
ON THE SIZE OF KAKEYA SETS IN FINITE FIELDS

ZEEV DVIR

Abstract. A Kakeya set is a subset of Fn, where F is a finite field of q
elements, that contains a line in every direction. In this paper we show that
the size of every Kakeya set is at least Cn · qn, where Cn depends only on n.
This answers a question of Wolff [Wol99].

1. Introduction

Let F denote a finite field of q elements. A Kakeya set (also called a Besicovitch
set) in Fn is a set K ⊂ Fn such that K contains a line in every direction. More
formally, K is a Kakeya set if for every x ∈ Fn there exists a point y ∈ Fn such
that the line

Ly,x , {y + a · x|a ∈ F}
is contained in K.

The motivation for studying Kakeya sets over finite fields is to try and understand
better the more complicated questions regarding Kakeya sets in Rn. A Kakeya
set K ⊂ Rn is a compact set containing a line segment of unit length in every
direction. The famous Kakeya Conjecture states that such sets must have Hausdorff
(or Minkowski) dimension equal to n. The importance of this conjecture is partially
due to the connections it has to many problems in harmonic analysis, number
theory and PDE. This conjecture was proved for n = 2 [Dav71] and is open for
larger values of n (we refer the reader to the survey papers [Wol99, Bou00, Tao01]
for more information)

It was first suggested by Wolff [Wol99] to study finite field Kakeya sets. It was
asked in [Wol99] whether there exists a lower bound of the form Cn · qn on the
size of such sets in Fn. The lower bound appearing in [Wol99] was of the form
Cn · q(n+2)/2. This bound was further improved in [Rog01, BKT04, MT04, Tao08]
both for general n and for specific small values of n (e.g for n = 3, 4). For general
n, the currently best lower bound is the one obtained in [Rog01, MT04] (based on
results from [KT99]) of Cn · q4n/7. The main technique used to show this bound is
an additive number theoretic lemma relating the sizes of different sum sets of the
form A+r ·B where A and B are fixed sets in Fn and r ranges over several different
values in F (the idea to use additive number theory in the context of Kakeya sets
is due to Bourgain [Bou99]).

The next theorem, proven in Section 2, gives a near-optimal bound on the size
of Kakeya sets. Roughly speaking, the proof follows by observing that any degree
q− 2 homogenous polynomial in F[x1, . . . , xn] can be ‘reconstructed’ from its value
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on any Kakeya set K ⊂ Fn. This implies that the size of K is at least the dimension
of the space of polynomials of degree q − 2, which is ≈ qn−1 (when q is large).

Theorem 1.1. Let K ⊂ Fn be a Kakeya set. Then

|K| ≥ Cn · qn−1,

where Cn depends only on n.

The result of Theorem 1.1 can be made into an even better bound using the
simple observation that a product of Kakeya sets is also a Kakeya set.

Corollary 1.2. For every integer n and every ε > 0 there exists a constant Cn,ε,
depending only on n and ε such that any Kakeya set K ⊂ Fn satisfies

|K| ≥ Cn,ε · qn−ε,

Proof. Observe that, for every integer r > 0, the Cartesian product Kr ⊂ Fn·r is
also a Kakeya set. Using Theorem 1.1 on this set gives

|K|r ≥ Cn·r · qn·r−1,

which translates into a bound of Cn,r · qn−1/r on the size of K. ¤

We derive Theorem 1.1 from a stronger theorem that gives a bound on the size
of sets that contain only ‘many’ points on ‘many’ lines. Before stating the theorem
we formally define these sets.

Definition 1.3 ( (δ, γ)-Kakeya Set). A set K ⊂ Fn is a (δ, γ)-Kakeya Set if there
exists a set L ⊂ Fn of size at least δ · qn such that for every x ∈ L there is a line in
direction x that intersects K in at least γ · q points.

The next theorem, proven in Section 2, gives a lower bound on the size of (δ, γ)-
Kakeya sets. Theorem 1.1 will follow by setting δ = γ = 1.

Theorem 1.4. Let K ⊂ Fn be a (δ, γ)-Kakeya Set. Then

|K| ≥
(

d + n− 1
n− 1

)
,

where
d = bq ·min{δ, γ}c − 2.

Notice that, in order to get a bound of ≈ qn(1−ε) on the size of K, Theorem 1.4
allows δ and γ to be as small as q−ε.

1.1. Improving the bound to ≈ qn. Following the initial publication of this
work, Noga Alon and Terence Tao [AT08] independently observed that it is possible
to turn the proof of Theorem 1.1 into a proof that gives a bound of Cn · qn, thus
achieving an optimal bound. A proof of the following theorem appears in Section 3

Theorem 1.5. Let K ⊂ Fn be a Kakeya set. Then

|K| ≥ Cn · qn,

where Cn depends only on n.
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2. Proof of Theorem 1.4

We will use the following bound on the number of zeros of a degree d polynomial
proven by Schwartz and Zippel [Sch80, Zip79].

Lemma 2.1 (Schwartz-Zippel). Let f ∈ F[x1, . . . , xn] be a non zero polynomial
with deg(f) ≤ d. Then

|{x ∈ Fn |f(x) = 0}| ≤ d · qn−1.

Proof of Theorem 1.4. Suppose in contradiction that

|K| <
(

d + n− 1
n− 1

)
.

Then, the number of monomials in F[x1, . . . , xn] of degree d is larger than the size
of K. Therefore, there exists a homogenous degree d polynomial g ∈ F[x1, . . . , xn]
such that g is not the zero polynomial and

∀x ∈ K, g(x) = 0

(this follows by solving a system of linear equations, one for each point in K, where
the unknowns are the coefficients of g). Our plan is to show that g has too many
zeros and therefore must be identically zero (which is a contradiction).

Consider the set
K ′ , {c · x |x ∈ K, c ∈ F}

containing all lines that pass through zero and intersect K at some point. Since g
is homogenous we have

g(c · x) = cd · g(x)
and so

∀x ∈ K ′, g(x) = 0.

Since K is a (δ, γ)-Kakeya set, there exists a set L ⊂ Fn of size at least δ · qn

such that for every y ∈ L there exists a line with direction y that intersects K in
at least γ · q points.

Claim 2.2. For every y ∈ L we have g(y) = 0.

Proof. Let y ∈ L be some non zero vector (if y = 0 then g(y) = 0 since g is
homogenous). Then, there exists a point z ∈ Fn such that the line

Lz,y = {z + a · y|a ∈ F}
intersects K in at least γ · q points. Therefore, since d + 2 ≤ γ · q, there exist d + 2
distinct field elements a1, . . . , ad+2 ∈ F such that

∀i ∈ [d + 2], z + ai · y ∈ K.

If there exists i such that ai = 0 we can remove this element from our set of d + 2
points and so we are left with at least d+1 distinct non-zero field elements ( w.l.o.g
a1, . . . , ad+1) such that

∀i ∈ [d + 1], z + ai · y ∈ K and ai 6= 0

Let bi = a−1
i where i ∈ [d + 1]. The d + 1 points

wi , bi · z + y, i ∈ [d + 1]

are all in the set K ′ and so

g(wi) = 0, i ∈ [d + 1].
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If z = 0 then we have wi = y for all i ∈ [d+1] and so g(y) = 0. We can thus assume
that z 6= 0 which implies that w1, . . . , wd+1 are d + 1 distinct points belonging to
the same line (the line through y with direction z). The restriction of g(x) to this
line is a degree ≤ d univariate polynomial and so, since it has d + 1 zeros (at the
points wi), it must be zero on the entire line. We therefore get that g(y) = 0 and
so the claim is proven. ¤

We now get a contradiction since

d/q < δ

and, using Lemma 2.1, a polynomial of degree d can be zero on at most a d/q
fraction of Fn. ¤

3. Proof of Theorem 1.5

Suppose, in contradiction, that K ⊂ Fn is a Kakeya set such that

|K| <
(

q + n− 1
n

)
.

Then, as is explained in the proof of Theorem 1.1, there exists a nonzero polynomial
g ∈ F[x1, . . . , xn] of degree d ≤ q − 1 so that g(x) = 0 for all x ∈ K (notice that g
is not necessarily homogeneous). Let ḡ ∈ F[x1, . . . , xn] be the homogeneous part of
degree d of g so that ḡ is non-zero and homogenous. Fix some y ∈ Fn. Then there
exists z ∈ Fn so that the line {z + t · y | t ∈ F} is contained in K. Therefore,

Py,z(t) , g(z + t · y) = 0

for all t ∈ F. Since Py,z(t) is a univariate polynomial of degree d ≤ q−1 this means
that Py,z(t) is identically zero, and hence all its coefficients are zero. In particular,
the coefficient of td is zero, but it is easy to see that this is exactly ḡ(y). Since y
was arbitrary it follows that the polynomial ḡ is identically zero – a contradiction.
This concludes the proof. ¤
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