
Pseudorandomness for Width 2 Branching Programs

Andrej Bogdanov∗ Zeev Dvir † Elad Verbin‡ Amir Yehudayoff§

Abstract

Recently Bogdanov and Viola (FOCS 2007) and Lovett (ECCC-07) constructed
pseudorandom generators that fool degree k polynomials over F2 for an arbitrary con-
stant k. We show that such generators can also be used to fool branching programs
of width 2 and polynomial length that read k bits of inputs at a time. This model
generalizes polynomials of degree k over F2 and includes some other interesting classes
of functions, for instance k-DNF.

The constructions of Bogdanov and Viola and Lovett consist of adding a constant
number of independent copies of a generator that fools linear functions (an ε-biased
set). It is natural to ask, in light of our first result, whether such generators can fool
branching programs of width larger than 2. Our second result is a lower bound showing
that a sum of o(

√
n/ log n) independent copies of any n−O(1)-biased set does not fool

branching programs of width 5. To the best of our knowledge this is the first lower
bound for such constructions.

∗andrejb@tsinghua.edu.cn. ITCS, Tsinghua University, FIT Building 4-608-7. Supported in part by
the National Natural Science Foundation of China Grant 60553001, and the National Basic Research Program
of China Grants 2007CB807900, 2007CB807901.

†zeev.dvir@weizmann.ac.il. Department of Computer Science, Weizmann institute of science, Re-
hovot, Israel. Research supported by Binational Science Foundation (BSF) grant, by Israel Science Founda-
tion (ISF) grant and by Minerva Foundation grant.

‡eladv@tsinghua.edu.cn. ITCS, Tsinghua University, FIT Building 4-608-6. Supported in part by the
National Natural Science Foundation of China Grant 60553001, and the National Basic Research Program
of China Grants 2007CB807900, 2007CB807901.

§amir.yehudayoff@weizmann.ac.il. Department of Computer Science and Applied Mathematics, The
Weizmann Institute of Science, Rehovot, 76100 Israel. Research supported by grants from the Binational
Science Foundation (BSF), the Israel Science Foundation (ISF), the Minerva Foundation, and the Israel
Ministry of Science (IMOS) - Eshkol Fellowship.

1 Introduction

Reingold’s proof [Rei05] that SL = L has brought renewed interest to derandomizing space
bounded computations. Some attempts were made to apply these new techniques towards
resolving the L versus RL question [RTV06, CRV07], but so far without success. The best
known deterministic simulation of randomized logspace is by Saks and Zhou [SZ99], who
show that RSPACE(log n) ⊆ DSPACE(O(log3/2 n)). This construction is based on Nisan’s
generator [Nis92], which is to this date the best pseudorandom source (both in terms of time
and space efficiency) for randomized space bounded computations.

Logarithmic space is one of the simplest models of computation that we know of, yet progress
on improving the use of randomness in this model has been stuck for over a decade now.
One line of attack is to try and derandomize even simpler models of space bounded compu-
tation. In the uniform setting, restricting the model to use less than logarithmic space is not
particularly natural, but there is a good way to specialize the definitions in the nonuniform
setting.

A nonuniform model for a computation that uses space s(n) and runs in time t(n) is a
branching program of width 2s(n) and length t(n). This device can be described by a layered
directed acyclic graph, where there are t(n) layers and each layer contains 2s(n) nodes –
except for last layer which consists of only two nodes, “accept” (1) and “reject” (0). Each
layer j is associated with a bit x|j of the input x. Each node in layer j has 2 outgoing edges
labelled by possible values of the bit x|j. On input x, the computation starts in the first
node in the first layer, then follows the edge labelled by x|1 onto the second layer, and so on
until a node in the last layer is reached. The identity of this last node is the outcome of the
computation.

When s(n) is very small (say constant), it is interesting to generalize the above definition so
that the branching program is allowed to read k > s(n) bits of the input at each step. Now
x|j denotes a k-bit sub-string of the input x (not necessarily consecutive bits) and each node
in layer j has 2k outgoing edges labelled by all possible values of x|j. The computation is
done in the same way as before. One could think of such a branching program as having a
‘global’ space of s(n) bits and a larger ‘local’ space of k bits. For the rest of this paper we
consider this generalized formulation of branching programs.

The nodes in layer j represent the possible states of the randomized space-bounded compu-
tation at time j, and the outgoing edges represent the possible transitions depending on the
contents of the random tape x. The block x|j is the part of the random tape “viewed” by
the machine at time j. In randomized space-bounded computation, we usually restrict the
machine to have one-way access to the random tape. In the branching program setting, this
imposes the requirement that x is the concatenation of all the blocks x|j in order, namely
x = x|1 . . . x|t. That is, at each step we read the ‘next’ k bits of the input, without being
able to go back and look at bits we have already read. We call such a branching program
read-once. General branching programs are much more powerful than read-once branching

1

programs For instance, the inner product function,

IP (x1, . . . , xn) =
∑n/2

i=1
xixn/2+i mod 2, n even,

can be computed by a branching program of width 2 that reads 2 bits at a time but not by
any read-once branching program of width o(n) that reads o(n) bits at a time (note that in
this example the order of the variables is important).

1.1 Pseudorandom Generators

We start by giving a formal definition of a pseudorandom generator against a class of func-
tions.

Definition 1.1. We say a distribution D on {0, 1}n is ε-pseudorandom against a class C
of functions from {0, 1}n to {0, 1} if for every f ∈ C,∣∣Prx∼D[f(x) = 1]− Prx∼{0,1}n [f(x) = 1]

∣∣ ≤ ε

(where x ∼ {0, 1}n means that x is uniformly distributed in {0, 1}n). A function G :
{0, 1}m → {0, 1}n is an ε-pseudorandom generator (PRG) against C if the distribution
G(s), s ∼ {0, 1}m is ε-pseudorandom against C. We call m the seed length of the generator.

We use (k, t, n)-2BP to denote width 2 branching programs of length t that read k bits of
input at a time and compute a function from {0, 1}n to {0, 1}. Our first main result is a
positive one, showing that a PRG for degree k polynomials over F2 is also a PRG for the
class of functions computed by a (k, t, n)-2BP.

Theorem 1.2. Let G be an ε-PRG against degree k polynomials in n variables over F2. Then
G is an ε′-PRG against the class of functions computed by a (k, t, n)-2BP, with ε′ = t · ε.

Recently Lovett [Lov07] (following work by Bogdanov and Viola [BV07]) constructed an
ε-PRG against degree k polynomials in n variables over F2 with seed length 2O(k) · log(n/ε)
by summing together 2k independent copies of a generator against linear functions with bias
ε2O(k)

. Using Theorem 1.2, this automatically yields generators for (k, t, n)-2BP’s with seed
length 2O(k) · log(n · t/ε). Observe that a width 2 branching program that reads k bits at a
time in particular can compute every polynomial of degree k (with t = O(nk)). However,
such programs are strictly stronger than degree k polynomials; e.g., they can compute any
k-DNF.

1.2 Lower Bounds

It is tempting to test the same pseudorandom generator against branching programs of larger
width. In general this is impossible:

2

Theorem 1.3. For every n > 1 and k, there exists a distribution D on {0, 1}n that is
exp(−Ω(n/4k))-pseudorandom against degree k polynomials but is not 0.66-pseudorandom
against read-once width 3 branching programs of length n that read one bit at a time.

This theorem is a consequence of a recent correlation bound of Viola and Widgerson [VW07].
However, we do not find this lower bound completely satisfying, since even though it rules out
general pseudorandom generators for polynomials as a mean to fooling small width branching
programs, it says nothing about the constructions in [BV07, Lov07] – sums of independent
copies of generators against linear functions. Our second main result is the following theorem
which shows the limitations of these constructions.

Theorem 1.4. For every n, ε, and k such that k log(1/ε) <
√

n/2 − 1, there exists a
distribution D such that D is ε-pseudorandom against linear functions over {0, 1}n, but
the sum of k independent copies of D is not 1/3-pseudorandom against width 5 branching
programs of length 2O(log(k log(1/ε)))2 that read one bit at a time.

It is known [MRRW77, FT05] that the seed length of an ε-biased generator must be at least
Ω(log n + log(1/ε)). Therefore, if we want the generator to be efficient, we are restricted to
using ε = poly(n). For this setting of parameters, Theorem 1.4 tells us that for any constant
k and sufficiently large n, a branching program of width 5 and length n will not be fooled
by a sum of k independent ε-biased generators.

The branching programs that realize this lower bound are not read-once, so it does not
rule out the possibility of using sums of independent generators against linear functions
to fool randomized space bounded computations even of width poly(n). We leave it as
an intriguing open question whether Lovett’s generator helps against width 3 and width 4
branching programs (read-once or not). Such devices are fairly powerful: width 3 branching
programs of length t, for instance, can compute all DNF of size t (even for k = 1); this is
a class of functions that has resisted the construction of polynomial size pseudorandom sets
for some time. Width 4 can compute any sparse polynomial with at most t/n terms.

1.3 Proof Technique

It has been known for some time that read-once width 2 branching programs that read
one bit at a time can be fooled by linear generators.1 One way to argue this is to think
of the computation of the branching program B as a boolean function over Fn

2 and show
inductively over the layers of B that the sum of the absolute values of the Fourier coefficients
of B is bounded from above by t. It is easy to see that linear generators of bias ε are
εL-pseudorandom against any boolean function whose sum of absolute values of Fourier
coefficients is at most L, and the correctness follows from there.

1We are not aware of a published proof but have heard the result credited to Saks and Zuckerman.

3

For branching programs that read more than one bit at a time this argument cannot work,
as there exist width 2 branching programs that read 2 bits at a time and that are not fooled
by any small bias linear generator. One such branching program computes the inner product
function IP (x1, . . . , xn). Nevertheless, we argue along the same lines. Instead of using the
Fourier transform of the branching program, we resort to “higher-order” representations of
functions using low-degree polynomials. We show that every branching program B with
length t and width 2 that reads k bits at a time admits a “representation of length t” in
terms of degree k polynomials. By “representation of length t” we mean that B can be
written as a sum over the reals of the form

B(x) =
∑

p:Fn
2→F2

αp · p(x)

where p ranges over all degree k polynomials over F2, and αp are real coefficients such that∑
p|αp| ≤ t. Unlike the Fourier transform, for degree 2 and larger this representation is not

unique. Once this representation is obtained, we argue that a pseudorandom generator for
degree k polynomials is also pseudorandom for B by linearity of expectation.

While our proof is not technically difficult we find the application of “higher-order” Fourier
type analysis conceptually interesting and potentially relevant for other computer science
applications.

1.4 Organization

In Section 2 we prove our main positive result, Theorem 1.2. Then, in Section 3 we show
limitations of existing PRG’s and prove Theorem 1.3 and Theorem 1.4.

2 Fooling width 2 branching programs

Recall that we use (k, t, n)-2BP to denote width 2 branching programs of length t that read
k bits of input at a time and compute a function from {0, 1}n to {0, 1}. For a function
f : {0, 1}n → {0, 1}, we denote f̂ = (−1)f , a map from {0, 1}n to {1,−1}. Define deg(f) to
be the degree of f when viewed as a multilinear polynomial in F2[x1, . . . , xn].

2.1 Width 2 Branching Programs as Sum of Polynomials

The following theorem is the basis for the proof of Theorem 1.2. It shows that width 2
branching programs have a “short representation by polynomials of small degree”.

Theorem 2.1. Let f : {0, 1}n → {0, 1} be computed by a (k, t, n)-2BP. Then there exist
α1, . . . , αs ∈ R and g1, . . . , gs : {0, 1}n → {0, 1} such that

4

1. f̂(x) =
∑s

i=1 αi · ĝi(x) for all x ∈ {0, 1}n (where the sum is over the reals).

2. For all i ∈ [s], deg(gi) ≤ k.

3.
∑s

i=1 |αi| ≤ t.

We defer the proof of Theorem 2.1 to Section 2.2 and proceed by showing how it implies our
main result.

Proof of Theorem 1.2

Let G : {0, 1}m → {0, 1}n be an ε-pseudorandom generator against degree k polynomials in n
variables over F2. Let f : {0, 1}n → {0, 1} be computed by a (k, t, n)-2BP. By Theorem 2.1,
there exist α1, . . . , αs ∈ R and g1, . . . , gs : {0, 1}n → {0, 1} such that

1. f̂(x) =
∑s

i=1 αi · ĝi(x) for all x ∈ {0, 1}n.

2. For all i ∈ [s], deg(gi) ≤ k.

3.
∑s

i=1 |αi| ≤ t.

For the rest of the proof x ∼ {0, 1}n and s ∼ {0, 1}m denote two independent random
variables. First, note that for every function f : {0, 1}n → {0, 1},

2 ·
∣∣ Pr[f(G(s)) = 1]− Pr[f(x) = 1]

∣∣ =
∣∣E[f̂(G(s))− f̂(x)]

∣∣.
Thus, using the properties above, and using the linearity of expectation,

2 ·
∣∣ Pr[f(G(s)) = 1]− Pr[f(x) = 1]

∣∣ =
∣∣∣E[

f̂(G(s))− f̂(x)
]∣∣∣

=
∣∣∣ ∑s

i=1
αi · E[ĝi(G(s))− ĝi(x)]

∣∣∣
≤

∑s

i=1
|αi| ·

∣∣∣E[ĝi(G(s))− ĝi(x)
]∣∣∣

=
∑s

i=1
|αi| · 2 ·

∣∣ Pr[gi(G(s)) = 1]− Pr[gi(x) = 1]
∣∣

≤ 2 · t · ε,

where the last inequality holds since G is an ε-pesudorandom generator against degree k
polynomials. The theorem now follows.

5

2.2 Proof of Theorem 2.1

Let f be a boolean function computed by a branching program B of width 2 and length t
that reads k bits of inputs at a time. We will prove the theorem by induction on t.

Induction base: For the case t = 1, the theorem holds since f(x) is a boolean function in
k variables and so deg(f) ≤ k.

Induction step: Assume that the theorem holds for every function computed by a (k, t−
1, n)-2BP. By the definition of such branching programs, there exists P : {0, 1}k+1 → {0, 1}
such that

f(x) = P (ft−1(x) , x|t−1) ,

where ft−1 is the function computed at the (t − 1)’th layer of B, and x|t−1 is the k-bit
substring of the input x associated with the (t− 1)’th layer. Using the representation of P̂
by Fourier transform, there exist two maps A and B from {0, 1}k to R such that for every
z ∈ {0, 1} and y ∈ {0, 1}k,

P̂ (z, y) = A(y) · (−1)z + B(y) .

We will now show that both A and B have a special structure. Let p0 and p1 be two maps
from {0, 1}k to {0, 1} defined as

p0 = P (0, y) and p1 = P (1, y).

Note that since both of p0 and p1 depend on at most k variables, deg(p0) ≤ k and deg(p1) ≤ k.
In addition,

p̂0 = A + B and p̂1 = −A + B.

Thus,

A =
1

2
(p̂0 − p̂1) and B =

1

2
(p̂0 + p̂1),

which implies that for every z ∈ {0, 1} and y ∈ {0, 1}k,

P̂ (z, y) =
1

2
(p̂0(y)− p̂1(y)) · (−1)z +

1

2
(p̂0(y) + p̂1(y)).

We can now use the induction hypothesis. By the choice of P , for every x ∈ {0, 1}n,

f̂(x) = P̂ (ft−1(x), x|t−1) =
1

2
(p̂0(x|t−1)− p̂1(x|t−1)) · ˆft−1(x) +

1

2
(p̂0(x|t−1) + p̂1(x|t−1)).

By induction, there exist α1, . . . , αs ∈ R and g1, . . . , gs : {0, 1}n → {0, 1} such that

1. ˆft−1(x) =
∑s

i=1 αi · ĝi(x) for all x ∈ {0, 1}n.

6

2. For all i ∈ [s], deg(gi) ≤ k.

3.
∑s

i=1 |αi| ≤ t− 1.

Thus, for all x ∈ {0, 1}n

f̂(x) =
1

2
(p̂0(x|t−1)− p̂1(x|t−1)) ·

∑s

i=1
αi · ĝi(x) +

1

2
(p̂0(x|t−1) + p̂1(x|t−1)).

We complete the proof by renaming the polynomials and the coefficients in the above sum.
For j = 1, . . . , s, set

βj =
αj

2
and hj(x) = p0(x|t−1)⊕ gj(x)

and for j = s + 1, . . . , 2s, set

βj = −αj−s

2
and hj(x) = p1(x|t−1)⊕ gj(x)

(where ⊕ denotes summation in F2). Set β2s+1 = β2s+2 = 1/2, set h2s+1(x) = p0(x|t−1), and
set h2s+2(x) = p1(x|t−1). Finally, set s′ = 2s + 2. Thus,

f̂(x) =
∑s′

j=1
βj · ĥj(x)

for all x ∈ {0, 1}n. In addition, every hj is of degree at most k (since addition in F2 does
not increase the degree), and∑s′

j=1
|βj| ≤ 1 + 2 ·

∑s

i=1

|αi|
2

≤ 1 + (t− 1) = t.

3 Limitations of Existing PRG’s

In this section we explore the limitations of pseudorandom generators of two kinds. First,
we show that pseudorandom generators for degree k polynomials fail for read-once width 3
branching programs (Theorem 1.3). Second, we show that a sum of several copies of pseudo-
random generators for linear functions fail for width 5 branching programs (Theorem 1.4).

3.1 Proof of Theorem 1.3

We derive Theorem 1.3 from a special case of a correlation bound of Viola and Widgerson.
Let ω = e2πi/3 be the cube root of unity and mod3 : {0, 1}n → C denote the function

mod3(x1, . . . , xn) = ωx1+···+xn

where the summation x1 + · · ·+ xn is evaluated over the integers.

7

Theorem 3.1 (Viola and Wigderson [VW07]). There is a constant α > 0 such that for
every n and every polynomial p : Fn

2 → F2 of degree k,∣∣Prx∼{0,1}n [p(x) = 1 | mod3(x) = 1]−Prx∼{0,1}n [p(x) = 1 | mod3(x) 6= 1]
∣∣ ≤ exp(−αn/4k).

Assume n > 100. Let D be the uniform distribution on the set of all x ∈ Fn
2 such that

mod3(x) = 1.

We will first show that D is exp(−Ω(n/4k))-pseudorandom against degree k polynomials.
For every polynomial p : Fn

2 → F2 of degree k,

Ex∼{0,1}n [p(x)] = E[p(x) | mod3(x) = 1]Pr[mod3(x) = 1]

+ E[p(x) | mod3(x) 6= 1]Pr[mod3(x) 6= 1]

= E[p(x) | mod3(x) = 1]

+ (E[p(x) | mod3(x) 6= 1]− E[p(x) | mod3(x) = 1])Pr[mod3(x) 6= 1].

Therefore, by Theorem 3.1,∣∣Ex∼{0,1}n [p(x)]−Ex∼D[p(x)]
∣∣ ≤ ∣∣E[p(x) | mod3(x) 6= 1]−E[p(x) | mod3(x) = 1]

∣∣ ≤ exp(−αn/4k).

so D is exp(−αn/4k)-pseudorandom against all degree k polynomials.

We will now show that D is not 0.66-pseudorandom against read-once width 3 branching
programs of length n that read one bit at a time. Let f : {0, 1}n → {0, 1} be the function

f(x) =

{
1, if mod3(x) = 1

0, otherwise.

Then Ex∼D[f(x)] = 1 while

Ex∼{0,1}n [f(x)] =
1

3
· Ex∼{0,1}n [1 + mod3(x) + mod3(x)2]

and for a ∈ {1, 2}

|Ex∼{0,1}n [mod3(x)a]| = |(Ex1∼{0,1}[ω
ax1])n| =

∣∣∣(1 + ωa

2

)n∣∣∣ = 2−n

so that ∣∣Ex∼{0,1}n [f(x)]
∣∣ ≤ 1/3 + 2−n+1/3 < 0.34

and D is not 0.66-pseudorandom against f . Since f can be computed by a read-once width
3 branching program that reads one bit at a time, the proof is complete.

8

3.2 Proof of Theorem 1.4

Set m = k log(1/ε) + 1 and partition the input x ∈ Fn
2 into n/m consecutive blocks

x|1, . . . , x|n/m ∈ Fm
2 . Consider the following distribution D.

1. Choose a random linear subspace S of Fm
2 of dimension (m− 1)/k.

2. For 1 ≤ i ≤ n, choose each block x|i independently and uniformly from S.

To prove Theorem 1.4, we show the following two claims.

Claim 3.2. The distribution D is ε-pseudorandom against linear functions.

Claim 3.3. The sum Dk of k independent samples from D is not 1/3-pseudorandom against
bounded fanin circuits (with and, or, and not gates) of depth O((log m)2).

By Barrington’s theorem [Bar89], any circuit of depth d can be simulated by a branching
program of width 5 and size 4d, so Dk is not pseudorandom against width 5, size 2O((log m)2)

branching programs. This proves the theorem.

Proof of Claim 3.2. Let a(x) = 〈a, x〉 be an arbitrary nonzero linear function over Fn
2 . We

split a as a sum of linear functions ai over the blocks of x as

a(x) =
∑n/m

i=1
ai(x|i).

Without loss of generality, let’s assume a1 is nonzero. Conditioned on the choice of S, the
values of the functions ai(x|i) are independent:

Ex∼D[(−1)a(x)] = ES

[∏m/n

i=1
Ex|i∼S[(−1)ai(x|i)]

]
.

Now for any fixed choice of S, the value Ex|i∼S[(−1)ai(x|i)] is one if ai ∈ S⊥ and zero otherwise.
Here

S⊥ = {y : 〈y, x〉 = 0 for all x ∈ S}.

Therefore

|Ex∼D[(−1)a(x)]| = Pr[for all i, ai ∈ S⊥] ≤ Pr[a1 ∈ S⊥] = 2−(m−1)/k = ε

and so |Ex∼D[a(x)]− 1/2| ≤ ε/2 < ε.

Proof of Claim 3.3. Let X1, . . . , Xk be independent samples from the distribution D and
X = X1 + · · · + Xk. Let Si denote the subspace of Fm

2 associated to the sample Xi. Since
each block of Xi belongs to the subspace Si, each block of X will belong to the sum of
subspaces S = S1 + · · ·+ Sk. The subspace S has dimension at most m− 1.

9

This suggests the following test for X: Arrange the first 2m blocks of X as rows in an m×2m
matrix M and compute the rank of M over F2. (By our choice of parameters, 2m2 ≤ n so
this is always possible.) If the matrix has full rank output one, otherwise output zero. If X
is chosen from Dk, then all the rows of M are chosen from the same subspace of dimension
m− 1 so M will never have full rank. If X is chosen from the uniform distribution, then M
is a random m× 2m matrix and, by a union bound, the probability it doesn’t have full rank
is at most 2−m < 1/3.

It remains to observe that the above test, which is essentially a rank computation, can be
implemented by a circuit of depth O((log m)2) via Cook’s theorem [Coo85].

4 Acknowledgments

We thank Anup Rao for helpful conversations on this problem. This work was done while
the authors took part in “China Theory Week” workshop at Tsinghua University. We would
like to thank the organizers of the workshop and in particular Andy Yao for their hospitality.

References

[Bar89] D. A. Barrington. Bounded-width polynomial-size branching programs recognize
exactly those languages in NC1. J. Comput. Syst. Sci., 38(1):150–164, 1989.

[BV07] A. Bogdanov and E. Viola. Pseudorandom bits for polynomials. In Proceedings
of the IEEE Symposium on Foundations of Computer Science, 2007.

[Coo85] Stephen A. Cook. A taxonomy of problems with fast parallel algorithms. Inf.
Control, 64(1-3):2–22, 1985.

[CRV07] K. M. Chung, O. Reingold, and S. Vadhan. S-t connectivity on digraphs with
a known stationary distribution. In IEEE Conference on Computational Com-
plexity, pages 236–249, 2007.

[FT05] Joel Friedman and Jean-Pierre Tillich. Generalized Alon–Boppana theorems
and error-correcting codes. SIAM J. Discret. Math., 19(3):700–718, 2005.

[Lov07] S. Lovett. Unconditional pseudorandom generators for low degree polynomials.
ECCC, TR07-75, 2007.

[MRRW77] R. J. McEliece, E. R. Rodemich, H. Rumsey, and L. R. Welch. New upper bound
on the rate of a code via the Delsarte-MacWilliams inequalities. IEEE Trans.
Inform. Theory, 23(2):157–166, 1977.

10

[Nis92] N. Nisan. Pseudorandom generators for space-bounded computation. Combina-
torica, 12(4):449–461, 1992.

[Rei05] O. Reingold. Undirected st-connectivity in log-space. In Proceedings of the
annual ACM Symposium on Theory of Computing, pages 376–385, 2005.

[RTV06] O. Reingold, L. Trevisan, and S. Vadhan. Pseudorandom walks on regular
digraphs and the rl vs. l problem. In Proceedings of the annual ACM Symposium
on Theory of Computing, pages 457–466, 2006.

[SZ99] M. E. Saks and S. Zhou. bpHspace(s) ⊆ dspace(s3/2). Comput. Syst. Sci.,
58(2):376–403, 1999.

[VW07] E. Viola and A. Wigderson. Norms, xor lemmas, and lower bounds for gf(2)
polynomials and multiparty protocols. In IEEE Conference on Computational
Complexity, 2007.

11

