with (16), we conclude that there exists t ∈ [m] for which

rt ≥
r̂

log(d)2k+1
,

which contradicts our initial assumption (7). This completes the proof of Claim 4.8.

5. A structural theorem for zero ΣΠΣ circuits. The main result of this
section is a structural theorem for ΣΠΣ circuits which are identically zero. The proof
is based on the results of section 4. To ease the notation we will prove our results only
for ΣΠΣ(k, d) circuits; however, from Claim 3.11 it will follow that all the results also
hold for ΣΠΣ circuits with k multiplication gates of degree d.

Theorem 5.1 (structural theorem). Let C ≡ 0 be a ΣΠΣ(k, d) circuit. Then,
there exists a partition of [k]: T1, . . . , Ts ⊂ [k] with the following properties:

• C =
∑s

i=1 CTi
=

∑s
i=1 gcd(CTi

) · sim(CTi
).

• For all i ∈ [s], sim(CTi) ≡ 0 and is simple and minimal.

• For all i ∈ [s], rank(sim(CTi
)) ≤ 2O(k2) log(d)k−2.

In other words, the theorem says that every zero ΣΠΣ circuit can be broken down
into zero subcircuits of low rank (ignoring the g.c.d.). This fact will be used in the
next section, in which we devise PIT algorithms for ΣΠΣ circuits.

Before giving the proof of the theorem we prove a lemma that bounds the rank
of a zero, simple, and minimal ΣΠΣ circuit. Note that Theorem 1.4 follows from this
lemma and Claim 3.11.

Lemma 5.2. Let k ≥ 3, d ≥ 2, and let C ≡ 0 be a simple and minimal ΣΠΣ(k, d)
circuit. Then

rank(C) ≤ 2O(k2) log(d)k−2.

Proof. From Theorem 4.1 we know that there exists a linear (2, 1
12 ,

1
4 )-LDC E :

F
n1 → F

n2 with

rank(C)

P (k) log(d)k−3
≤ n1 and n2 ≤ k · d, where P (k) = 2O(k2).

Theorem 1.2 now tells us that

n2 ≥ 2
1
96n1−1.
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Combining the above inequalities, we get the required bound on rank(C).
We now use Lemma 5.2 to prove Theorem 5.1.
Proof of Theorem 5.1. Since C is equal to zero, we can find a partition T1, . . . , Ts ⊂

[k] such that the circuits CT1 , . . . , CTs are all zero and minimal. Thus, the circuits
sim(CT1), . . . , sim(CTs) are all zero, simple, and minimal. By Lemma 5.2 we get that
if |Ti| ≥ 3 and deg(sim(CTi

)) ≥ 2, then

rank(sim(CTi)) ≤ 2O(k2) log(d)k−2.

If |Ti| = 2, then by Claim 4.2 we get that deg(sim(CTi)) = 0 and so its rank is 1. If
deg(sim(CTi)) ≤ 1, then its rank is at most k. Thus, we have covered all the possible
cases, and the lemma follows.

6. PIT algorithms. In this section we use the structural theorem (Theorem
5.1), proved in the previous section, to devise the PIT algorithms of Theorem 1.5.
Again, to simplify the notation, we give algorithms for ΣΠΣ(k, d) circuits, which
work in the same manner also for ΣΠΣ circuits with k multiplication gates of degree
d. We state our results for a general k; however, our algorithms will be most applicable
when k is a constant.9

From Theorem 5.1 we know that every zero ΣΠΣ circuit can be broken down into
zero subcircuits whose ranks are small. The next two lemmas show that checking
whether these low-rank circuits are zero can be done efficiently.

Lemma 6.1. Let C be a ΣΠΣ(k, d) circuit with rank(C) = r. Then, there exists
a polynomial time algorithm, transforming C into a ΣΠΣ(k, d) circuit C′, such that

• C ≡ 0 iff C′ ≡ 0,
• C′ contains only r variables.

Proof. The proof is a direct consequence of Claim 3.14: we apply an invertible
linear transformation on C, taking a set of r linearly independent vectors to e1, . . . , er.
The transformed circuit will contain only the first r variables and will be zero iff C is
zero.

Lemma 6.2. Let C be a ΣΠΣ(k, d) circuit, and let r = rank(C), s = size(C).
Then we can check if C ≡ 0

1. deterministically, in time poly(s) · (r + d)r;
2. probabilistically, in time poly(s+ 1

ε ), using r ·
(
log(d) + log(1

ε )
)

random bits,
with error probability ε.

Proof. Using Lemma 6.1, we can transform C into a circuit C′ with at most r
variables, such that C ≡ 0 iff C′ ≡ 0. Since C′ contains only r variables, the number
of different monomials in C′(x) is bounded by

(
r+d−1
r−1

)
< (r + d)r. We can thus check

if C′ ≡ 0 by computing the coefficients of all the monomials and seeing if they are
all zero. This can be done in time poly(s) · (r + d)r. For the second part of the
corollary, note that we can also check if C′ ≡ 0 probabilistically using the well-known
Schwartz–Zippel algorithm [42, 50].

We are now ready to describe our PIT algorithm for ΣΠΣ(k, d) circuits.
Theorem 6.3. Let C be a ΣΠΣ(k, d) circuit, s = size(C). Then, Algorithm 1 will

check if C ≡ 0. Further, the algorithm will run in time poly(s)·exp
(
2O(k2) log(d)k−1

)
.

Proof. First, note that if C is nonzero, then the algorithm will never accept. (The
algorithm accepts only when a partition of C into zero subcircuits is found.) Assume
that C is zero. Then, by Theorem 5.1, there exists a partition, T1, . . . , Ts ⊂ [k], of

9Our methods give subexponential time (2o(n)) algorithms also if k = o(
√

logn).
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Algorithm 1. Deterministic algorithm.

input: A ΣΠΣ(k, d) circuit C.

(1) For every subset T ⊂ [k] do the following:
− (1.1) Compute rT = rank(sim(CT )).

− (1.2) If rT ≤ 2O(k2) log(d)k−2, then:
− check if sim(CT ) ≡ 0 using part 1 of Lemma 6.2.

(2) If there exists a partition of [k], such that for every set T ⊂ [k] in the
partition sim(CT ) ≡ 0, then accept. Otherwise reject.

[k] such that the circuits sim(CT1), . . . , sim(CTs) are all zero and that for all i ∈ [s]

the rank of sim(CTi) is bounded by 2O(k2) log(d)k−2. Therefore, for every CTi
we will

check whether sim(CTi) ≡ 0 in step (1.2) of the algorithm. Since we go over all subsets
of [k], we are bound to find the above partition and accept.

As for the running time of the algorithm, notice that we apply the algorithm from

Lemma 6.2 only on circuits whose rank is smaller than 2O(k2) log(d)k−2. Therefore,
by Lemma 6.2, the time spent in each invocation of step (1.2) is at most

poly(s) · exp
(
2O(k2) log(d)k−1

)
.

Step (1.2) is run at most 2k times, and so the total running time is also

poly(s) · exp
(
2O(k2) log(d)k−1

)
.

(The running times of all the other steps of the algorithm are “swallowed up” by the
running time of step (1.2).)

We can modify Algorithm 1 so that it will use a probabilistic check in step (1.2).
This will result in a probabilistic PIT algorithm for ΣΠΣ circuits, which uses fewer
random bits than previous algorithms.

Algorithm 2. Probabilistic algorithm.

input: A ΣΠΣ(k, d) circuit C. An error probability ε.

(1) For every subset T ⊂ [k] do the following:
− (1.1) Compute rT = rank(sim(CT )).

− (1.2) If rT ≤ 2O(k2) log(d)k−2, then: check if sim(CT ) ≡ 0 probabilistically,
− using part 2 of Lemma 6.2, with error probability ε2−k.

(2) If there exists a partition of [k], such that for every set T ⊂ [k] in the
partition sim(CT ) ≡ 0, then accept. Otherwise reject.

Theorem 6.4. Let C be a ΣΠΣ(k, d) circuit, s = size(C). Then, Algorithm 2

will check if C ≡ 0. Further, the algorithm will run in time poly
(
s + 2k

ε

)
, will

use 2O(k2) log(d)k−1 log( 1
ε ) random bits, and will make an error with probability less

than ε.
Proof. Using the same reasoning as in the proof of Theorem 6.3, we see that the

algorithm can make an error only if one of the checks in step (1.2) fails. By the union
bound, this happens with probability of at most ε.
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Each check in step (1.2) takes time poly
(
s+ 2k

ε

)
. And so the total running time

is

2k · poly

(
s +

2k

ε

)
= poly

(
s +

2k

ε

)
.

By part 2 of Lemma 6.2, the number of random bits used in step (1.2) is at
most rT ·

(
log(d) + log(1

ε )
)
. Since we run the probabilistic check only when rT ≤

2O(k2) log(d)k−2, it follows that the number of random bits used in each invocation

of step (1.2) is bounded by 2O(k2) log(d)k−1 log( 1
ε ). As we can use the same random

bits in all tests, this is also the total number of random bits needed.
We restate the last two theorems for the case when k is a constant.
Theorem 6.5. Let C be a ΣΠΣ(k, d) circuit, k a constant, s = size(C). Then

we can check if C ≡ 0
1. deterministically, in quasi-polynomial time,
2. probabilistically, in time poly(s+ 1

ε ), using O
(
log(d)k−1 log( 1

ε )
)

random bits,
with error probability ε.

Note that Theorems 6.3, 6.4, and 6.5 imply the first two claims of Theorem 1.5.

6.1. Multilinear circuits. This section deals with a special kind of ΣΠΣ cir-
cuit, described by the following definition.

Definition 6.6. A ΣΠΣ circuit C is multilinear if each of its multiplication
gates computes a multilinear polynomial. (A polynomial is multilinear if the degree of
every variable is at most one.)

Let

C(x) =
k∑

i=1

ci

di∏
j=1

Lij(x)

be a ΣΠΣ circuit. Denote by Vij ⊂ [n] the set of variables appearing in the linear
form Lij . From Definition 6.6 we see that C is multilinear iff for every i ∈ [k], and for
every j1 �= j2, we have

Vij1 ∩ Vij2 = ∅.

This condition implies that for every i ∈ [k] the linear functions {Lij}j∈[di] are linearly
independent. This leads to the following observation.

Observation 6.7. If C is a multilinear ΣΠΣ circuit of degree d, then rank(C) ≥ d.
Combining this observation and Theorem 1.4, we get the following theorem.
Theorem 6.8. Let C ≡ 0 be a multilinear ΣΠΣ circuit with k multiplication

gates (k ≥ 3), which is simple and minimal. Let d = deg(C); then

d ≤ 2O(k2) log(d)k−2.(17)

Corollary 6.9. There exists an integer function D(k) = 2O(k2) such that every
multilinear ΣΠΣ circuit C with k multiplication gates, which is simple and equal to
zero, and of degree d = deg(C) > D(k), is not minimal.

Proof. Fix k, and consider (17). This inequality holds only if d ≤ 2O(k2) = D(k).
Thus, if d > D(k), then the conditions of Theorem 6.8 are not satisfied. In particular,
if C ≡ 0 and is simple, then it is not minimal.
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We can use Corollary 6.9 to improve the algorithm given in section 6, in the case
that the given circuit is multilinear.

Theorem 6.10. Let C be a multilinear ΣΠΣ circuit, of size s, with k multipli-
cation gates. We can check if C ≡ 0 in time poly(s) · exp

(
2O(k2)

)
. Thus, if k is

constant, the algorithm runs in polynomial time.
Proof. The algorithm is the same as Algorithm 1. (It does not matter that our

circuit is not a ΣΠΣ(k, d) circuit.) The only difference is that by Corollary 6.9 we
only have to consider subcircuits CT such that the degree of sim(CT ) is less than

D(|T |) = 2O(k2). The running time is computed in a similar fashion. In step (1) we

go over at most 2O(k2) partitions of [k]. Computing the rank of the subcircuit CT can
be done in polynomial time in s. Finally, by part 1 of Lemma 6.2, step (1.2) requires

time O
(
D(|T |)2O(k2))

= exp
(
2O(k2)

)
.

Theorem 6.10 implies the third claim of Theorem 1.5, thus completing the proof
of the theorem.

7. Conclusions and open problems. Finding efficient deterministic PIT al-
gorithms for general arithmetic circuits is a long-standing open problem. We made
the first step toward an efficient algorithm for PIT for depth 3 circuits by giving PIT
algorithms for depth 3 circuits with bounded top fan-in; however, the general case of
depth 3 circuits is still open. In view of [25] it is natural to look for algorithms for PIT
for restricted models of arithmetic circuits in which lower bounds are known. Raz [39]
proved a quasi-polynomial lower bound for multilinear arithmetic formulas comput-
ing the determinant and the permanent. Thus, giving PIT algorithms for multilinear
formulas is a very interesting, and maybe even a solvable, problem.

The key to our result is the relation we have found between LDCs and depth 3
circuits. Previously, relations between circuits and error correcting codes were known
only for bilinear circuits over finite fields [10, 45]. It should be very interesting to find
new relations between codes and arithmetic circuits. Another interesting question is
whether the relation that we have found is tight. In particular we believe that in
Theorem 1.3 one should be able to replace r/2O(k2) log(d)k−3 with O(r/k). A related
question regards how to improve Theorem 1.4. We believe that for minimal and
simple circuits over fields of characteristic zero the rank should be O(k). We have
found circuits that are minimal and simple, with r = 3k − 2, and we think that it
would be an interesting task to come up with (minimal and simple) circuits that have
larger rank. As mentioned in the introduction, [27] showed that over characteristic p
there are identically zero depth 3 circuits with top fan-in p for odd p (for p = 2 the
top fan-in is 3) whose rank is logp(d).

We conclude this section with a geometrical problem related to depth 3 circuits
with three multiplication gates. The famous Sylvester–Gallai theorem states that
every set of n points in the plane having the property that every line that contains
two points from the set also contains a third point from the set is contained in a line.
Consider the following generalization of the problem (colored version in the projective
plane): instead of one set of points we have three different sets. Each set is of size n.
The points in the sets correspond to vectors from the r-dimensional sphere, and every
two such vectors are linearly independent. The condition on the sets is that every
two-dimensional subspace that contains points from two different sets also contains
a point from the third set.10 What can be said about r in this case? Clearly the

10Alternatively, the points belong to the r-dimensional projective space, and every line that con-
tains points from two different sets also contains a point from the third set.
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r-dimensional sphere can be embedded into the (r+1)-dimensional sphere so we only
consider “irreducible” arrangements in which the vectors corresponding to the points
span the whole space. Using our lower bound on LDCs, we can show that r is at most
O(log n); however, we think that this can be improved. In particular we conjecture
that r is bounded (maybe even r = 2). If our conjecture is true, then it will serve as
evidence that for k = 3 the rank of every simple and minimal depth 3 circuit, which
is identically zero, is bounded.

We now give an example that shows the relation of the problem to identically
zero depth 3 circuits with three multiplication gates. Consider the following equality
xn

1 − xn
2 =

∏n−1
i=0 (x1 − wix2), where w is a primitive nth root of unity. We get that

k−1∑
i=1

n−1∏
j=0

(xi − wjxi+1) +

n−1∏
j=0

(xk − wjx1) = 0.

Notice that this is an identically zero depth 3 circuit with k multiplication gates. For
the special case of k = 3 we get that

n−1∏
j=0

(x1 − wjx2) +

n−1∏
j=0

(x2 − wjx3) +

n−1∏
j=0

(x3 − wjx1) = 0.

Each multiplication gate corresponds to a different set of points. We map each linear

function x1−wjx2 from the first gate to the point ( 1√
2
, −wj

√
2
, 0); similarly, we map the

functions of the second multiplication gate to {(0, 1√
2
, −wj

√
2

)}j=0,...,n−1, etc. Clearly

all the points belong to the two-dimensional sphere in C
3. It is easy to see that for

each point from the first set (i.e., points coming from the first multiplication gate)
and each point from the second set there is a unique point from the third set that
belongs to the same two-dimensional space (similarly if we pick the first and third
sets, etc.). Therefore this construction satisfies our requirements. Our question is,
Can such arrangements be found in higher dimensions?
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