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Abstract

Design matrices are sparse matrices in which the supports of different columns intersect in
a few positions. Such matrices come up naturally when studying problems involving point sets
with many collinear triples. In this work we consider design matrices with block (or matrix)
entries. Our main result is a lower bound on the rank of such matrices, extending the bounds
proven in [BDWY12, DSW14] for the scalar case. As a result we obtain several applications
in combinatorial geometry. The first application involves extending the notion of structural
rigidity (or graph rigidity) to the setting where we wish to bound the number of ‘degrees of
freedom’ in perturbing a set of points under collinearity constraints (keeping some family of
triples collinear). Other applications are an asymptotically tight Sylvester-Gallai type result for
arrangements of subspaces (improving [DH16]) and a new incidence bound for high dimensional
line/curve arrangements.

The main technical tool in the proof of the rank bound is an extension of the technique of
matrix scaling to the setting of block matrices. We generalize the definition of doubly stochastic
matrices to matrices with block entries and derive sufficient conditions for a doubly stochastic
scaling to exist.

1 Introduction

Design matrices, defined in [BDWY12], are (complex) matrices that satisfy certain conditions on
their support (the set of non-zero entries). Roughly speaking, a design matrix has few non-zero
entries per row, many non-zero entries per column and, most importantly, the supports of every
two columns intersect in a small number of positions. In [BDWY12, DSW14], lower bounds on the
rank of such matrices were given and applied to upper bound the dimension of point configurations
in Cd containing many collinear triples. In particular, [DSW14] used this method to give a new
elementary proof of Kelly’s theorem (the complex analog of the Sylvester-Gallai theorem). In this
work we generalize the rank bounds from [BDWY12, DSW14] to handle design matrices with matrix
entries. We then use these bounds to prove several new results in combinatorial geometry.

Our geometric applications are of three types. The first deals with bounding the number of
‘degrees of freedom’ when smoothly perturbing a set of points while maintaining a certain family of
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triples collinear. This is in the same spirit of structural rigidity results [Lam70] in which pairwise
distances are maintained along the edges of a graph embedded in the plane. The second application
is a generalization of the Sylvester-Gallai theorem for arrangements of subspaces. Such a result
was recently proved in [DH16] and we are able to give an asymptotically tight improvement to
their results. The last application involves arrangements of lines and curves in Cd that have many
pairwise incidences (each line/curve intersects many others). We are able to show upper bounds
on the dimension of such configurations as a function of the number of incidences and under the
assumption that no low dimensional subspace contains ‘too many’ of the lines/curves.

The main tool used to prove the rank bounds for design matrices in [BDWY12, DSW14] was
matrix scaling. Given a complex matrix A = (Aij), we try to find coefficients ri, cj for each
row/column so that the matrix with entries Bij = riAijcj is doubly stochastic. In this setting, one
is actually interested in the `2 norms of all rows/columns being equal (instead of `1). The main
technical difficulty is in giving sufficient conditions that guarantee the existence of such a scal-
ing. Following the pioneering work of Sinkhorn [Sin64], such conditions are analyzed completely in
[RS89]. To handle design matrices with block entries we study the problem of matrix scaling for
block matrices. Finding sufficient conditions for scaling is intimately related to the well studied
problem of operator scaling [Gur04, LSW98, GGOW15]. We give a (mostly) self-contained and ele-
mentary derivation of sufficient conditions for scaling to exist relying only on the work of [BCCT08]
which gives sufficient conditions for scaling of matrices with one column (see Theorem 2.16 below).
We note that [BCCT08] does not mention matrix scaling explicitly in their work (which studies
the Brascamp-Lieb inequalities). The observation that this part of their work can be interpreted
through this angle seems to not have been noticed before.

We describe our results in more detail in the subsections below. The main technical work
involving matrix scaling will be discussed in Section 2.

1.1 Design matrices with block entries

For the rest of the paper, all matrices are complex unless otherwise noted. By positive definite
(semi-definite) matrix we mean Hermitian matrix with positive (non-negative) eigenvalues.

LetMm,n(r, c) denote the set of m×n matrices with entries being r×c matrices. When referring
to rows and columns of A we mean the m rows of blocks (and n columns). We sometimes refer to
the entries of A as the blocks of A. For a matrix A ∈Mm,n(r, c) we denote by Ã the Mrm,cn(1, 1)
matrix obtained from A in the natural way (ignoring blocks). We define rank(A) to be the rank of
Ã (as a complex matrix). We will sometimes identify a matrix A ∈ Mm,n(r, c) with a linear map
from Cnc to Cmr given by Ã.

To define design matrices with block entries we will need the following definition.

Definition 1.1 (well-spread set). Let S = {A1, . . . , As} ⊂ Mr,c(1, 1) be a set (or multiset) of s
complex r × c matrices. We say that S is well-spread if, for every subspace V ⊂ Cc we have∑

i∈[s]

dim(Ai(V )) ≥ rs

c
· dim(V ).

The following definition extends the definition of design matrices given in [BDWY12].

Definition 1.2 (design matrix). A matrix A ∈ Mm,n(r, c) is called a (q, k, t)-design matrix if it
satisfies the following three conditions
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1. Each row of A has at most q non zero blocks.

2. Each column of A contains k blocks that, together, form a well-spread set.

3. For any j 6= j′ ∈ [n] there are most t values of i ∈ [m] so that both Aij and Aij′ are non-zero
blocks. In other words, the supports of two columns intersect in at most t positions.

Comment 1.3. Notice that, for the case r = c = 1, the second item simply requires that each
column has at least k non-zero entries. Hence, this definition extends the definitions of design
matrices from previous works ([BDWY12], [DSW14]). More generally, if r = c then the second
item is equivalent to asking that each column contains at least k non singular blocks.

Our main theorem is the following lower bound on the rank of design matrices. Setting r = c = 1
we recover the rank bound from [DSW14].

Theorem 1.4 (rank of design matrices). Let A ∈Mm,n(r, c) be a (q, k, t)-design matrix. Then

rank(A) ≥ cn− cn

1 +X
,

with X = kr
ct(q−1) .

We now describe the various geometric applications of this theorem.

1.2 Projective rigidity

Given a finite set of points V in C2 containing some collinear triples, we can apply any projective
transformation on V and keep all collinear triples collinear. This gives 8 ‘degrees of freedom’ for
us to ‘move’ V (keeping its collinearity structure). But are there more transformations we can
perform? To study this question more formally, we begin with the following definition.

Definition 1.5 (Projective Rigidity). Let V = (v1, . . . , vn) ∈ (Cd)n be a list of n points in Cd
and let T ⊂

(
[n]
3

)
be a multiset of triples on the set [n] (we allow repetitions of triples for technical

reasons). Let KT ⊂ Cnd be the variety of lists of n points in which all triples in T are collinear.
Let PV ∈ Cnd denote the concatenation of coordinate vectors of all points in V . We say that (V, T )
is r-rigid if PV is a non singular point of KT and the dimension of its irreducible component is at
most r. We denote the set of pairs (V, T ) as above (with PV ∈ KT ) by COL(n, d).

Hence, showing that a point set V ⊂ C2 with a family of triples T is 8-rigid means showing
that it cannot be changed smoothly in any nontrivial way. Using our rank bound for design block
matrices, we are able to prove a general theorem (Theorem 4.1) giving quantitative bounds on the
rigidity of pairs (V, T ) satisfying certain conditions. For example, if every pair of points in V is in
exactly one triple in T and no line contains more than half of the points in V then we can prove
an upper bound of 15 on the rigidity of the pair (V, T ). We refer the reader to Section 4 for a more
complete description of these results.
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Other notions of rigidity: A more well-studied notion of geometric rigidity has to do with
fixing the distances between pairs of points. Let G = G(V,E) be a graph, where |V | = n, |E| = m.
Let p = (pv)v∈V be an embedding of G in Rd, where to each vertex v ∈ V we assign the point
pv ∈ Rd. By fixing the order of the vertices in V , we can identify the set of embeddings of G in Rd
with points p ∈ (Rd)n = Rdn. Given such point-bar framework (G,p), one is generally interested
in the study of all continuous paths in Rdn which preserve the distances of all pairs of points in E.
More succinctly, given the distance function of G ∆G : Rdn → Rm defined by

∆G(x1, . . . , xn) = (‖xu − xv‖2){u,v}∈E ,

we are interested in studying all continuous paths in Rdn starting from p which leave ∆G unchanged.
If, for a given framework (G,p), it turns out that every continuous path from p which preserves

∆G terminates at a point q ∈ Rdn such that q is an isometry of p, we say that the framework
(G,p) is rigid. That is, if ∆G(p) = ∆G(q) implies ∆Kn(p) = ∆Kn(q) for all q ∈ Rdn obtained
from p in the above manner, we say that the framework (G,p) is rigid. Otherwise, we call the
framework (G,p) flexible. For more concrete motivations to the study of rigidity, we refer the
reader to [Lam70] and references therein.

A different notion of rigidity, which is closer to ours in spirit, is the one given by Raz [Raz16],
which we now define. Given a (multi)set of lines L = {`1, . . . , `n} in C3, we define the intersection
graph of L as the graph GL = GL([n], E) where {i, j} ∈ E iff i 6= j and the corresponding lines
`i and `j intersect. For a graph G, we say that L is a realization of G if G ⊆ GL. With these
definitions, we say that a graph G is rigid if for any generic realization L = {`1, . . . , `n} of G, we
must have GL = Kn.

1.3 Sylvester-Gallai for subspaces

Another application of Theorem 1.4 gives a quantitative improvement to the results of [DH16]
who generalized the Sylvester-Gallai theorem for arrangements of subspaces in Cd. We show the
following:

Theorem 1.6. Let V1, V2, . . . , Vn ⊂ Cd be `-dimensional subspaces such that Vi ∩ Vi′ = {~0} for all
i 6= i′ ∈ [n]. Suppose that, for every i1 ∈ [n] there exists at least δ(n − 1) values of i2 ∈ [n] \ {i1}
such that Vi1 + Vi2 contains some Vi3 with i3 6∈ {i1, i2}. Then

dim(V1 + V2 + · · ·+ Vn) ≤
⌈

4`

δ

⌉
− 1.

The original bound proven in [DH16] was a slightly worse O(`4/δ2). For δ = 1 and ` = 1
the bound of 3 we get is completely tight as there are three dimensional configurations of one
dimensional subspaces over C with every pair spanning some third subspace (this can be obtained
by taking the Hesse configuration and moving to projective space). When δ = 1 and ` > 1 it
remains open whether or not the bound 4`− 1 bound is tight or not (one can get a lower bound of
3` by taking the product of the one dimensional example).

The condition Vi ∩ Vi′ = {~0} is needed due to the following example given in [DH16]: Set ` = 2
and n = d(d − 1)/2 and let {~e1, ~e2, . . . , ~ed} be the standard basis of Cd. Define the n spaces to
be Vij = span{~ei, ~ej} with 1 ≤ i < j ≤ d. Now, for each (i, j) 6= (i′, j′) the sum Vij + Vi′j′ will
contain a third space (since the size of {i, j, i′, j′} is at least three). However, this arrangement has
dimension d >

√
n.
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The one dimensional (` = 1) version of Theorem 1.6 was originally proven in [BDWY12, DSW14]
as an application of the rank bound for (scalar) design matrices. In [DH16], a different, more lossy,
proof technique was developed to handle the higher dimensional case (also relying on methods
similar to [BCCT08]). Our proof goes back to the original proof strategy using rank of design
matrices, now with block entries, and applying Theorem 1.4.

1.4 Pairwise incidences of lines and curves

Our final application of Theorem 1.4 is the following result about pairwise incidences in a given set
of lines.

Theorem 1.7. Let L1, . . . , Ln ⊂ Cd be lines such that each Li intersects at least k other lines and,
among those k lines, at most k/2 have the same intersection point on Li. Then, the n lines are

contained in an affine subspace of dimension at most
⌊

4n
k+2

⌋
− 1.

We also prove an analog of Theroem 1.7 for higher degree curves. We refer to a curve as a
degree r parametric curve if it is given as the image of a polynomial map (in one variable) of degree
at most r.

Theorem 1.8. Let γ1, . . . , γn ⊂ Cd be degree r parametric curves such that each γi intersects at
least k other curves and, among those k curves, at most k/2r have the same intersection point on

γi. Then, the n curves are contained in a subspace of dimension at most 2(r+1)4n
k .

1.5 Organization

In Section 2 we develop the necessary machinery for scaling of matrices with block entries. In
Section 3 we prove our main theorem, Theorem 1.4. In Section 4 we give the applications for
geometric rigidity. In Section 5 we prove our improved Sylvester-Gallai theorem for subspaces
(Theorem 1.6). In Section 6 we prove Theorem 1.7 and its generalization for higher degree curves.

2 Matrix scaling and capacity

In this section we develop the machinery needed to prove Theorem 1.4. We denote by Is ∈Ms,s(1, 1)
the s× s identity matrix. For a matrix A we denote ‖A‖22 = tr(AA∗).

Definition 2.1 (Row Normalization). Let A ∈Mm,n(r, c). For each i ∈ [m] let

Ri(A) =

n∑
j=1

Ai,jA
∗
i,j ∈Mr,r(1, 1).

If all matrices Ri(A) are non singular (and hence, positive definite) we define the row normalizing
matrix of A as the matrix R(A) ∈ Mm,m(r, r) whose diagonal blocks are the matrices R(A)i,i =
(Ri(A))−1/2. We define the row normalization of A as the product Row(A) = R(A)·A. If Ri(A) = Ir
for all i ∈ [m] we say that A is row normalized.
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Definition 2.2 (Column Normalization). Let A ∈Mm,n(r, c). For each j ∈ [n] let

Cj(A) =
nc

mr

m∑
i=1

A∗i,jAi,j ∈Mc,c(1, 1).

If all matrices Cj(A) are non singular (and hence, positive definite) we define the column nor-
malizing matrix of A as the matrix C(A) ∈ Mn,n(c, c) whose diagonal blocks are the matrices

C(A)j,j = (Cj(A))−1/2 . We define the column normalization of A as the product Col(A) = A·C(A).
If Cj(A) = Ic for all j ∈ [n] we say that A is column normalized.

Definition 2.3 (Doubly stochastic block matrices). A matrix A ∈Mm,n(r, c) is said to be doubly
stochastic if it is both row normalized and column normalized. We define the distance of A to a
doubly stochastic matrix, denoted by ds(A), as

ds(A) =

n∑
j=1

‖Cj(A)− Ic‖22 +

m∑
i=1

‖Ri(A)− Ir‖22 .

Definition 2.4 (Matrix scaling). Let A ∈ Mm,n(r, c). A scaling of A is a matrix B ∈ Mm,n(r, c)
obtained as follows: Let R1, . . . , Rm ∈ Mr,r(1, 1) and C1, . . . , Cn ∈ Mc,c(1, 1) be non-singular
complex matrices. We refer to the Ri’s as row scaling coefficients and to the Cj’s as column scaling
coefficients. Now, we let Bij = Ri ·Aij · Cj. Notice that, if B is a scaling of A than A is a scaling
of B.

We would like to understand when a matrix has a doubly stochastic scaling. For technical
reasons, it is more natural to ask when a matrix can be scaled to be arbitrarily close to doubly
stochastic. This question turns out to have a much nicer answer and, for our purposes, an ‘almost’
doubly stochastic matrix will do just fine.

Definition 2.5 (Scalable Matrices). A matrix A ∈ Mm,n(r, c) is said to be scalable if, for every
ε > 0 there exist a scaling B of A such that ds(B) ≤ ε.

Our goal is to give sufficient conditions for a matrix to be scalable. For this we need to define
a measure called capacity which is a generalization of capacity of non-negative matrices defined in
[GY98] (used to study Sinkhorn’s algorithm) and a special case of capacity of operators defined in
[Gur04] (used to study an operator generalization of Sinkhorn’s algorithm).

Definition 2.6 (Capacity). The capacity of a block matrix A ∈Mm,n(r, c) is defined as:

cap(A) = inf


n∏
j=1

det

(
nc

mr

m∑
i=1

A∗ijXiAij

)
: Xi � 0 and

m∏
i=1

det(Xi) = 1

 .

Where the Xi’s are r × r complex Hermitian positive definite matrices.

The main technical result of this section is given in the following theorem. We will prove it at
the end of the section, following some preliminaries. The proof will mimic the analog result for
scalar matrices (Sinkhorn’s algorithm) using alternate left/right scaling and using the capacity as
a progress measure (this is also the approach taken in [GGOW15] for operator scaling).
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Lemma 2.7. Let A ∈Mm,n(r, c). If cap(A) > 0 then A is scalable.

The proof of the lemma will be using an iterative algorithm that, at each step performs
row/column normalization of A. We will show that this process must converge to a doubly stochas-
tic matrix. We start with some useful claims. The first claim relates the capacity of A with that
of A∗. For our purposes, we will only need to use the fact that, if one of them is zero, then so is
the other.

Claim 2.8. Let A ∈Mm,n(r, c). Then

cap(A)1/nc =
nc

mr
· cap(A∗)1/mr

Proof. Let PDk denote the set of k × k hermitian positive definite matrices. Notice that

cap(A)1/nc = inf


n∏
j=1

det

(
nc

mr

m∑
i=1

A∗ijXiAij

)1/nc

: Xi � 0 and
m∏
i=1

det(Xi) = 1


= inf


∏n
j=1 det

(
nc
mr

∑m
i=1A

∗
ijXiAij

)1/nc
∏m
i=1 det(Xi)1/mr

: Xi � 0

 .

Similarly

cap(A∗)1/mr = inf


∏m
i=1 det

(
mr
nc

∑n
j=1AijYjA

∗
ij

)1/mr
∏n
j=1 det(Yj)1/nc

: Yj � 0

 .

Suppose for now that, cap(A∗) is non-zero. We have

cap(A)1/nc

cap(A∗)1/mr
=

infXi∈PDr supYj∈PDc


∏n
j=1

[
det
(
nc
mr

∑m
i=1A

∗
ijXiAij

)
· det(Yj)

]1/nc
∏m
i=1

[
det
(
mr
nc

∑n
j=1AijYjA

∗
ij

)
· det(Xi)

]1/mr
 ≥

infXi∈PDr


∏n
j=1

[
det
(
nc
mrIc

)]1/nc
∏m
i=1

[
det
(
mr
nc

∑n
j=1Aij ỸjA

∗
ij

)
· det(Xi)

]1/mr
 =

nc

mr
· infXi∈PDr

 1∏m
i=1

[
det
(
mr
nc

∑n
j=1Aij ỸjA

∗
ij

)
· det(Xi)

]1/mr
 ,
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where Ỹj =
(∑m

i=1A
∗
ijXiAij

)−1
. Continuing:

cap(A)1/nc

cap(A∗)1/mr
≥ nc

mr
· infXi∈PDr

 1

1
nc ·

∑m
i=1

∑n
j=1 tr

[
Aij ỸjA∗ijXi

]


=
nc

mr
· infXi∈PDr

 1

1
nc ·

∑n
j=1 tr

[∑m
i=1 ỸjA

∗
ijXiAi,j

]


=
nc

mr
· infXi∈PDr

{
1

1
nc ·

∑n
j=1 tr [Ic]

}
=

nc

mr
,

where the second inequality follows from the AM-GM inequality, applied to the (non negative)
eigenvalues of a PSD matrix. In the other direction, we apply a similar argument to A∗ to obtain
that, if cap(A) is nonzero then

cap(A∗)1/mr

cap(A)1/nc
≥ mr

nc

Rearranging completes the proof.

Claim 2.9 (Capacity of normalized matrices). Let A ∈Mm,n(r, c) be a column-normalized matrix.
Then cap(A) ≤ 1.

Proof. Notice that

cap(A) ≤
n∏
j=1

det

(
nc

mr

m∑
i=1

A∗ijIrAij

)
=

n∏
j=1

det(Ic) = 1.

Claim 2.10 (Capacity of a scaling). Let A ∈Mm,n(r, c) and let B be a scaling of A with row scaling
coefficients R1, . . . , Rm ∈Mr,r(1, 1) and column scaling coefficients C1, . . . , Cn ∈Mc,c(1, 1). Then

cap(B) =

 n∏
j=1

|det(Cj)|

2(
m∏
i=1

|det(Ri)|

)2nc/mr

· cap(A).

Proof.

cap(B) = inf


n∏
j=1

det

(
nc

mr

m∑
i=1

C∗jA
∗
ijR
∗
iXiRiAijCj

)
: Xi � 0 and

m∏
i=1

det(Xi) = 1


=

 n∏
j=1

|det(Cj)|

2

· inf


n∏
j=1

det

(
nc

mr

m∑
i=1

A∗ijYiAij

)
: Yi � 0 and

m∏
i=1

det(Yi) =

m∏
i=1

|det(Ri)|2


=

 n∏
j=1

|det(Cj)|

2(
m∏
i=1

|det(Ri)|

)2nc/mr

· cap(A),
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Where the last equality is obtained by observing the effect of scaling all the Yi’s by the same
constant α on the capacity.

To prove a quantitative bound on the rate of growth of the capacity under row/column scaling
we will need the following quantitative variant of the AM-GM inequality. A proof (along the lines
of [LSW98]) is given for completeness.

Claim 2.11. (Quantitative AM-GM) Let x1, . . . , xs > 0 be real numbers such that
∑

i∈[s] xi = s

and
∑

i∈[s](xi − 1)2 = ε. Then ∏
i∈[s]

xi ≤ max
{
e−ε/6, e−1/6

}
.

Proof. First assume that ε ≤ 1. Let yi = xi − 1 so that
∑

i yi = 0 and
∑

i y
2
i = ε. Using the

inequality 1 + t ≤ et−t2/2+t3/3 which holds for all real t we get that

s∏
i=1

(1 + yi) ≤ exp

(
−1

2

∑
i

y2i +
1

3

∑
i

y3i

)

≤ exp

−1

2

∑
i

y2i +
1

3

(∑
i

y2i

)3/2


≤ exp(ε/6),

where the last inequality used the fact that ε ≤ 1. To argue about values of ε larger than 1 we
observe that the function f(z) =

∏
i(1+zyi) is decreasing in the range 0 ≤ z ≤ 1. To see this, notice

that the derivative of ln f(z) is precisely
∑

i
yi

1+zyi
≤
∑

i yi = 0. Since ln f(z) is decreasing, f(z) is
also decreasing. Hence, we can apply the bound for small ε to get that f(1) ≤ f(z∗) ≤ exp(−1/6)
for z∗ = ε−1/2 ≤ 1.

Claim 2.12 (Capacity and row/column normalization). Let A ∈Mm,n(r, c) be a matrix such that
ds(A) = ε. Then,

1. If A is column-normalized, then cap(Row(A)) ≥ cap(A) (assuming Row(A) is defined).

2. If A is row-normalized then cap(Col(A)) ≥ min
{
e1/6, eε/6

}
· cap(A) (assuming Col(A) is

defined).

Comment: One can prove a similar quantitative bound in terms if ε also in item (1) but we will
not need it.

Proof. We start by proving the first item. Let Ri(A) =
∑n

j=1AijA
∗
ij . Since the scaling coefficients

used to get Row(A) from A are Ri(A)−1/2, we get that, by Claim 2.10,

cap(Row(A)) =

(
m∏
i=1

det(Ri(A))−1/2

)2nc/mr

· cap(A). (1)
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Let λi1, . . . , λir > 0 denote the eigenvalues of the (positive definite) matrix Ri(A). Since A is
column normalized we have that

m∑
i=1

r∑
k=1

λik =
m∑
i=1

tr

 n∑
j=1

AijA
∗
ij


=

n∑
j=1

tr

(
m∑
i=1

A∗ijAij

)

=
n∑
j=1

tr
(rm
nc
· Ic
)

= rm.

Hence, by the AM-GM inequality we get that

m∏
i=1

det(Ri(A)) =
m∏
i=1

r∏
k=1

λik ≤ 1.

Plugging this into Eq. 1 proves the first part of the claim.
To prove the second part, let Cj(A) = nc

mr

∑m
i=1A

∗
ijAij and recall that Col(A) is obtained from

A by scaling the columns with coefficients Cj(A)−1/2. Hence, by Claim 2.10, we have

cap(Col(A)) =

 n∏
j=1

det(Cj(A))−1/2

2

· cap(A). (2)

Let µj1, . . . , µjc be the eigenvalues of Cj(A). As before, we have that

n∑
j=1

c∑
k=1

µjk =
n∑
j=1

tr

(
nc

mr

m∑
i=1

A∗ijAij

)
=

nc

mr

m∑
i=1

tr(Ir) = nc.

Using the assumption ds(A) = ε and the fact that A is row normalized we can also deduce that

n∑
j=1

c∑
k=1

(µjk − 1)2 =

n∑
j=1

tr
(
(Cj(A)− Ic)2

)
= ε.

Hence, we can use Claim 2.11 to obtain the bound

n∏
j=1

det(Cj(A)) =

n∏
j=1

c∏
k=1

µjk ≤ max
{
e−ε/6, e−1/6

}
.

Plugging this into Eq. 2 proves the second part of the claim.

Another useful claim:

Claim 2.13. Let A ∈Mm,n(r, c) be such that Row(A) and Col(A) are well defined. Then, Row(B)
and Col(B) are well defined for every scaling B of A.

10



Proof. Suppose Bij = RiAijCj for non-singular scaling coefficients R1, . . . , Rm ∈ Mr,r(1, 1) and
C1, . . . , Cn ∈ Mc,c(1, 1). To show that Row(B) is well defined we need to argue that, for each
i ∈ [m], the PSD matrix

Ri(B) =
n∑
j=1

BijB
∗
ij =

n∑
j=1

RiAijCjC
∗
jA
∗
ijR
∗
i

is non singular. We can take out the non singular Ri and R∗i factors and so we need to show that

n∑
j=1

AijCjC
∗
jA
∗
ij

is non singular. This r×r PSD matrix is singular iff there exists a vector v ∈ Cr so that C∗jA
∗
ijv = 0

for all j ∈ [n]. Since the Cj ’s are non singular, such a v would also be in the kernel of Ri(A) =∑n
j=1AijA

∗
ij in contradiction to our assumption that Row(A) is well defined. The proof for Col(A)

is identical.

Proof of Lemma 2.7. Let A0 = Col(A) and define recursively

Ak+1 = Col(Row(Ak)).

Notice that Col(A) is well defined since cap(A) > 0 and that Row(A) is well defined since cap(A∗) > 0
(using Claim 2.8). Hence, by Claim 2.13, this property will remain true for all matrices Ak in the
sequence (since they are all scalings of A). We wish to show that ds(Ak) approaches zero when
k goes to infinity. Assume in contradiction that ds(Ak) ≥ ε for some 0 < ε < 1 and all k ≥ 0.
Applying Claim 2.12, we get that

cap(Ak+1) ≥ exp(ε/6) · cap(Ak).

The matrices Ak are all column-normalized and so, by Claim 2.9, cap(Ak) ≤ 1 for all k ≥ 0. This
gives a contradiction to the claimed growth of cap(Ak).

2.1 Bounding the capacity of a matrix

In this section we will develop machinery useful for proving that the capacity of certain matrices
is positive.

Claim 2.14. Let A,B ∈ Mm,n(r, c) be two block matrices such that, for every i ∈ [m], j ∈ [n],
Bij is either equal to Aij or equal to a zero r × c block. Then, cap(A) ≥ cap(B). In particular, if
cap(B) > 0 then cap(A) > 0.

Proof. The claim following from the simple fact that, for two PSD matrices X,Y , we have det(X+
Y ) ≥ det(X). Using this in the definition of capacity, we see that, replacing some blocks in A with
zeros can only decrease the product of determinants being minimized.

Claim 2.15 (Block diagonal matrices). Suppose M is an s × s block diagonal matrix with en-
tries Mij ∈ Mm,n(r, c). Then, viewing M as an element of Msm,sn(r, c) we have cap(M) =∏s
i=1 cap(Mii). In particular, if all the Mii’s have positive capacity, then so does M .

11



Proof. To save on notations, we will only prove the claim for s = 2 (the general case is proved along
the same lines). Suppose therefore that M has diagonal blocks A,B ∈ Mm,n(r, c) and zero blocks
in the two off diagonal positions. More precisely, viewing M as an element of M2m,2n(r, c) (and
treating Mij as the actual r × c blocks of M), we have Mij = Aij for 1 ≤ i ≤ m and 1 ≤ j ≤ n,
Mij = B(i−m)(j−n) for m+ 1 ≤ i ≤ 2m,n+ 1 ≤ j ≤ 2n and Mij = 0 for all other pairs i, j.

To see that the capacity splits into the product of capacities, it is enough to rewrite the capacity
in a scale invariant form:

cap(M) = inf


2n∏
j=1

det

(
2nc

2mr

2m∑
i=1

M∗ijXiMij

)
: Xi � 0 and

2m∏
i=1

det(Xi) = 1


= inf


∏2n
j=1 det

(
2nc
2mr

∑2m
i=1M

∗
ijXiMij

)
(∏2m

i=1 det(Xi)
)2nc/2rm : Xi � 0


= inf


∏n
j=1 det

(
nc
mr

∑m
i=1A

∗
ijXiAij

)
(
∏m
i=1 det(Xi))

nc/rm
·

∏n
j=1 det

(
nc
mr

∑m
i=1B

∗
ijYiBij

)
(
∏m
i=1 det(Yi))

nc/rm
: Xi, Yi � 0


= cap(A) · cap(B).

The following is a special case of Theorem 1.13 of [BCCT08]. Even though the treatment in
[BCCT08] is for real matrices, the proof of this particular result carries over without difficulty
to the complex numbers. In particular, we are only relying on the arguments in Lemma 5.1 and
Proposition 5.2 of [BCCT08] whose proofs only use basic properties of PSD matrices as well as
compactness of the set of orthonormal (in our case unitary) bases. Another comment is that
[BCCT08] assumes the matrices A1, . . . , Ak are non-degenerate, meaning that each Ai is full rank
and that their common kernel is trivial. These properties follow easily from being well-spread and
so we are allowed to apply their results.

Theorem 2.16 (Capacity of matrices with one column [BCCT08]). Let A ∈Mk,1(r, c) be such that
the blocks A11, . . . , Ak1 ∈Mr,c(1, 1) form a well-spread set (see Definition 1.1). Then cap(A) > 0.

3 Rank of design matrices with block entries

In this section we will prove Theorem 1.4. First, we analyze a transformation taking any design
matrix to another design matrix which is scalable.

3.1 Regularization of a design matrix

Definition 3.1 (Design matrix in regular form). A (q, k, t)-design matrix A ∈ Mm,n(r, c) is in
regular form if m = nk and, in each column i ∈ [n], the k blocks A(i−1)k+1,i, . . . , A(i−1)k+k,i form a
well-spread set. That is, the second item in the definition of a design matrix is satisfies by k-tuples
of blocks that are row-disjoint in A.

Claim 3.2. Let A ∈ Mm,n(r, c) be a (q, k, t)-design matrix. Then, there exists a (q, k, tq)-design
matrix B ∈Mnk,n(r, c) in regular form such that rank(B) ≤ rank(A).

12



Proof. We construct B in n steps. In the first step we add to B k rows of A so that their first
column entries are well-spread. In the next step we add k more rows to B using the k rows in A
in which the second column entries form a well spread set. We continue in this manner until we
end up with B having nk rows. Since each row of A contains at most q non zero blocks, we have
that each row of A is repeated at most q times in B. Hence, the supports of two columns in B can
intersect in at most tq positions. Since all rows of B are from A the rank of B cannot increase (it
might decrease if we do not use all rows of A).

Claim 3.3. Suppose B ∈Mnk,n(r, c) is a (q, k, t)-design matrix in regular form. Then B is scalable.

Proof. We call the entries of B in positions ((i− 1)k+ `, i) for ` ∈ [k] special. Let B′ ∈Mnk,n(r, c)
be the matrix obtained from B by replacing all the non special entries of B by zero blocks. By
Claim 2.14 and Lemma 2.7 it is enough to prove that cap(B′) > 0. We can consider B′ as a diagonal
n × n matrix with entries in Mk,1(r, c) and so, using Claim 2.15, it is enough to show that the
special entries in each column form a Mk,1(r, c) matrix with positive capacity. This follows from
Theorem 2.16 and using the assumption that the special entries in each column form a well spread
set.

3.2 Proof of Theorem 1.4

We will use the following folklore lemma on diagonal dominant matrices.

Lemma 3.4 (Diagonal dominant matrices). Let H ∈ Mn,n(1, 1) be a square Hermitian complex
matrix. Suppose Hi,i ≥ L > 0 for all i ∈ [n] and let S =

∑
i 6=j |Hi,j |2. Then

rank(H) ≥ L2n2

nL2 + S
= n− nS

nL2 + S
.

We call a matrix H satisfying these two conditions an (L, S)-diagonal dominant matrix.

Proof. First, notice that we can assume w.l.o.g that Hi,i = L for all i. Indeed, otherwise we scale
the i’th row and column by 0 <

√
L/Hii ≤ 1 to get a new Hermitian matrix with L on the diagonal

and with smaller S. Then,

n2L2 = tr(H)2 ≤ rank(H)tr(H2) = rank(H) ·
∑
i,j

|Hi,j |2 = rank(H) · (nL2 + S).

The following claim is an easy consequence of Cauchy-Schwartz (applied coordinate-wise)

Claim 3.5. Let A1, . . . , At ∈Mr,c(1, 1) then∥∥∥∥∥∥
∑
i∈[t]

Ai

∥∥∥∥∥∥
2

2

≤ t ·
∑
i∈[t]

‖Ai‖22.

Another useful claim:

13



Claim 3.6. Suppose C1, . . . , Cq ∈Mr,c(1, 1) are such that
∑

i∈[q]CiC
∗
i = Ir. Then∑

i 6=j
‖C∗i Cj‖

2
2 ≤ r(1− 1/q).

Proof. The sum in the claim is equal to the difference of the two sums:

S1 − S2 =
∑
i,j

‖C∗i Cj‖
2
2 −

∑
i∈[q]

‖C∗i Ci‖
2
2 .

First notice that

S1 =
∑
i,j

tr(C∗i CjC
∗
jCi) =

∑
i,j

tr(CiC
∗
i CjC

∗
j ) = tr(I2r ) = r.

Next notice that, by Claim 3.5, we have

S2 =
∑
i∈[q]

‖C∗i Ci‖
2
2 =

∑
i∈[q]

‖CiC∗i ‖
2
2 ≥ (1/q) ‖Ir‖22 = r/q.

These tow calculations complete the proof.

The bulk of the proof is given in the next lemma.

Lemma 3.7. Suppose M ∈Mm,n(r, c) is a (q, k, t)-design matrix that is scalable. Then

rank(M) ≥ nc− nc

1 +X
,

with
X =

mrq

cnt(q − 1)
.

Proof. Since scaling does not change rank and preserves the property of being a (q, k, t)-design, we
may assume w.l.o.g that M is already scaled (for some ε that we will later send to zero). Notice
that we could, w.l.o.g, assume that the ‘row sums’ of M are perfectly scaled and that the ‘error’ is
only in the column sums (just apply one additional row normalization). That is,

1. For all i ∈ [m],
∑

j∈[n]MijM
∗
ij = Ir.

2. For all j ∈ [n],
∑

i∈[m]M
∗
ijMij = mr

nc Ic+E(ε), where E(ε) is a matrix that goes to zero (entry
wise) with ε going to zero.

Let H = M∗M be nc× nc complex Hermitian matrix. We will show that H is (L, S)-diagonal
dominant with

L =
rm

cn
+ o(1), ε 7→ 0 (3)

and
S ≤ mtr(1− 1/q) + o(1), ε 7→ 0. (4)
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Equation (3) follows from the scaling condition on the columns of M since the diagonal c× c blocks
of H are rm

cn Ic plus error that vanishes with epsilon. We now turn to prove the bound (4) on S (the
sum of squares of off-diagonal entries). We have

S =
∑

j 6=j′∈[n]

∥∥∥∥∥∥
∑
i∈[m]

M∗ijMij′

∥∥∥∥∥∥
2

2

.

Using Claim 3.5 and the fact that the supports of two columns of M intersect in at most t blocks,
we continue:

S ≤ t
∑
i∈[m]

∑
j 6=j′∈[n]

∥∥M∗ijMij′
∥∥2
2
.

Now, applying Claim 3.6 and using the fact that each row of M has at most q non-zero blocks, we
get

S ≤ tmr(1− 1/q).

We can now apply Lemma 3.4 with the above L and S to get that

cn− rank(H) ≤ cnmtr(1− 1/q)

(mr/nc+ o(1))2(nc) +mtr(1− 1/q))

=
cn

1 +X
+ o(1),

with X = mrq
cnt(q−1) . Since this inequality holds for all ε we can take ε to zero and conclude that it

holds without the o(1) term as well. The final observation is that rank(M) = rank(H) and so we
are done.

We can now prove the main rank theorem for design matrices.

Proof of Theorem 1.4. Let A ∈Mm,n(r, c) be a (q, k, t)-design matrix. Let B ∈Mnk,n(r, c) be the
matrix given by Claim 3.2. So B is a (q, k, qt)-design matrix in regular form with rank(B) ≤ rank(A).
By Claim 3.3 B is scalable. Thus, we can apply Lemma 3.7 to conclude that

rank(A) ≥ rank(B) ≥ cn− cn

1 +X
,

with

X =
nkrq

cntq(q − 1)
=

kr

ct(q − 1)
.

This completes the proof.

4 Projective rigidity

Below, we will prove the following rigidity theorem (following some corollaries and preliminaries).

Theorem 4.1 (Rigidity theorem). Let V = (v1, . . . , vn) ∈ (Cd)n be a list of n points in Cd and let
T ⊂

(
[n]
3

)
be a multiset of triples on the set [n] so that all triples in T are collinear in V . Suppose

that
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1. For each i ∈ [n] there are at least k triples in T containing i (counting repetitions).

2. For every i 6= j ∈ [n] there are at most t triples in T containing both i and j (counting
repetitions).

3. For all 0 < ` < d there are at most `
dk triples in T (counting repetitions) so that all of them

intersect at some point and the corresponding triples in V are contained in an `-dimensional
affine subspace.

Then, (V, T ) is r-rigid with

r =

⌊
2d2tn

2dt+ k(d− 1)

⌋
.

For example, if we have a triple system in C2 in which every pair is in exactly one triple and so
that no line contains more than half the points, we get that the configuration is 15-rigid. Indeed,
setting k = (n− 1)/2, d = 2, t = 1, q = 3 the bound on r becomes⌊

8n

4 + (n− 1)/2

⌋
=

⌊
16 · n

n+ 7

⌋
= 15.

We now discuss the implications for δ-SG (Sylvester-Gallai) configurations, defined in [BDWY12].

Definition 4.2 (δ-SG configuration). A list V = (v1, . . . , vn) ∈ (Cd)n is called a δ-SG configuration
if for each i ∈ [n] there exist at least δ(n− 1) values of j ∈ [n] \ {i} for which the line through vi, vj
contains a third point from the set.

A theorem from [DSW14] show that a δ-SG configuration must be contained in a subspace of
dimension at most O(1/δ). We can use Theorem 4.1 to prove the following.

Corollary 4.3. Let V = (v1, . . . , vn) ∈ (Cd)n be a δ-SG configuration and let T be the family of
all collinear triples in V . Suppose that, for every 0 < ` < d, any `-dimensional affine subspace of
Cd contains at most δ`n

d points of V . Then (V, T ) is 4(d+2)
δ -rigid.

Proof. For each line containing r ≥ 3 points we construct a triple multiset of r2 − r triples so
that each point on the line is in exactly 3(r − 1) triples and every pair is in at most 6 triples (see
Lemma 5.1). Taking the union of all these triples we get a family of triples T ′ ⊂ T (containment
as sets, not multisets) and so it is enough to bound the rigidity of the pair (V, T ′). Each point is in
at least k = 3δ(n− 1) triples in T ′ and every pair is in at most 6. To apply Theorem 4.1 we need

to argue that every `-dim affine subspace can contain at most `
dk = 3`δ(n−1)

d intersecting triples in
T ′. If there exist an affine subspace W that violates this inequality then V must contain at least

1 + 2 · 3`δ(n− 1)

d
· 1

6
>
δ`n

d

points of V contradicting the assumptions. Applying Theorem 4.1 we get that (V, T ′) is r-rigid
with

r =

⌊
2d26n

2d6 + δ(n− 1)(d− 1)

⌋
≤ 12d

δ
.
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4.1 The rigidity matrix

For a pair (V, T ) ∈ COL(n, d) we define a matrix A = A(V, T ) ∈ Mm,n(d − 1, d) with m = |T |
called the rigidity matrix of (V, T ). The matrix will be defined so that dn − rank(A) will upper
bound the rigidity of (V, T ). To this end, we first define a certain d− 1× d block that will be used
in the construction of A.

Definition 4.4. Let w = (w1, . . . , wd) ∈ Cd we define the matrix ∆(w) ∈Md−1,d(1, 1) as

∆(w) =


w2 −w1 0 · · · 0
w3 0 −w1 0 · · · 0
· · ·
wd 0 · · · 0 −w1

 .

Notice that, if w1 6= 0, then ker(∆(w)) = span(w).

Definition 4.5 (rigidity matrix). Given (V, T ) ∈ COL(n, d) we construct A = A(V, T ) ∈Mm,n(d−
1, d) with m = |T | as follows: For each triple (i, j, k) ∈ T we add to A a row that has entry ∆(vj−vk)
in position i, entry ∆(vk−vi) in position j, entry ∆(vi−vj) in position k and zero blocks everywhere
else. If T is a multiset and a triple repeats several times, we also repeat the corresponding row in
A the same number of times.

Claim 4.6. If A(V, T ) has rank dn− r then (V, T ) is r-rigid.

Proof. Let P (t) be a smooth curve in KT ⊂ Cnd with P (0) = PV . Let Ṗ (t) be the tangent vector.
Then we claim that A · Ṗ (0) = 0. By the construction of A it is enough to show that, for a triple
(i, j, k) ∈ T we have

∆(vj − vk) · v̇i(0) + ∆(vk − vi) · v̇j(0) + ∆(vi − vj) · v̇k(0) = 0.

This follows by taking the derivative w.r.t the variable t of the d− 1 identities (for ` = 2 . . . d)
that hold for every collinear triple vi, vj , vk and any t.

det

1 vi1(t) vi`(t)
1 vj1(t) vj`(t)
1 vk1(t) vk`(t)

 = 0. (5)

Hence, the vector Ṗ (0) must lie in an r dimensional subspace. This implies that the dimension of
KT at PV is at most r.

4.2 Proof of Theorem 4.1

Let (V, T ) be as in the statement of the theorem and let A = A(V, T ) be the corresponding rigidity
matrix. We may assume w.l.o.g that the vectors v1, . . . , vn forming V are distinct in the first
coordinate (this can be achieved by applying a generic affine transformation).

Claim 4.7. Let w1, . . . , wk ∈ Cd be such that the first coordinate in each wi is non zero and such
that, for all 0 < ` < d, any `-dimensional subspace of Cd contains at most `

dk of the wi’s. Then,
the set of matrices ∆(w1), . . . ,∆(wk) ∈Md−1,d(1, 1) is well-spread.
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Proof. Fix a subspace V ⊂ Cd of dimension 0 < ` < d. We have that dim (∆(wi)(V )) is equal to
`− 1 if wi ∈ V and to ` otherwise. Hence,∑

i∈[k]

dim(∆(wi)(V ) ≥ (k`/d)(`− 1) + (k − (k`)/d)`

=
k`(d− 1)

d
.

We then only have to argue that the definition of well-spread set is satisfied also for the special
case of V = {0} and V = Cd. The first is trivial to see and the second follows since each ∆(wi) is
full rank.

Claim 4.8. The rigidity matrix A ∈Mm,n(d− 1, d) is a (3, k, t)-design matrix.

Proof. By construction, each row of A has three non zero blocks. Pairwise intersections of columns
follow from the assumption that at most t triples contain a particular pair of points. Now, consider
k triples of T containing a particular point vi (we assume at least k such triples exist). The
corresponding blocks in the i’th column of A are given by ∆(vk − vj) with vj , vk being the other
two points in that triple. Notice that all the vectors vk − vj have a non-zero first coordinate and
so we can use the fact that the kernel of ∆(vk − vj) is span(vk − vj). Since we assume that no
`-dimensional affine subspace contains more than `

dk of these k (intersecting) triples, by Claim 4.7,
these k entries will form a well-spread set.

Using the last claim, we can apply Theorem 1.4 to conclude that

dn− rank(A) ≤ dn

1 + k(d−1)
2dt

=
2d2tn

2dt+ k(d− 1)
.

Noticing that the rank is an integer, we can add the floor to the obtained bound. This completes
the proof of the theorem

5 Sylvester-Gallai for subspaces

In this section we prove Theorem 1.6. Let k = δ(n − 1) and assume w.l.o.g that k is an integer.
For each i ∈ [n] pick some basis Bi = {vi1, . . . , vi`} for the subspace Vi. Let AV ∈ Mn`,d(1, 1) be
the matrix whose first ` rows are the elements of B1, the next ` rows are the elements of B2 etc
up to Bn. Our goal is then to prove an upper bound on the rank of AV . For that purpose we will
construct another matrix AC ∈Mm,n(`, `) of high rank such that AC ·AV = 0.

We will now describe how to construct the matrix AC . The first step is to construct a multiset
of triples T ⊂

(
[n]
3

)
. We will use the following simple lemma from [DSW14].

Lemma 5.1. Let r ≥ 3. Then there exists a multiset U ⊂
(
[r]
3

)
of r2 − r triples satisfying the

following properties:

1. For each i ∈ [r] there are exactly 3(r − 1) triples in U containing i as an element.

2. For every pair i, j ∈ [r] of distinct elements there are at most 6 triples in U containing both
i and j as elements.
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Notice that we are using multisets as, for example, if r = 3 we must use the same (and only)
triple with multiplicity 6. Since the pair-wise intersections of the Vi’s are all trivial, every pair of
them spans a 2` dimensional subspace of Cd. We will call a 2` dimensional subspace of Cd special
if it contains at least three of the Vi’s. For every special 2`-dimensional space containing r ≥ 3
spaces among the Vi’s we use Lemma 5.1 to construct a multiset of r2 − r triples on the r spaces
contained in that special subspace satisfying the two conditions of the lemma (we view these triples
as triples in [n] since each subspace is indexed by an element of [n]). We then define the triple
multiset T ⊂

(
[n]
3

)
to be the union (counting multiplicities) of all triples obtained this way (going

over all special 2`-dimensional spaces).

Claim 5.2. The triple multiset T ⊂
(
[n]
3

)
constructed above satisfies the following three conditions

(counting multiplicities).

• If {i, j, k} ∈ T then Vk ⊂ Vi + Vj.

• Each i ∈ [n] appears in at least 3k triples in T .

• Every pair i 6= j appears together in at most 6 triples in T .

Proof. The first item is satisfied since we only take triples contained in a 2` dimensional space
and every pair has trivial intersection (and so spans the entire 2`-dimensional space). To prove
the second item, fix some i ∈ [n] and suppose Vi is contained in s special 2`-dimensional spaces
W1, . . . ,Ws such that Wj contains rj ≥ 3 spaces among the V1, . . . , Vn (including Vi). By the
conditions of the theorem, we know that

∑s
j=1(ri−1) ≥ k. Hence, using the bounds from Lemma 5.1

Vi (or actually i) will be in
∑s

j=1 3(ri − 1) ≥ 3k triples in T . The last item follows from the fact
that a particular pair Vi, Vj can belong to at most one special 2`-dimensional space and then using
the bound on pairs from Lemma 5.1.

We now construct the matrix AC ∈Mm,n(`, `) by adding to AC a specially constructed row (of
`×` blocks) for each triple in T (if a triple repeats more than once we also repeat the corresponding
row the same number of times). The construction of the row is given in the following claim.

Claim 5.3. Let t = {i1, i2, i3} ∈ T , then there exists a row matrix R(t) ∈ M1,n(`, `) with the
following properties.

1. For each i 6∈ {i1, i2, i3}, the i’th block in R(t) is zero.

2. The three blocks of R(t) indexed by i1, i2, i3 are non singular `× ` matrices.

3. The product R(t) ·AV is zero (viewed as an `× d scalar matrix).

Proof. Since Vi1 , Vi2 , Vi3 are all contained in a 2` dimensional space (spanned by any two of them),
every basis element in one of the spaces, say in Vi1 , is spanned by the basis elements in the other
two. Let Bi denote the matrix whose rows are the elements of the basis of Vi. We can thus find
`× ` matrices C2, C3 so that

Bi1 = C2 ·Bi2 + C3Bi3 .

Moreover, both matrices C2, C3 are non singular, since otherwise Vi1 would intersect one of the
spaces Vi2 , Vi3 non-trivialy. Hence, we can take the row R(t) to have the identity ` × ` block in
position i1 and the non singular blocks −C2,−C3 in positions i2, i3 (with zeros everywhere else).
By construction of AV we have that the product R(t) ·AV is zero.
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We now take the matrix AC ∈ Mm,n(`, `) to have the rows (in whatever order we wish) R(t)

for all t ∈ T (counting multiplicities). By the last claim we have that AC ·AV = 0.

Claim 5.4. The matrix AC is a (3, 3k, 6)-design matrix.

Proof. First notice that, by construction, each row of AC has at most three non zero blocks. By
properties of the triple system T , every pair of columns i 6= j will have at most 6 rows of AC in
which both columns are non zero (since there are at most 6 triples in T containing both i and
j). So we only need to show that each column contains at least 3k blocks that form a well spread
(multi)set. By Claim 5.3, each non zero block in AC is non singular and so, by Comment 1.3 , it
is enough to show that each column contains at least 3k non zero blocks. This follows from the
properties of T since each i appears in at least 3k triples.

We now apply Theorem 1.4 to bound the rank of AC :

rank(AC) ≥ `n− `n

1 + k/4
.

Using the identity AC ·AV = 0 we conclude that

rank(AV ) ≤ 4`n

k + 4
<

4`

δ
.

Now, using the fact that the rank is an integer and that we have a strict inequality we can in fact
bound the rank by d4`/δe − 1. This concludes the proof of Theorem 1.6.

6 Incidences between lines and curves

In this section we use Theorem 1.4 to prove a bounds on the incidence structure of arrangements
of lines and curves in Cd. We begin by restating our theorem handling intersections of lines.

Theorem 6.1. Let L1, . . . , Ln ⊂ Cd be distinct lines such that each Li intersects at least k other
lines and, among those k lines, at most k/2 have the same intersection point on Li. Then, the n

lines are contained in an affine subspace of dimension at most
⌊

4n
k+2

⌋
− 1.

This theorem can be equivalently stated as the following statement about two dimensional
subspaces.

Theorem 6.2. Let V1, . . . , Vn ⊂ Cd be distinct two dimensional subspaces such that each Vi non-
trivially intersects at least k other Vj’s and, among those k subspaces, at most k/2 have the same
intersection with Vi. Then

dim(V1 + · · ·+ Vn) ≤
⌊

4n

k + 2

⌋
.

Proof of equivalence of Theorem 6.1 and Theorem 6.2. Suppose Theorem 6.1 holds and proceed to
prove Theorem 6.2 as follows. Let H be a generic affine hyperplane (not passing through the origin)
and let Li = Vi ∩ H be the set of n lines obtained by intersecting each Vi with H. Clearly, the
incidence structure remains the same and so we can apply Theorem 6.1 to claim that the lines
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L1, . . . , Ln are contained in an affine subspace (inside H) of dimension at most
⌊

4n
k+2

⌋
− 1. This

results in a dimension bound of
⌊

4n
k+2

⌋
on the Vi’s since we add back the origin.

In the opposite direction, suppose Theorem 6.2 holds and proceed to prove Theorem 6.1 as
follows. Let L1, . . . , Ln ⊂ Cd be lines as in the theorem. Embed Cd into Cd+1 as the hyperplane
xd+1 = 1. Each line Li defines a two dimensional subspace in Cd+1 by taking its linear span. If
the lines Li span a d′-dimensional affine subspace in Cd then the resulting arrangement of two
dimensional spaces in Cd+1 spans a d′ + 1 dimensional linear subspace. Again, the incidence
structure stays the same and so we can apply Theorem 6.2 and subtract one from the resulting
dimension bound.

6.1 Proof of Theorem 6.2

The overall proof structure is similar to the proof of Theorem 1.6. We pick a basis {ui, vi} ∈ Cd
for each Vi and consider the 2n× d (scalar) matrix AV whose rows are u1, v1, u2, v2, . . . , un, vn. To
upper bound the rank of AV we will construct a matrix AC ∈ Mm,n(1, 2) of high rank such that
AC · AV = 0. As before, each row of AC will come from some dependency (in this case pair-wise
intersection) among the spaces V1, . . . , Vn. More specifically, for every pair Vi, Vj with non trivial
intersection we add a row R ∈ M1,n(1, 2) to AC (rows can be added in whatever order we wish),
where R is constructed as follows. Let a1, b1, a2, b2 ∈ C be such that a1ui+b1vi+a2uj+b2vj = 0 and
with |a1|+ |b1| 6= 0 and |a2|+ |b2| 6= 0 (such coefficients exist since there is non trivial intersection).
We take the row R to have the block (a1, b1) in position i and the block (a2, b2) in position j, with
zeros everywhere else. By construction we have R ·AV = 0 and so we end up with AC ·AV = 0 as
well.

Claim 6.3. The matrix AC constructed above is a (2, k, 1)-design matrix.

Proof. Clearly every row has at most two non zero blocks and a pair of columns can have at most
one row in which both are non zero (the row corresponding to their intersection, if one exists). So
we only need to show that each column has k blocks forming a well spread set. Fix some column i
and let (a1, b1), . . . , (ak, bk) be the k blocks in the i’th column appearing in rows corresponding to
the intersections of Vi with k subspaces Vj1 , . . . , Vjk of which at most k/2 have the same intersection
with Vi. This last condition implies that, of the k row vectors (a1, b1), . . . , (ak, bk), at most k/2
are pairwise linearly dependent. This implies that they satisfy the definition of well-spread blocks.
Indeed, since the blocks are 1× 2, we only need to consider one dimensional subspaces U ⊂ C2 in
the definition of well-spread. For such a subspace, the linear map φi from C2 to C1 defined by a
block (ai, bi) will have a one dimensional image on U if and only if (ai, bi) is not in the orthogonal
complement of U . Since at most k/2 of the (ai, bi) can be in U⊥ we get that∑

i∈[k]

dim(φi(U)) ≥ k

2
=
k

2
dim(U),

as required.

Applying Theorem 1.4 on AC we get that rank(AC) ≥ 2n − 2n
1+k/2 . Hence, rank(AV ) ≤ 4n

k+2 .
Since the rank is integer we get

rank(AV ) = dim

∑
i∈[n]

Vi

 ≤ ⌊ 4n

k + 2

⌋
.
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This completes the proof of the theorem.

6.2 Generalizing to curves

Here we extend Theorem 6.1 to handle curves of higher degree. For our methods to work we must
require that the curves are given in parametric form as the image of a low degree polynomial map.

Definition 6.4. We say that γ ⊂ Cd is a degree r parametric curve if there exists d polynomials
γ1, . . . , γd ∈ C[t] of degree at most r each such that

γ = {(γ1(t), . . . , γd(t)) | t ∈ C}

and at least one of the γi’s is a non constant polynomial.

It is easy to see that a parametric degree r curve as defined above also has degree at most r
under the usual algebraic geometry definition of degree (intersecting it with a generic hyperplane,
we get at most r intersection points). A parametric curve as defined above is also an irreducible
curve as it is the image of an irreducible curve under a polynomial map. Combining these two
facts, and using Bezout’s theorem (see e.g., [Har77]) we can deduce the following.

Claim 6.5. Let γ 6= γ′ be two degree r parametric curves. Then

|γ ∩ γ′| ≤ r2.

We now restate our theorem for curve arrangements.

Theorem 6.6. Let γ1, . . . , γn ⊂ Cd be degree r parametric curves such that each γi intersects at
least k other curves and, among those k curves, at most k/2r have the same intersection point on

γi. Then, the n curves are contained in a subspace of dimension at most 2(r+1)4n
k .

Proof of Theorem 6.6. We take the same general steps appearing in the proof of Theorem 6.1.
First, for each curve γi, let vi0, . . . , vir ∈ Cd be such that

γi =


r∑
j=0

vij · tj : t ∈ C

 .

In other words, vij contains the coefficients of tj in the d polynomials defining γ. Clearly, upper
bounding the dimension of the span of the vij ’s (over all i and j) will give an upper bound for
the dimension of the smallest subspace containing all of the curves. For that purpose, let Γ be the
n(r + 1)× d matrix whose first r + 1 rows are v10, . . . , v1r, second r + 1 rows are v20, . . . , v2r etc.

We will now use the incidences between the curves to construct a design matrix A ∈Mm,n(1, r+
1) so that A · V = 0. Each intersection between a pair of curves will give one row in A as follows.
Suppose γi intersects γi′ for some i and i′. Let t, t′ ∈ C be such that

r∑
j=0

vij · tj =
r∑
j=0

vi′j · (t′)j .

Then, we can add a row R to the matrix A such that the i’th block of R is (1, t, t2, . . . , tr), the
(i′)’th block of R is (1, t′, . . . , (t′)r) and all other blocks are zero. By construction we have that
R · Γ = 0 and so, we will end up with a matrix A such that A · Γ = 0.

All is left is to argue that A is a design matrix.
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Claim 6.7. The matrix A ∈ Mm,n(1, r + 1) constructed above is a (2, k′, r2)-design matrix with
k′ ≥ k/3.

Proof. By construction, each row of A contains at most 2 non-zero blocks. By Bezout’s theorem
(Claim 6.5), two curves can intersect in at most r2 points and so two columns of A can have at
most r2 non zero common indices. To complete the proof we need to show that each columns of
A contains at least k/2 blocks forming a well spread (multi)set. Fix some column i, and notice
that there are at least k non-zero blocks in that column, each corresponding to an intersection of
γi with some other curve. Let t1, . . . , tk ∈ C be such that the k non-zero blocks in the i’th column
are given by (1, tj , . . . , t

r
j) with j = 1 . . . k. Some of the ti’s could be the same (if a single point on

γi is the intersection point with more than one curve). Notice that, by Vandermonde’s theorem, if
we take r+ 1 distinct values of ti then the corresponding blocks (treated as row vectors in Cr+1 are
linearly independent and thus form a basis of Cr+1. Our strategy for picking a large well-spread set
among these k block is as follows: We will greedily pick r+ 1 blocks corresponding to r+ 1 distinct
intersection points and add them to our set. As long as we can find r + 1 distinct intersections
we continue. If we can’t find such a set, it means that all the remaining intersection points on γi
are concentrated in at most r points. Since each point can intersect at most k/2r curves from the
original k (per the conditions of the theorem), there could be at most (k/2r) · r = k/2 points left.
This means that we managed to construct a (multi)set of k′ ≥ k/2 blocks in a way that there is
a partition of them into r + 1 linearly independent sets. It is now easy to see that such a set is
well-spread since a subspace V ⊂ Cr+1 of dimension ` can contain at most k′`

r+1 of the k′ blocks (at
most ` from each of the linearly independent sets in the partition).

To finish the proof we apply Theorem 1.4 to conclude that

rank(A) ≥ (r + 1)n− (r + 1)n

1 + k
2(r+1)r2

.

This implies that

rank(Γ) ≤ (r + 1)n

1 + k
2(r+1)r2

≤ 2(r + 1)4n

k
.

This completes the proof.
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