
Introduction to

LP and SDP Hierarchies

Madhur Tulsiani
Princeton University
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subject to: x + 2y ≥ 1
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Large number of approximation algorithms derived
precisely as above.

Analysis consists of understanding extra solutions
introduced by the relaxation.
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Generating “tighter” relaxations

Would like to make our relaxations less
relaxed.

Various hierarchies give increasingly
powerful programs at different levels
(rounds), starting from a basic
relaxation.

Powerful computational model capturing
most known LP/SDP algorithms within
constant number of levels.

Does approximation get better a higher
levels?

00 01

10 11



Generating “tighter” relaxations

Would like to make our relaxations less
relaxed.

Various hierarchies give increasingly
powerful programs at different levels
(rounds), starting from a basic
relaxation.

Powerful computational model capturing
most known LP/SDP algorithms within
constant number of levels.

Does approximation get better a higher
levels?

00 01

10 11



Generating “tighter” relaxations

Would like to make our relaxations less
relaxed.

Various hierarchies give increasingly
powerful programs at different levels
(rounds), starting from a basic
relaxation.

Powerful computational model capturing
most known LP/SDP algorithms within
constant number of levels.

Does approximation get better a higher
levels?

00 01

10 11



Generating “tighter” relaxations

Would like to make our relaxations less
relaxed.

Various hierarchies give increasingly
powerful programs at different levels
(rounds), starting from a basic
relaxation.

Powerful computational model capturing
most known LP/SDP algorithms within
constant number of levels.

Does approximation get better a higher
levels?

00 01

10 11



LP/SDP Hierarchies

Various hierarchies studied in the Operations Research
literature:

Lovász-Schrijver (LS, LS+)
Sherali-Adams
Lasserre

LS(3) SA(3) Las(3)

LS(1)

LS(2)

...SA(1)

SA(2)

...

LS(1)
+

LS(2)
+

...

Las(1)

Las(2)

...

Can optimize over r th level in time nO(r). nth level is tight.
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Example: Souping up the Independent Set relaxation

maximize:
∑

u

xu

subject to: xu + xv ≤ 1 ∀ (u, v) ∈ E
xu ∈ [0,1]

∑
u∈K

xu ≤ 1

K

- Implied by one level of LS+ hierarchy.

- Polytime algorithm for Independent Set on perfect graphs [GLS
81].
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What Hierarchies want

Example: Maximum Independent Set for graph G = (V ,E)

minimize
∑

u

xu

subject to xu + xv ≤ 1 ∀ (u, v) ∈ E
xu ∈ [0,1]

Hope: x1, . . . , xn is convex combination of 0/1 solutions.

1/3 1/3

1/3

= 1
3×

1 0

0

+ 1
3×

0 0

1

+ 1
3×

0 1

0

Hierarchies add variables for conditional/joint probabilities.
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The Sherali-Adams Hierarchy

Start with a 0/1 integer linear program.

Hope: Fractional (x1, . . . , xn) = E [(z1, . . . , zn)] for integral
(z1, . . . , zn)

Add “big variables” XS for |S| ≤ r
(think XS = E

[∏
i∈S zi

]
= P [All vars in S are 1])

Constraints:

∑
i

aizi ≤ b

E

[(∑
i

aizi

)
· z5z7(1− z9)

]
≤ E [b · z5z7(1− z9)]∑

i

ai · (X{i,5,7} − X{i,5,7,9}) ≤ b · (X{5,7} − X{5,7,9})

LP on nr variables.
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Sherali-Adams ≈ Locally Consistent Distributions

Using 0 ≤ z1 ≤ 1, 0 ≤ z2 ≤ 1

0 ≤ X{1,2} ≤ 1
0 ≤ X{1} − X{1,2} ≤ 1
0 ≤ X{2} − X{1,2} ≤ 1
0 ≤ 1− X{1} − X{2} + X{1,2} ≤ 1

X{1},X{2},X{1,2} define a distribution D({1,2}) over {0,1}2.

D({1,2,3}) and D({1,2,4}) must agree with D({1,2}).

SA(r) =⇒ LCD(r). If each constraint has at most k vars,
LCD(r+k) =⇒ SA(r)
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The Lasserre Hierarchy

Start with a 0/1 integer quadratic program.

Think “big" variables ZS =
∏

i∈S zi .

Associated psd matrix Y (moment matrix)

YS1,S2 = E
[
ZS1 · ZS2

]
= E

 ∏
i∈S1∪S2

zi



= P[All vars in S1 ∪ S2 are 1]

(Y � 0) + original constraints + consistency constraints.
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The Lasserre hierarchy (constraints)

Y is psd. (i.e. find vectors US satisfying YS1,S2 =
〈
US1 ,US2

〉
)

YS1,S2 only depends on S1 ∪ S2. (YS1,S2 = P[All vars in S1 ∪ S2 are 1])

Original quadratic constraints as inner products.

SDP for Independent Set

maximize
∑
i∈V

∣∣U{i}∣∣2
subject to

〈
U{i},U{j}

〉
= 0 ∀ (i, j) ∈ E〈

US1 ,US2

〉
=
〈
US3 ,US4

〉
∀ S1 ∪ S2 = S3 ∪ S4〈

US1 ,US2

〉
∈ [0, 1] ∀S1,S2
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The “Mixed” hierarchy

Motivated by [Raghavendra 08]. Used by [CS 08] for Hypergraph
Independent Set.

Captures what we actually know how to use about Lasserre
solutions.

Level r has

Variables XS for |S| ≤ r and all Sherali-Adams constraints.

Vectors U0,U1, . . . ,Un satisfying

〈Ui ,Uj〉 = X{i,j}, 〈U0,Ui〉 = X{i} and |U0| = 1.
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Hands-on: Deriving some constraints



The triangle inequality

|Ui − Uj |2 + |Uj − Uk |2 ≥ |Ui − Uk |2 is equivalent to

〈Ui − Uj ,Uk − Uj〉 ≥ 0

Mix(3) =⇒ ∃ distribution on zi , zj , zk such that
E[zi · zj ] = 〈Ui ,Uj〉 (and so on).

For all integer solutions (zi − zj) · (zk − zj) ≥ 0.

∴ 〈Ui − Uj ,Uk − Uj〉 = E [(zi − zj) · (zk − zj)] ≥ 0
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“Clique constraints” for Independent Set

For every clique K in a graph, adding the constraint∑
i∈K

xi ≤ 1

makes the independent set LP tight for perfect graphs.

Too many constraints, but all implied by one level of the mixed hierarchy.

For i, j ∈ K , 〈Ui ,Uj〉 = 0. Also, ∀i 〈U0,Ui〉 = |Ui |2 = xi . By Pythagoras,

∑
i∈K

〈
U0,

Ui

|Ui |

〉2

≤ |U0|2 = 1 =⇒
∑
i∈B

x2
i

xi
≤ 1.

Derived by Lovász using the ϑ-function.
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The Lovász-Schrijver Hierarchy

Start with a 0/1 integer program and a relaxation P. Define
tigher relaxation LS(P).

Hope: Fractional (x1, . . . , xn) = E [(z1, . . . , zn)] for integral
(z1, . . . , zn)

Restriction: x = (x1, . . . , xn) ∈ LS(P) if ∃Y satisfying
(think Yij = E [zizj ] = P [zi ∧ zj ])

Y = Y T

Yii = xi ∀i
Yi

xi
∈ P,

x− Yi

1− xi
∈ P ∀i

Y � 0

Above is an LP (SDP) in n2 + n variables.
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Lovász-Schrijver in action

r th level optimizes over distributions conditioned on r variables.
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And if you just woke up . . .
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Algorithmic Applications

Many known LP/SDP relaxations captured by 2-3 levels.

[Chlamtac 07]: Explicitly used level-3 Lasserre SDP for
graph coloring.

[CS 08]: Algorithms using Mixed and Lasserre hierarchies
for hypergraph independent set (guarantee improves with
more levels).

[KKMN 10]: Hierarchies yield a PTAS for Knapsack.

[BRS 11, GS 11]: Algorithms for Unique Games using nε

levels of Lassere.



Lower bound techniques

Expansion in CSP instances (Proof Complexity)

Reductions

[ABLT 06, STT 07, dlVKM 07, CMM 09]: Distributions from
local probabilistic processes.

[Charikar 02, GMPT 07, BCGM 10]: Polynomial tensoring.

[RS 09, KS 09]: Higher level distributions from level-1
vectors.
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Integrality Gaps for Expanding CSPs



CSP Expansion

MAX k-CSP: m constraints on k -tuples of (n) boolean variables.
Satisfy maximum. e.g. MAX 3-XOR (linear equations mod 2)

z1 + z2 + z3 = 0 z3 + z4 + z5 = 1 · · ·

Expansion: Every set S of constraints involves at least β|S|
variables (for |S| < αm).

Cm

...

C1

zn

...

z1

In fact, γ|S| variables appearing in only one constraint in S.

Used extensively in proof complexity e.g. [BW01], [BGHMP03].
For LS+ by [AAT04].
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Sherali-Adams LP for CSPs

Variables: X(S,α) for |S| ≤ t , partial assignments α ∈ {0, 1}S

maximize
m∑

i=1

∑
α∈{0,1}Ti

Ci (α)·X(Ti ,α)

subject to X(S∪{i},α◦0) + X(S∪{i},α◦1) = X(S,α) ∀i /∈ S

X(S,α) ≥ 0

X(∅,∅) = 1

X(S,α) ∼ P[Vars in S assigned according to α]

Need distributions D(S) such that D(S1),D(S2) agree on
S1 ∩ S2.

Distributions should “locally look like" supported on satisfying
assignments.
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Local Satisfiability

C1

C2

C3

z1

z2

z3

z4

z5

z6

• Take γ = 0.9

• Can show any three 3-XOR constraints are
simultaneously satisfiable.

• Can take γ ≈ (k − 2) and any αn constraints.

• Just require E[C(z1, . . . , zk )] over any k − 2
vars to be constant.

Ez1...z6 [C1(z1, z2, z3) · C2(z3, z4, z5) · C3(z4, z5, z6)]

= Ez2...z6 [C2(z3, z4, z5) · C3(z4, z5, z6) · Ez1 [C1(z1, z2, z3)]]

= Ez4,z5,z6 [C3(z4, z5, z6) · Ez3 [C2(z3, z4, z5)] · (1/2)]

= 1/8
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Obtaining integrality gaps for CSPs [BGMT 09]

Cm

...

C1

zn

...

z1

Want to define distribution D(S) for set S of variables.

Find set of constraints C such that G − C − S remains expanding.
D(S) = uniform over assignments satisfying C

Remaining constraints “independent" of this assignment.

Gives optimal integrality gaps for Ω(n) levels in the mixed hierarchy.
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Vectors for Linear CSPs



A “new look” Lasserre

Start with a {−1,1} quadratic integer program.
(z1, . . . , zn)→ ((−1)z1 , . . . , (−1)zn)

Define big variables Z̃S =
∏

i∈S(−1)zi .

Consider the psd matrix Ỹ

ỸS1,S2 = E
[
Z̃S1 · Z̃S2

]
= E

 ∏
i∈S1∆S2

(−1)zi


Write program for inner products of vectors WS s.t.
ỸS1,S2 = 〈WS1 ,WS2〉
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]
= E

 ∏
i∈S1∆S2

(−1)zi


Write program for inner products of vectors WS s.t.
ỸS1,S2 = 〈WS1 ,WS2〉



Gaps for 3-XOR

SDP for MAX 3-XOR

maximize
∑

Ci≡(zi1
+zi2

+zi3
=bi )

1 + (−1)bi
〈
W{i1,i2,i3},W∅

〉
2

subject to
〈
WS1 ,WS2

〉
=
〈
WS3 ,WS4

〉
∀ S1∆S2 = S3∆S4

|WS | = 1 ∀S, |S| ≤ r

[Schoenebeck’08]: If width 2r resolution does not derive
contradiction, then SDP value =1 after r levels of Lasserre.

Expansion guarantees there are no width 2r contradictions.

Used by [FO 06], [STT 07] for LS+ hierarchy.



Gaps for 3-XOR

SDP for MAX 3-XOR

maximize
∑

Ci≡(zi1
+zi2

+zi3
=bi )

1 + (−1)bi
〈
W{i1,i2,i3},W∅

〉
2

subject to
〈
WS1 ,WS2

〉
=
〈
WS3 ,WS4

〉
∀ S1∆S2 = S3∆S4

|WS | = 1 ∀S, |S| ≤ r

[Schoenebeck’08]: If width 2r resolution does not derive
contradiction, then SDP value =1 after r levels of Lasserre.

Expansion guarantees there are no width 2r contradictions.

Used by [FO 06], [STT 07] for LS+ hierarchy.



Gaps for 3-XOR

SDP for MAX 3-XOR

maximize
∑

Ci≡(zi1
+zi2

+zi3
=bi )

1 + (−1)bi
〈
W{i1,i2,i3},W∅

〉
2

subject to
〈
WS1 ,WS2

〉
=
〈
WS3 ,WS4

〉
∀ S1∆S2 = S3∆S4

|WS | = 1 ∀S, |S| ≤ r

[Schoenebeck’08]: If width 2r resolution does not derive
contradiction, then SDP value =1 after r levels of Lasserre.

Expansion guarantees there are no width 2r contradictions.

Used by [FO 06], [STT 07] for LS+ hierarchy.



Gaps for 3-XOR

SDP for MAX 3-XOR

maximize
∑

Ci≡(zi1
+zi2

+zi3
=bi )

1 + (−1)bi
〈
W{i1,i2,i3},W∅

〉
2

subject to
〈
WS1 ,WS2

〉
=
〈
WS3 ,WS4

〉
∀ S1∆S2 = S3∆S4

|WS | = 1 ∀S, |S| ≤ r

[Schoenebeck’08]: If width 2r resolution does not derive
contradiction, then SDP value =1 after r levels of Lasserre.

Expansion guarantees there are no width 2r contradictions.

Used by [FO 06], [STT 07] for LS+ hierarchy.



Schonebeck’s construction

z1 + z2 + z3 = 1 mod 2 =⇒ (−1)z1+z2 = −(−1)z3

=⇒ W{1,2} = −W{3}

Equations of width 2r divide |S| ≤ r into equivalence classes. Choose
orthogonal eC for each class C.

No contradictions ensure each S ∈ C can be uniquely assigned ±eC .

Relies heavily on constraints being linear equations.

WS1
= eC1

WS2
= −eC2

WS3
= eC2
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Reductions



Spreading the hardness around (Reductions) [T]

If problem A reduces to B, can we say
Integrality Gap for A =⇒ Integrality Gap for B?

Reductions are (often) local algorithms.

Reduction from integer program A to integer program B. Each
variable z ′

i of B is a boolean function of few (say 5) variables
zi1 , . . . , zi5 of A.

To show: If A has good vector solution, so does B.

Question posed in [AAT 04]. First done by [KV 05] from Unique
Games to Sparsest Cut.
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Integrality Gaps for Independent Set

FGLSS: Reduction from MAX k-CSP to Independent Set in
graph GΦ.

z1 + z2 + z3 = 1

001 010

100111

z3 + z4 + z5 = 0

110 011

000101

Need vectors for subsets of vertices in the GΦ.

Every vertex (or set of vertices) in GΦ is an indicator function!

U{(z1,z2,z3)=(0,0,1)} =
1

8
(W∅ + W{1} + W{2} −W{3} + W{1,2} −W{2,3} −W{1,3} −W{1,2,3})
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Graph Products

v1

w1

×
v2

w2

×
v3

w3

U{(v1,v2,v3)} =

Similar transformation for sets (project to each copy of G).

Intuition: Independent set in product graph is product of
independent sets in G.

Together give a gap of n
2O(

√
log n log log n)
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A few problems



Problem 1: Lasserre Gaps

Show an integrality gap of 2− ε for Vertex Cover, even for O(1)
levels of the Lasserre hierarchy.

Obtain integrality gaps Unique Games (and Small-Set
Expansion)

Gaps for O((log log n)1/4) levels of mixed hierarchy were
obtained by [RS 09] and [KS 09].
Extension to Lasserre?



Problem 2: Generalize Schoenebeck’s technique

Technique seems specialized for linear equations.

Breaks down even if there are few local contradictions (which
doesn’t rule out a gap).

We know mixed hierarchy gaps for other CSPs: know local
distributions, but not vectors.

What extra constraints do vectors capture?
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Thank You

Questions?


