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Abstract

We study questions in incidence geometry where the precise position of points is ‘blurry’
(e.g. due to noise, inaccuracy or error). Thus lines are replaced by narrow tubes, and more
generally affine subspaces are replaced by their small neighborhood. We show that the
presence of a sufficiently large number of approximately collinear triples in a set of points
in Cd implies that the points are close to a low dimensional affine subspace. This can be
viewed as a stable variant of the Sylvester-Gallai theorem and its extensions.

Building on the recently found connection between Sylvester-Gallai type theorems and
complex Locally Correctable Codes (LCCs), we define the new notion of stable LCCs, in
which the (local) correction procedure can also handle small perturbations in the euclidean
metric. We prove that such stable codes with constant query complexity do not exist. No
impossibility results were known in any such local setting for more than 2 queries.

1 Introduction

The Sylvester-Gallai theorem is a statement about configurations of points in Rd in which
there is a certain structure of collinear triples.

Theorem 1.1 (Sylvester-Gallai). Suppose v1, . . . , vn ∈ Rd are such that for all i 6= j ∈ [n]
there is some k ∈ [n] \ {i, j} for which vi, vj , vk are on a line. Then all the points v1, . . . , vn
are on a single line.

This theorem takes local information about dependencies between points and concludes
global information about the entire configuration. For more on the history and generalizations
of this theorem we refer to the survey [BM90]. A complex variant of this theorem was proved
by Kelly:

Theorem 1.2 ([Kel86]). Suppose v1, . . . , vn ∈ Cd are such that for all i 6= j ∈ [n] there is
some k ∈ [n] \ {i, j} for which vi, vj , vk are on a (complex) line. Then all the points v1, . . . , vn
lie on a single (complex) plane.
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The global dimension bound given by Kelly’s theorem is tight since, over the complex
numbers, there are two-dimensional configurations of points satisfying the condition on triples.

In a recent work, Barak et. al. [BDWY11] proved quantitative (or fractional) analogs of
Kelly’s theorem in which the condition ‘for all i 6= j ∈ [n]’ is relaxed and we have information
only on a large subset of the pairs of points for which there exists a third collinear point1.

Theorem 1.3 ([BDWY11]). Suppose v1, . . . , vn ∈ Cd are such that for all i ∈ [n] there exist
at least δ(n− 1) values of j ∈ [n] \ {i} for which there is k ∈ [n] \ {i, j} such that vi, vj , vk are
on a line. Then all the points v1, . . . , vn lie in an affine subspace of dimension 13/δ2.

A more recent work [DSW12] improves the dimension upper bound obtained in the above
theorem from O(1/δ2) to the asymptotically tight O(1/δ) and also gives a new proof of Kelly’s
theorem (when δ = 1 one gets an upper bound of 2 on the dimension).

In this work we consider configurations of points in which there are many triples that
are ‘almost’ collinear, in the sense that there is a line close to all three points (in the usual
Euclidean metric on Cd). Equivalently, the points are contained in a narrow tube. Our goal
is to prove stable analogs of the above theorems, where stable means that the conclusion
of the theorem will not change significantly when perturbing the point set slightly. Clearly,
in such settings one can only hope to prove that there is a low dimensional subspace that
approximates the set of points. There are many technical issues to discuss when defining
approximate collinearity and there are some non trivial examples showing that word-to-word
generalizations of the above theorems do not hold in the approximate-collinearity setting (at
least for some of the possible definitions). Nonetheless, we are able to prove several theorems
of this flavor for configurations of points satisfying certain ‘niceness’ conditions. We also study
stable variants of error correcting codes (over the reals) which are locally correctable, in which
such approximately collinear tuples of points naturally arise from the correcting procedure.

In [BDWY11], a connection was made between the Sylvester-Gallai theorem to a special
kind of error correcting codes called Locally Correctable Codes (LCCs). In these codes, a
receiver of a corrupted codeword can recover a single symbol of the codeword correctly, making
only a small number of queries to the corrupted word. When studying linear LCCs over the
real or complex numbers one encounters the same type of difficulties in trying to convert local
dependencies into global dimension bounds. Building on this connection, and our ability to
analyze ‘approximate’ linear dependencies, we define the notion of stable LCC and show that
these do not exist for constant query complexity. Stable LCCs correspond to configurations of
points with many approximately dependent small subsets and so our techniques can be used
to analyze them.

We note here that understanding the possible intersection structure of tubes in high di-
mensional real space comes up in connection to other geometric problems, most notably the
Euclidean Kakeya problem [Tao01] (we do not, however, see a direct connection between our
results and this difficult problem).

Our proof techniques extend those of [BDWY11, DSW12] and rely on high rank properties
of sparse matrices whose support is a ‘design’. In this work we go a step further and, instead of

1The sets of points satisfying the conditions of the theorem were called δ-SG configurations in [BDWY11].
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relying on rank alone, we need to bound the number of small singular values of such matrices.

Organization: In Section 2 we formally state our results for point configurations. The
results are stated in several sub-sections, corresponding to different variants of the problem we
consider. In Section 3 we define stable LCCs and state our results in this scenario. The proofs
are given in Sections 4 – 7.

Notations: We use big ‘O’ notation to suppress absolute constants only. For two complex
vectors u, v ∈ Cd we denote their inner product by 〈u, v〉 =

∑d
i=1 ui · vi and use ‖v‖ =

√
〈v, v〉

to denote the `2 norm. For an m × n matrix A, we denote by ‖A‖ the norm of A as a
vector of length mn (i.e., the Forbenius norm). The distance between two points u, v ∈ Cd
is defined to be ‖u − v‖ and is denoted dist(u, v). For a set S ⊂ Cd and a point v ∈ Cd we
denote dist(v, S) = infu∈S dist(u, v). We let Sd ⊂ Cd+1 denote the d-dimensional unit sphere
in complex d+ 1 dimensional space. By fixing a basis we can identify each v ∈ Sd with a d+ 1
length complex vector of `2-norm equal to one.

2 Point configurations

In this section we state our results concerning point configurations. The first section, Sec-
tion 2.1 deals with the most natural setting – the affine setting – in which we consider sets
of points in Cd with many almost-collinear triples. In Section 2.2 we consider the projective
setting where the points are located on the sphere and collinearity is replaced with linear
dependence. Section 2.3 states a more general theorem from which both the affine and the
projective results follow.

2.1 The affine setting

We begin with the definition of an ε-line.

Definition 2.1 (line,lineε). Let u 6= v ∈ Cd. We define line(u, v) = {αu+(1−α)v |α ∈ C} to be
the complex line passing through u, v. We define lineε(u, v) = {w ∈ Cd | dist(w, line(u, v)) ≤ ε}.

The following definition will be used to replace the notion of dimension with a more stable
definition.

Definition 2.2 (dimε). For a set of points V ⊂ Cd and ε > 0 we denote by dimε(V ) to be the
minimal k such that there exists a k-dimensional subspace2 L ⊂ Cd such that dist(v, L) ≤ ε for
all v ∈ V .

To give an idea of the subtleties that arise when dealing with approximate collinearity,
take an orthonormal basis e1, . . . , ed in Cd and consider the set V = {e1, e′1, . . . , ed, e′d} with

2The difference of 1 between affine and linear dimension will not be significant in this paper and so we use
a linear subspace in the definition.

3



e′i = (1 + ε)ei. Clearly, there is no low dimensional subspace that approximates this set of
points, even though there are many pairs for which there is a third ε-collinear point (e′i is
ε-close to the line passing through ei and any other third point). An obvious solution to
this problem is to require that the minimal distance between each pair of points is bounded
from below (say by 1), so that the condition of ε-collinearity is meaningful. We now describe
another, less trivial, example which shows that this condition alone is not sufficient in general.

Example 2.3. Let e1, . . . , ed be an orthonormal basis in Cd. Let vi = Bei, ui = (B − 1)ei
for all i ∈ [d] and let V = {ei, ui, vi | i ∈ [d]} be a set of n = 3d points. Then for all i, j ∈ [d]
we have ui ∈ lineε(vi, ej) and vi ∈ lineε(ui, ej) with ε = 1/B. Thus, there are many ε-collinear
triples in V (as in the conditions of Theorem 2 with δ = 1/3). However, for any subspace L
of dimension o(n), the distance of at least one of the point vi to L must be at least Ω(B) (this
can be shown, e.g., using Lemma 4.3).

In this example, we had ε = 1/B, where B is roughly equal to the ratio between the smallest
and the largest distance, or the ‘aspect ratio’ of V . We will prevent this scenario by requiring
that ε will be sufficiently smaller than 1/B, where B will be the aspect ratio. This motivates
the following definition.

Definition 2.4 (B-balanced). A set V ⊂ Cd is said to be B-balanced if 1 ≤ dist(v, v′) ≤ B for
all v 6= v′ ∈ V .

The following theorem gives the most easy to state version of our results.

Theorem 1. Let n, d > 0 be integers and let B, ε > 0 be real numbers with ε < 1/16B. Let
V = {v1, . . . , vn} ⊂ Cd be B-balanced and suppose that for every i 6= j ∈ [n] there exists
k ∈ [n] \ {i, j} such that vk ∈ lineε(vi, vj). Then, dimε′(V ) ≤ O(B6) with ε′ ≤ O(εB2.5).

Observe that a corollary of this theorem is that the number of points, n, is bounded from
above by a function of B. A priori, we did not have this bound since a B-balanced configuration
in Cd can have an unbounded number of points when d grows.

Notice that our definition of ε-collinearity is not symmetric in that it depends on the order
of the triple. As is shown in Lemma 5.2, this is not an issue for B-balanced configurations,
as long as we are willing to replace ε with εB. For general (i.e., non balanced) configurations
the situation can be more complicated and it is possible that using a stronger collinearity
condition (e.g., requiring that any permutation of the triple satisfies our condition) is sufficient
for obtaining a global dimension bound.

Theorem 1 will be a special case of the following, more general theorem, in which we
only have information of a subset of the pairs (i, j). Assuming V has many ε-collinear triples
(for each point), we derive an upper bound on dimε′(V ) for ε′ which depends on the other
parameters. We also derive a better bound on ε′ when restricting to a subset of the points.

Theorem 2. Let n, d > 0 be integers. Let B, δ, ε > 0 be real numbers with ε < 1/16B. Let
V = {v1, . . . , vn} ⊂ Cd be B-balanced and suppose that for every i ∈ [n] there are at least
δ(n− 1) values of j ∈ [n] \ {i} for which there exists k ∈ [n] \ {i, j} such that vk ∈ lineε(vi, vj).
Then
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1. dimε′(V ) ≤ O(B6/δ2) with ε′ ≤ O(εB2.5/δ0.5).

2. There exists a subset V ′ ⊂ V of size Ω(n) with dimε′′(V
′) ≤ O(B6/δ2) and ε′′ ≤ O(Bε).

In both of the above theorems, the parameter B appears in the resulting global dimension
bound. We suspect that this dependence can be removed so that the bound on the dimension
will be O(1) in Theorem 1 and O(1/δ2) (or even O(1/δ)) in Theorem 2. The blowup in ε′,
compared to ε is also likely to be suboptimal.

A stronger definition of collinearity, for which Example 2.3 fails, is to require that each
point in the triple is ε-close to the line spanned by the other two points. Let us call such
triples strongly ε-collinear triples. It is easy to see that, in Example 2.3, the triples do not
satisfy this stronger definition. Thus, it is possible that one could prove analogs of Theo-
rem 2 for configurations that are not B-balanced using this stronger definition of approximate
collinearity.

We conclude this discussion with yet another example showing that, even for the case δ = 1
(i.e, the original Sylvester-Gallai condition) the weak definition of ε-collinearity requires some
balancedness condition (though potentially weaker).

Example 2.5. Fix some large B > 0. Take an orthonormal basis e1, . . . , ed ∈ Cd and define
V = {0} ∪

⋃
i∈[d]

{
Bi−1ei, (B

i−1 + 1)ei
}

. One can verify by induction that for every u, v ∈ V
there is a third point inside lineε(u, v) with ε ≈ 1/B. There is also no low dimensional subspace
that approximates V (similar to the previous examples).

2.2 The projective setting

Since the definition of ε-collinearity (that is, vk ∈ lineε(vi, vj)) is sensitive to scaling, a projective
statement of Theorem 2, in which these scaling issues do not arise, seems natural. In this setting
we consider points on a sphere and lines are replaced by circles (two dimensional subspaces
intersected with Sd).

Definition 2.6 (circ,circε). Let u, v ∈ Sd. We define circ(u, v) = span{u, v} ∩ Sd. We define
circε(u, v) = {w ∈ Sd | dist(w, circ(u, v)) ≤ ε}.

An instructive example in the projective case is the following:

Example 2.7. Take V to be a maximal set in Sd with pairwise distances at least µ > 0 (so
that n ≈ (c/µ)d with c a constant). Since every point in Sd is of distance at most µ from one
of the points in V (otherwise we could add it) we get that each set circµ(vi, vj) contains at least
Ω(1/µ) > 2 points from V . On the other hand, for any low dimensional subspace L (say, with
dimension d′ independent of n) almost all points in V will have distance at least 1/100 from
L.

From this example we see that there needs to be some upper bound on ε as a function of
the minimal distance in the set. We will use the following definition to replace B-balancedness.

Definition 2.8 (µ-separated). A set V ⊂ Sd is said to be µ-separated if for every u 6= v ∈ V
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we have min{dist(u, v), dist(u,−v)} ≥ µ.

We now state our theorem for points on a sphere.

Theorem 3. Let n, d > 0 be integers and let δ, µ, ε > 0 be real numbers with ε < µ2/32. Let
V = {v1, . . . , vn} ⊂ Sd be µ-separated and suppose that for every i ∈ [n] there are at least
δ(n− 1) values of j ∈ [n] \ {i} for which there exists k ∈ [n] \ {i, j} such that vk ∈ circε(vi, vj).
Then

1. dimε′(V ) ≤ O(1/δ2µ6) with ε′ ≤ O(ε/δ0.5µ2.5).

2. There exists a subset V ′ ⊂ V of size Ω(n) with dimε′′(V
′) ≤ O(1/δ2µ6) and ε′′ ≤ O(ε/µ).

Notice that, when compared with Theorem 3, the parameters µ corresponds to 1/B. How-
ever, the condition on ε < µ2/32 is more restrictive in this case. We do not know whether this
condition can be improved to ε ≤ O(µ). As is the case with Theorem 3, we do not expect the
dependency in the dimension bound and in ε′ to be tight.

2.3 The general statement

Both Theorem 2 and Theorem 3 will follow from a more general statement requiring a set of
points with a family of ε-dependent triples satisfying certain conditions.

Definition 2.9 ((ε, µ)-dependent). We say that a triple of points u, v, w ∈ Cd is (ε, µ)-
dependent if there exists complex numbers α, β, γ with |α|, |β|, |γ| ∈ [µ, 1] such that

‖αu+ βv + γw‖ ≤ ε.

Definition 2.10 ((p, g)-design). Let T ⊂
(
[n]
3

)
be a family of triples in [n]. We say that T is

a (p, g)-design if

1. For all i ∈ [n] there are at least p triples in T that contain i.

2. For all i 6= j ∈ [n] there are at most g triples in T containing both i and j.

The following theorem gives a low dimensional subspace that approximates all points in a
configuration in which there is a design of triples that are (ε, µ)-dependent. Below we will also
prove a slightly more refined statement (see Theorem 4.1) giving better distance from L for
many points in the configuration.

Theorem 4. Let n, d > 0 be integers and p, g, δ, µ, ε > 0 be real numbers. Let V = {v1, . . . , vn} ⊂
Cd, T ⊂

(
[n]
3

)
be such that T is (p, g)-design, and for every {i, j, k} ∈ T the triple vi, vj , vk is

(ε, µ)-dependent. Then,

dimε′(V ) ≤ 2n2g2

p2µ4

with

ε′ ≤
5ε
√
g|T |

pµ2
.
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A setting of the parameters which will be most relevant to us is when |T | is quadratic in
n, p is linear in n and g and µ are constants. In this case we get a constant upper bound on
the dimension dimε′(V ) with ε′ = O(ε).

The proof of Theorem 4 is given in the next section with the proofs of Theorems 2 and 3
in Sections 5 and 6 respectively. We give a high level overview of the proof below.

Proof overview: We place the points v1, . . . , vn as rows in a matrix A. We then use the
triple family T to construct a matrix M such that

• M is a |T | × n matrix whose support is determined by T . More precisely, the non zero
coordinates of the t’th row of M , with t ∈ T , will be the three elements in t.

• The values of the entries of M will be in absolute value between µ and 1.

• The product M ·A will have small Forbenius norm.

We then observe that the matrix X = M∗M is diagonal dominant (its diagonal elements
are much larger than its off-diagonal elements). This implies, using the Hoffman-Wielandt
inequality, that M has only a few small singular values. From this we get that the columns of
A must have small distance (on average) to the span of the small singular vectors of M and so
can be approximated well by a low dimensional space. We then show that the same statement
holds when one replaces the columns of A with the rows of A (a fact which generalizes the
simple fact that the row rank is equal to the column rank). Using the bound on the average
distance of rows we argue that there is a large subset that is approximated well by a low
dimensional subspace. We then extend this to all points using interpolation.

3 Stable Locally Correctable Codes

Before discussing local correction, we briefly mention the exciting recent developments re-
garding ‘standard’ (non-local) error correcting codes over the reals. Like in the analogous
theory over finite fields, one would like to encode (typically via a linear transformation)
a vector of entries from a given field F by a longer one, such that the original message
can be decoded even when some entries of the codeword are corrupted. The breakthrough
of ‘compressed sensing’ by Donoho and Candes-Tao, and subsequent developments (see e.g.
[CT05, RV05, Don06, KT07, DMT07, GLW09]) has lead to an understanding of codes over
the reals that is almost as good as in the finite-field case. In particular, there are real-valued
codes which achieve the gold-standard of coding theory of constant rate linear codes with effi-
cient encoding and decoding algorithms from a linear number of errors of arbitrary magnitude.
Moreover, these codes have stable versions which can recover a vector close to the original
message even if small errors affect all coordinates of the encoding. Our local variant may be
viewed as one local analog of such stable codes.

Informally, Locally Correctable Codes (LCCs) are error correcting codes that allow the
transmission of information over a noisy channel so that the symbols of the transmitted words
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have many local dependencies between them. The most general definition requires that one can
reconstruct (w.h.p) any coordinate in a possibly corrupted codeword, using a small number of
(randomly chosen) queries to the other coordinates. The noise model is adversarial, meaning
that the corrupted positions are arbitrary (and not random) and one only has a bound on the
total number of errors (which is usually assumed to be a small constant fraction). LCCs are
closely related to another type of codes - Locally Decodable Codes (LDCs)– whose study was
initiated in a work of Katz and Trevisan [KT00]. We refer the interested reader to [Yek11] for
the relevant background on LDCs and LCCs and their applications in computer science.

The connection between LCCs and the Sylvester-Gallai theorem was first observed in
[BDWY11]. When studying the special case of linear LCCs (i.e., LCCs that are given by
linear mappings over a field) one can easily show that LCCs are equivalent to point configura-
tions with many linearly dependent small subsets. The general definition of linear LCCs is as
follows (we fix the field to be C but the same definition works for any field). We use w(v) to
denote the number of non zero elements in a vector v ∈ Cn.

Definition 3.1 (Linear LCC – first definition). A (q, δ)-LCC over C is a linear subspace
U ⊂ Cm such that there exists a randomized decoding procedure D : Cm × [m] 7→ C with the
following properties:

1. For all x ∈ U , for all i ∈ [m] and for all v ∈ Cm with w(v) ≤ δm we have that
D (x+ v, i) = xi with probability at least 3/4 (the probability is taken only over the
internal randomness of D).

2. For every y ∈ Cm and i ∈ [m], the decoder D(y, i) reads at most q positions in y.

The dimension of an LCC is simply its dimension as a subspace of Cm.

It is shown in [BDWY11] that, w.l.o.g. the decoding procedure is linear, in the sense that
it first picks a set of at most q coordinates to read and then outputs a linear combination of
them (with coefficients in C). This linearity of the decoder implies that, for each coordinate
in the code, there are many small subsets of the other coordinates that span it. Since each
coordinate corresponds to a row of the generating matrix of the code, we obtain a configuration
of points with many dependent small subsets. We will make this formal in the next definition,
which is equivalent to the first definition, if one replaces δ with the slightly worse bound of δ/q
(when q is constant this change is negligible).

Definition 3.2 (Linear LCC – second definition). We say that a finite set V = {v1, . . . , vn} ⊂
Cd is a (q, δ)-LCC if for every i ∈ [n] and every set S ⊂ [n] of size |S| ≤ δn there exists a set
J ⊂ [n] \ S with |J | ≤ q such that vi ∈ span(vj | j ∈ J).

The main open problem regarding LCCs is to determine the maximum dimension (as a
function of n) when we fix q, δ to be constants. Intuitively, the larger d is, the more ‘information’
we can transmit using the code (the rate of the code if d/n). While the case of q = 2 is
understood quite well (d is at most logarithmic over finite fields and constant over characteristic
zero [BDWY11, BDSS11]), it is an open problem to determine the maximum dimension of a q-
query LCC when q > 2. There are exponential gaps between the known lower and upper bound.
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For example, when q = 3, the best upper bound is d ≤ O(
√
n) [Woo07, KdW04] while the

best constructions give poly-logarithmic d over finite fields and constant d over characteristic
zero. We refer the reader to the survey article [Dvi12] for more background on LCCs and for
an overview of the known constructions.

Due to their roots in coding theory, LCCs were traditionally studied exclusively over finite
fields. The study of LCCs over arbitrary fields was initiated in [BDWY11] and was motivated
by its connection to the Sylvester-Gallai theorem. Another motivation comes from a work
connecting LCCs with an approach for constructing rigid matrices over infinite fields [Dvi10].
We note here that for q > 2, the best upper bounds on the dimensions of LCCs are the same,
no matter what the field is. This also motivates the study of LCC’s over infinite fields as a
potentially easier scenario to tackle first, before proceeding to codes over finite fields (where
we have fewer techniques).

Our methods enable us to prove strong upper bounds on the dimension of codes that we
call stable LCCs. Before discussing the relation between stable and non-stable LCCs we give
the formal definition.

Definition 3.3 (spanB). Let v, u1, . . . , um ∈ Cd. We say that v ∈ spanB(u1, . . . , um) if there
exist a1, . . . , am ∈ C with |ai| ≤ B for all i and v =

∑m
i=1 aiui.

Definition 3.4 (Stable LCC). We say that a finite set V = {v1, . . . , vn} ⊂ Cd is a (q, δ, B, ε)-
stable LCC if for every i ∈ [n] and every set S ⊂ [n] of size |S| ≤ δn there exists a set
J ⊂ [n] \ S with |J | ≤ q such that dist(vi, spanB(vj | j ∈ J)) ≤ ε.

Notice that this definition is incomparable to Definition 3.2: On the one hand, we restrict
the linear dependencies to use only coefficients of bounded magnitude. On the other hand, we
allow the linear combinations to result in an ‘approximate’ vector, instead of the exact one.
To see why the bound on the coefficients is natural (once you allow approximate recovery),
notice that the decoder can handle small perturbations even in the ‘correct positions’. Stated
in the scenario of Definition 3.1, suppose that in a received codeword at most δ fraction of the
positions are completely changed (to arbitrary values) and, in addition, all other coordinates
are perturbed by some small α in Euclidean distance. Then, the decoder can still recover
(approximately) the value of a given codeword coordinate by reading at most q other positions,
as long as α� ε/qB. Since each of the read coordinates is multiplied by a coefficient that can
be as large as B and the errors sum over q positions, we get at most α · qB resulting error in
the output of the decoder.3

The next simple claim shows that Definition 3.4 is also stable in the sense that, perturbing
the elements in a stable LCC gives another stable LCC (with slightly worse parameters).

Claim 3.5. Let V = {v1, . . . , vn} ⊂ Cd be a (q, δ, B, ε)-stable LCC and let V = {v′1, . . . , v′n} ⊂
Cd be such that dist(vi, v

′
i) ≤ α for all i ∈ [n]. Then V ′ is a (q, δ, B, ε′)-stable LCC with

ε′ ≤ ε+ (qB + 1)α.

Proof. Take some vi ∈ V and a set J ⊂ [n] of size |J | ≤ q such that dist(vi, spanB(vj | j ∈ J)) ≤
3One can potentially define stable LCCs in this sense (as in Definition 3.1) and then prove (similarly to

[BDWY11]) that, up to constants, it is equivalent to Definition 3.4 (we did not verify the details).
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ε. Then, there exist coefficients bj , j ∈ J with |bj | ≤ B and such that∥∥∥∥∥∥vi −
∑
j∈J

bjvj

∥∥∥∥∥∥ ≤ ε.
Replacing vi with v′i we get that∥∥∥∥∥∥v′i −

∑
j∈J

bjv
′
j

∥∥∥∥∥∥ ≤ ε+ ‖vi − v′i‖+
∑
j∈J

bj‖vj − v′j‖ ≤ ε+ (qB + 1)α.

Notice that, if we didn’t have the bound on the coefficients in the span, the small pertur-
bations would have resulted in large errors in the linear combinations. Intuitively, if u is not
in spanB(u1, . . . , um) then a small perturbation to the ui’s may result in u being very far from
span(u1, . . . , um). This explains the need for two separate stability parameters, ε and B.

Our main result regarding stable LCC’s is the following theorem:

Theorem 5. Let V = {v1, . . . , vn} ⊂ Cd be a (q, δ, B, ε)-stable LCC. Then,

dimε′(V ) ≤ O((qB/δ)4)

with
ε′ = O(q2Bε/δ1.5).

In particular, when q is a constant and B and δ are fixed, the upper bound on dimε′ can be
interpreted as saying that there do not exist stable q-query LCCs, where ‘do not exist’ means
that the amount of information one can transmit is constant, regardless of the codeword length.
The proof of Theorem 5, which follows the same lines as the proof of the Sylvester-Gallai type
theorems, works also for the more general setting where V is allowed to be an ordered multiset
(i.e., when different vi’s can repeat several times).

If one sets ε = 0 the definition of stable LCC changes into a definition of an LCC with
bounded coefficients. That is, the linear dependencies are required to be exact (as in the usual
definition of an LCC) and, in addition, need to use bounded coefficients. Applying Theorem 5
to this special case one gets ε′ = 0 and so obtains the stronger conclusion that the set V is
actually contained in a low dimensional space. Stated more formally, we have:

Corollary 3.6. Let V = {v1, . . . , vn} ⊂ Cd be a (q, δ, B, 0)-stable LCC. Then,

dim(V ) ≤ O((qB/δ)4)

.
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4 Proof of Theorem 4

We will derive Theorem 4 from the following, more refined, statement.

Theorem 4.1. Under the same conditions as in Theorem 4, there exists a subspace L ⊂ Cd
with

dim(L) ≤ 2n2g2

p2µ4

and such that
n∑
i=1

dist(vi, L)2 ≤ 4|T |ε2

µ2p
.

Proof. First, observe that, for convenience, we can take d = n so that the vectors vi are in
Cn. The case d > n is not interesting since we can restrict our attention to the span of the n
vectors. The case d < n can be similarly handled by padding each vector with zeros.

Let m = |T |. We use T to construct an m × n matrix M so that there is a one-to-one
correspondence between rows of M and elements of T . By our assumptions, for each triple
t = {i, j, k} ∈ T there are complex numbers α, β, γ such that ‖αvi + βvj + γvk‖ ≤ ε and s.t
µ ≤ |α|, |β|, |γ| ≤ 1. Let st denote the row vector in Cn with the value α in position i, the
value β in position j, the value γ in position k and zeros everywhere else. We define M to be
the matrix with rows st where t goes over all triples in T (in some order).

Next, let A be a complex n × n matrix whose i’th row is the vector vi. Then, from our
definition of the rows of M , we have that the rows of the m× n matrix

E = MA (1)

all have norm at most ε.

The next claim summarizes some of the properties of M that we will use. All three items
follow immediately from the fact that T is a (p, g)-design and the bounds on the entries of M .

Claim 4.2. Let M be as above and let Mj ∈ Cm, j ∈ [n] denote the j’th column of M . Then

1. Each entry of M has absolute value at least µ and at most 1.

2. For each j ∈ [n], ‖Mj‖2 ≥ pµ2.

3. For each j 6= j′ ∈ [n],
∣∣〈Mj ,Mj′〉

∣∣ ≤ g.

The main technical ingredient in the proof is the following simple observation regarding
the eigenvalues of diagonal dominant matrices, i.e., matrices in which the diagonal elements
are much larger than the off-diagonal elements. This lemma can be viewed as an extension of
a folklore result regarding the rank of such matrices (see, e.g., [Alo09]). The proof is a simple
application of the Hoffman-Wielandt inequality.
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Lemma 4.3. Let X = (Xij)i,j∈[n] be an n × n complex Hermitian matrix with eigenvalues
λ1, . . . , λn. Suppose that for all i ∈ [n] we have Xii ≥ K, where K is some positive real
number. Then,

|{i ∈ [n] | λi ≤ K/4}| ≤
2

K2

∑
i 6=j
|Xij |2.

Proof. Let D be an n×n diagonal matrix with Dii = Xii for all i ∈ [n]. Clearly, the eigenvalues
of D are D11, . . . , Dnn. The Hoffman-Wielandt inequality [HW53] states that, under some
ordering of the eigenvalues of X (w.l.o.g the one we have chosen) we have∑

i∈[n]

|λi −Dii|2 ≤ ||X −D||2 =
∑
i 6=j
|Xij |2.

Using the fact that all Dii’s are at least K we get the required bound.

Let σ1, . . . , σn be the singular values of the matrix M (recall that these are the square
roots of the eigenvalues of the PSD matrix M∗M). Let r1, . . . , rn be the corresponding right
singular vectors (i.e., the corresponding eigenvectors of M∗M). We thus have

1. r1, . . . , rn form an orthonormal basis of Cn.

2. For each j ∈ [n], ‖Mrj‖ = σj .

3. The vectors Mr1, . . . ,Mrn are orthogonal (i.e., 〈Mri,Mrj〉 = 0 for i 6= j).

Let
J = {j ∈ [n] |σj ≤ µ

√
p/2}

and let
L = span{rj | j ∈ J}.

We will now show that L is of small dimension and that most columns of A are close to L. We
start by bounding the dimension of L.

Claim 4.4. Let L be as above. Then |J | = dim(L) ≤ 2n2g2

p2µ4
.

Proof. Consider the n × n matrix X = M∗M with eigenvalues σ21, . . . , σ
2
n. By Claim 4.2 the

diagonal elements of X are all lower-bounded by pµ2 and the off-diagonal elements of X are
all upper bounded by g in absolute value. Using Lemma 4.3, and these bounds on the entries
of X, we get that ∣∣{i ∈ [n] | σ2i ≤ pµ2/4

}∣∣ ≤ 2n2g2

p2µ4
.

Taking square roots completes the proof.
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Let u1, . . . , un denote the columns of A. We can write each uj in the orthonormal basis
r1, . . . , rn in a unique way as

uj =
n∑
k=1

αjkrk.

Observe that
dist(uj , L)2 =

∑
k 6∈J
|αjk|2 (2)

Denote the rows of the matrix E = MA by ei, i ∈ [m] so that ‖ei‖ ≤ ε for all i ∈ [m]. Let
f1, . . . , fn be the columns of E and observe that∑

j∈[n]

‖fj‖2 =
∑
i∈[m]

‖ei‖2 ≤ mε2 (3)

The next claim bounds the sum of distances of the vectors uj to the subspace L.

Claim 4.5. With the above notations, we have

n∑
j=1

dist(uj , L)2 ≤ 4mε2

µ2p
.

Proof. Using (2), (3), the orthogonality of the Mrj ’s and the fact that σj >
µ
√
p

2 for all j 6∈ J ,
we have

mε2 ≥
∑
j∈[n]

‖fj‖2 =
∑
j∈[n]

‖Muj‖2

=
∑
j∈[n]

∥∥∥∥∥∥
∑
k∈[n]

αjkMrk

∥∥∥∥∥∥
2

=
∑
j∈[n]

∑
k∈[n]

|αjk|2σ2k

≥ µ2p

4

∑
j∈[n]

∑
k 6∈J
|αjk|2

=
µ2p

4

∑
j∈[n]

dist(uj , L)2.

This proves the claim.

We now use Claim 4.5 to deduce that many rows of A are close to a low dimensional
subspace.
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Claim 4.6. There exists a subspace L′ ⊂ Cn with dim(L′) ≤ 2n2g2

p2µ4
and s.t

n∑
j=1

dist(vj , L
′)2 ≤ 4mε2

µ2p
.

Proof. Let Y be an n×n matrix such that the j’th column of Y is the element of L closest to
uj . If we let L′ be the span of the rows of Y we have dim(L′) ≤ dim(L) and, using Claim 4.5,

∑
j∈[n]

dist(vj , L
′)2 ≤ ‖Y −A‖2 =

∑
j∈[n]

dist(uj , L)2 ≤ 4mε2

µ2p
.

This claim completes the proof of Theorem 4.1.

Proof of Theorem 4 using Theorem 4.1

From Theorem 4.1 we can get a large subset of V that is ε′-close to a low dimensional subspace
L. To derive the conclusion of Theorem 4, we will show that the rest of the points in V are also
close to L, though with a slightly worse bound on the distance. This will follow by showing
that, for every point v ∈ V , there are two points u,w ∈ V that are close to L and s.t v is close
to the line passing through them. This will imply that v is also close to L. The details follow.

First, apply Theorem 4.1 to get a subspace L so that

dim(L) ≤ 2n2g2

p2µ4

and such that
n∑
i=1

dist(vi, L)2 ≤ 4mε2

µ2p
.

Let

I =

{
i ∈ [n]

∣∣∣∣ dist(vi, L)2 >
4gmε2

µ2p2

}
and observe that |I| < p/g. Our final step is to argue that the points vi, i ∈ I are also close to
L′ since they are close to the span of two points vj , vk with j, k 6∈ I (using the design properties
of T ).

Claim 4.7. For each i ∈ I there are indices j, k ∈ [n] \ I such that {i, j, k} ∈ T .

Proof. Fix some i ∈ I. If the claim is false then every triple in T that contains i must have
some other element in I. By a pigeon hole argument, there must be an element j ∈ I \ {i} and
at least p/|I| > g triples containing both i and j, contradicting the design property of T .

We will need the following simple lemma:
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Lemma 4.8. Let u, v, w ∈ Cd be an (ε, µ)-dependent triple. Let L ⊂ Cd be a subspace with
dist(v, L), dist(u, L) ≤ ρ for some ρ > 0. Then dist(w,L) ≤ (ε+ 2ρ)/µ.

Proof. Let α, β, γ be such that |α|, |β|, |γ| ∈ [µ, 1] and ‖αu + βv + γw‖ ≤ ε. Let v′, u′ ∈ L be
s.t ‖v − v′‖, ‖u− u′‖ ≤ ρ. Then

dist(w,L) ≤ ‖w + (α/γ)v′ + (β/γ)u′‖
≤ ‖w + (α/γ)v + (β/γ)u‖+ ‖(α/γ)v − (α/γ)v′‖+ ‖(β/γ)u− (β/γ)u′‖
≤ ε/|γ|+ |α/γ|ρ+ |β/γ|ρ
≤ (ε+ 2ρ)/µ.

Combining Claim 4.7 with Lemma 4.8 we have that each vi, i ∈ [n] is ε′ close to L with

ε′ ≤ (ε+ 2ρ)/µ, where ρ =
2ε
√
gm

pµ . Simplifying, we get

ε′ ≤
5ε
√
gm

pµ2

as was required. This completes the proof of Theorem 4.

5 Proof of Theorem 2

We start with some preliminary lemmas.

Lemma 5.1. Let {u, v, w} ∈ Cd be B-balanced. If w ∈ lineε(u, v) with ε < 1/2 then the triple
u, v, w is (ε, 1/4B)-dependent. Furthermore, there exists a complex α with |α| ≥ 1/4B such
that ‖w − αu− (1− α)v‖ ≤ ε.

Proof. By shifting w to zero we can assume that both u and v have norm bounded by B. By
definition, there exists α ∈ C such that ‖w − αu− (1− α)v‖ ≤ ε and so we only need to show
that |α| ≥ 1/4B (the same argument will apply to 1− α by symmetry). Observe that

1 ≤ ‖w − v‖
≤ ‖w − αu− (1− α)v‖+ ‖αu‖+ ‖αv‖
≤ ε+ 2αB,

which proves the lemma.

Lemma 5.2. Let {u, v, w} ∈ Cd be B-balanced and let 0 < ε ≤ 1/2 be a real number such that
w ∈ lineε(u, v). Then v ∈ lineε′(w, u) with ε′ = 4εB.

Proof. By Lemma 5.1 there exists a complex α with |α| ≥ 1/4B such that

‖w − αv − (1− α)u‖ ≤ ε.
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Then
‖v − (1/α)w + (1/α− 1)v‖ ≤ ε/α ≤ 4εB.

This completes the proof.

Lemma 5.3. Let u, v ∈ Cd be two distinct points. Let k be the maximum size of a B-balanced
set contained in lineε(u, v). If ε < 1/4 then k ≤ 5B.

Proof. Suppose k > 5B and let V = {v1, . . . , vk} be a B-balanced set contained in lineε(u, v).
For each vi let ui ∈ line(u, v) be a point of distance at most ε from it. Since the k points
u1, . . . , uk are all on a line segment of length at most 2B we can apply a pigeon hole argument
to conclude that there must be i 6= j with dist(ui, uj) ≤ 2B/(k− 1). This implies dist(vi, vj) ≤
2ε+ 2B/(k − 1) < 1, a contradiction.

Proof of Theorem 2

We define T ⊂
(
[n]
3

)
to be the set of triples {i, j, k} ⊂ [n] (with three distinct indices) for which

vk ∈ lineε(vi, vj). By Lemma 5.1 we have that for each triple {i, j, k} in T , the corresponding
triple vi, vj , vk ∈ Cd is (ε, 1/4B)-dependent.

Claim 5.4. T as defined above is a (p, g) design with p = δ(n− 1) and g < 5B.

Proof. By the conditions of the theorem, each vi is contained in at least δ(n− 1) triples that
are in T and so the bound on p holds. To prove the bound on g, fix i 6= j ∈ [n]. If the triple
{i, j, k} appears in T . Then either vk ∈ lineε(vi, vj), vi ∈ lineε(vj , vk) or vj ∈ lineε(vi, vk). In all
three cases, we have, using Lemma 5.2, that vk ∈ lineε′(vi, vj) with ε′ = 4εB. Since ε < 1/16B
we have ε′ < 1/4 and we can apply Lemma 5.3 to conclude that there could be at most 5B
such triples.

Observe that we can discard some of the triples in T so that |T | ≤ δn2 and so that T is
still a (p, g)-design (simply keep for each i only δ(n− 1) dependent triples).

Plugging the bounds obtained in the above claims and the bound |T | ≤ δn2 into Theorem 4
we get a subspace L with dim(L) ≤ O(B6/δ2) and such that dist(vi, L) ≤ O(εB2.5/

√
δ) for all

i ∈ [n]. The second part of the theorem follows from applying Theorem 4.1.

6 Proof of Theorem 3

We first prove some preliminary lemmas.

Lemma 6.1. Suppose u, v ∈ Sd are s.t min{dist(u, v), dist(u,−v)} = µ. Then, for all complex
β, dist(u, βv) ≥ µ/4.

Proof. Suppose w.l.o.g dist(u, v) = µ ≤
√

2. We have

µ =
√
〈u− v, u− v〉 =

√
2− 2〈u, v〉,
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which gives 〈u, v〉 = 1−µ2/2. Since dist(u, γv) is minimized for γ = 〈u, v〉 we have dist(u, βv) ≥
dist(u, (1 − µ2/2)v) = ||u − v + (µ2/2)v|| ≥ ||u − v|| − ||(µ2/2)v|| ≥ µ − µ2/2 ≥ µ/4 (for
µ ≤
√

2).

Lemma 6.2. Let u, v, w ∈ Sd be distinct and let ε, µ > 0 be real numbers s.t ε < µ/8. Suppose
‖w − αu − βv‖ ≤ ε for some complex numbers α, β. If min{dist(w, v), dist(w,−v)} ≥ µ then
|α| > µ/8.

Proof. By the triangle inequality

‖w − βv‖ ≤ ‖αu‖+ ε = |α|+ ε.

Using Lemma 6.1 we have dist(w, βv) ≥ µ/4 which gives |α| ≥ µ/4− ε ≥ µ/8.

Lemma 6.3. Let u, v, w ∈ Sd be µ-separated and suppose ε < µ/8. Suppose w ∈ circε(u, v).
Then, there exist complex numbers α, β, γ with ‖αu+βv+γw‖ ≤ ε and s.t µ/8 ≤ |α|, |β|, |γ| ≤ 1.

Proof. By the assumption, there are α′, β′ with ‖w − α′u − β′v‖ ≤ ε. If |α′| and |β′| are at
most 1 then we are done using Lemma 6.2. If not, suppose |α′| = max{|α′|, |β′|} > 1 and
divide the equation by α′ to obtain ‖(1/α′)w − u − (β′/α′)v‖ ≤ ε/|α′| < ε. Now, all three
coefficients are at most 1 in absolute value and, using Lemma 6.2, we have the lower bound
µ/8 on |1/α′|, |β′/α′|.

Lemma 6.4. Let u, v, w ∈ Sd be distinct. Let ε, µ > 0 be real numbers such that ε < µ/8.
Suppose w ∈ circε(u, v) and min{dist(w, v), dist(w,−v)} ≥ µ. Then u ∈ circε′(w, v) with ε′ =
8ε/µ.

Proof. By our assumption, there exist complex numbers α, β such that

‖w − αu− βv‖ ≤ ε.

By Lemma 6.2 we have |α| > µ/8 and so

‖u− (1/α)w + (β/α)v‖ ≤ 8ε/µ.

This implies u ∈ circε′(w, v) as was required.

Lemma 6.5. Let u, v ∈ Sd be two distinct points. Let k be the maximum size of a µ-separated
set contained in circε(u, v). If ε < µ/4 then k ≤ 8/µ.

Proof. Suppose k > 8/µ and let V = {v1, . . . , vk} be a µ-separated set contained in circε(u, v).
For each vi let ui ∈ circ(u, v) be a point of distance at most ε from it. By a pigeon hole
argument, there must be i 6= j with min{dist(ui, uj), dist(ui,−uj)} ≤ π/k ≤ µ/2. This implies
min{dist(vi, vj), dist(vi,−vj)} ≤ 2ε+ µ/2 < µ, a contradiction.

Proof of Theorem 3. To reduce to Theorem 4 we will define T ⊂
(
[n]
3

)
to be the set of triples

{i, j, k} ⊂ [n] for which vk ∈ circε(vi, vj).
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Claim 6.6. Let {i, j, k} ∈ T . Then the triple vi, vj , vk ∈ Cd is (ε, µ/8)-dependent.

Proof. This is immediate from Lemma 6.3.

Claim 6.7. T as defined above is a (p, g) design with p = δ(n− 1) and g < 8/µ.

Proof. By the conditions of the theorem, each vi is contained in at least δ(n− 1) triples that
are in T and so the bound on p holds. To prove the bound on g, fix i 6= j ∈ [n]. If the triple
{i, j, k} appears in T , then either vk ∈ circε(vi, vj), vi ∈ circε(vj , vk) or vj ∈ circε(vi, vk). In all
three cases, we have, using Lemma 6.4, that vk ∈ circε′(vi, vj) with ε′ = 8ε/µ. Since ε < µ2/32
we have ε′ < µ/4 and we can apply Lemma 6.5 to conclude that there could be at most 8/µ
such triples.

Plugging the bounds obtained in the above claims and the bound |T | ≤ δn2 (which can be
obtained by discarding some of the triples in T , as before) into Theorem 4 and into Theorem 4.1
completes the proof.

7 Proof of Theorem 5

Since the proof follows the same lines as the proof of Theorem 4, we will assume familiarity
with the proof of that theorem and only give details where the proofs differ.

We will use the following definition:

Definition 7.1 (LCC-matrix). Let M be an nk×n matrix over C and let M1, . . . ,Mn be k×n
matrices so that M is the concatenation of the blocks M1, . . . ,Mn placed on top of each other
(so M` contains the rows of M numbered k(`− 1) + 1, . . . , k`). We say that M is a (k, q)-LCC
matrix if, for each i ∈ [n] the block Mi satisfies the following conditions:

• Each row of Mi has support size at most q + 1.

• All rows in Mi have the value 1 in position i.

• The supports of two distinct rows in Mi intersect only in position i.

Let V = {v1, . . . , vn} ⊂ Cd be a (q, δ, B, ε)-stable LCC and assume w.l.o.g that d = n (that
is, pad the vectors vi with zeros so that we can think of them as vectors in Cn). Let A be the
n× n matrix with rows vi.

Claim 7.2. There exists a (k, q)-LCC matrix M with dimensions nk×n and with k = Ω(δn/q)
such that all entries of M have absolute values at most B and such that

||MA||2 ≤ n2ε2.

Proof. We will show how to construct the k×n block Mi of M (see Definition 7.1) row by row.
Using the definition of stable LCC, there exists a family Qi of k = Ω(δn/q) disjoint q-tuples of
elements of V such that, for each q-tuple J ∈ Qi, we have dist(vi, spanB(J)) ≤ ε. Each of these
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q-tuples, J , defines a row vector wJ with 1 in the i’th position, B-bounded entries in positions
indexed by J , and zeros everywhere else in the following manner: Suppose vi =

∑
j∈J bjvj + e

with |bj | ≤ B for all j ∈ J and ||e|| ≤ ε. Then we define wj to have 1 in position i and values
−bj in positions j ∈ J (with zeros in all other positions). Then, we have ||wJA|| = ||e|| ≤ ε.
Taking all these row vectors to construct Mi we get the required bound on ||MA||2.

Let E = MA so that ||E||2 ≤ n2ε2. We now construct another nk × n matrix R so
that RTM will be diagonal dominant. R will be comprised of n blocks, R1, . . . , Rn, each of
dimensions k×n so that Ri has 1’s in the i’th column and zeros everywhere else. Notice that,
the i’th row of RTM is the sum of the rows in the block Mi of M .

Let M̂ = RTM and Ê = RTE so that Ê = M̂A. An application of the Cauchy-Schwarz
inequality shows that

||RTE||2 ≤ n||E||2 ≤ n3ε2.

Observe that the diagonal elements of M̂ are all equal to k and that the off-diagonal elements
of M̂ are all of absolute value at most B (since the supports of rows in Mi are disjoint except
for the i’th coordinate).

We proceed with analyzing the spectrum of M̂ . Let r1, . . . , rn be the right singular vectors
and σ1, . . . , σn the corresponding singular values. If we take X = M̂∗M̂ then the diagonal
elements of X are all at least K2 ≥ k2 and the off diagonal elements can be bounded by
2kB + nB2 ≤ O(nB2). If we define

L = span{rj |σj < K/2}

we get that, using Lemma 4.3,

dim(L) ≤ O(n4B4/K4) = O((qB/δ)4).

As in the proof of Theorem 4, we consider the columns u1, . . . , un of A and obtain the
bound

n∑
j=1

dist(uj , L)2 ≤ 4||Ê||2/K2 = O(n3ε2/K2).

This means that there is a subspace L′ with the same dimension as L such that

n∑
i=1

dist(vj , L
′)2 ≤ O(n3ε2/K2).

Thus, there is a set V ′ ⊂ V of size n′ ≥ (1−δ/2)n such that for all v′ ∈ V ′ we have dist(v′, L′)2 ≤
O(n2ε2/δK2) = O(q2ε2/δ3). To finish the proof we observe that, using the definition of a stable
LCC, for every v ∈ V there is a q-tuple J ⊂ V ′ with dist(vi, spanB(J)) ≤ ε. Using the bound
on the distances of elements of V ′ to L′ and the bound B on the coefficients in the linear
combinations in spanB(J), we get that dist(v, L′) ≤ ε+O(qB · (qε/δ1.5)) = O(q2Bε/δ1.5). This
completes the proof of Theorem 5.
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