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Generating “tighter” relaxations

@ Would like to make our relaxations less

relaxed.

@ Various hierarchies give increasingly 10 11
powerful programs at different levels N
(rounds), starting from a basic “\\‘\\
relaxation. BN

@ Powerful computational model capturing
most known LP/SDP algorithms within s
constant number of levels. 00 01

@ Does approximation get better a higher
levels?
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LP/SDP Hierarchies

@ Various hierarchies studied in the Operations Research
literature:
e Lovasz-Schrijver (LS, LS,)
o Sherali-Adams :
o Lasserre Las®

Las(
SA®@) Ls®
L5@) 3A<3) SA(‘)\ : / Ls{
Ls®
LsM

@ Can optimize over r'f level in time n°(". n' level is tight.
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Example: Souping up the Independent Set relaxation

maximize: Xy
u
subjectto:  xy, +x, <1 YV (u,v) e E
xu € [0,1]
,///// . \\\\
Z X, < 1 \‘\

uekK \ /

- Implied by one level of LS hierarchy.

- Polytime algorithm for Independent Set on perfect graphs [GLS
81].
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What Hierarchies want

Example: Maximum Independent Set for graph G = (V, E)

minimize qu

subjectto  x, +x, <1 V(u,v)e E
Xy € [0,1]
@ Hope: x1,..., X, is marginal of distribution over 0/1 solutions.
1/3

c.o\

PANER YA YACE YA

@ Hierarchies add variables for conditional/joint probabilities.
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The Sherali-Adams Hierarchy

@ Start with a 0/1 integer linear program.

@ Hope: Fractional (x1,...,x,) =E|[(z1, ..., z,)] for integral
(z1,-..,2n)

@ Add “big variables” Xs for |S| < r
(think Xs = E [[];cs zi] =P[All vars in S are 1])

@ Constraints:

Za,-z,- < b
(Z a,-z,-) - 25z7(1 — Zg)]

> ai-(Xyszy — Xiiszey) < b (Xs7y — Xis.7.0})
i

E

IN

E [b . Z5Z7(1 — Zg)]

@ LP on n" variables.
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Sherali-Adams ~ Locally Consistent Distributions

@ Using0 <z <1,0< < 1

0 < X{172} < 1
0 < Xy — X123 < 1
0 < X2y — X123 < 1
0 < 1-Xy Xy + X1y <1

@ X1y, X(2}, X1 2} define a distribution D({1,2}) over {0, 1}2.
@ D({1,2,3}) and D({1,2,4}) must agree with D({1,2}).

@ SAN — LCD". If each constraint has at most k vars,
LCD+h) — SA(
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@ Start with a 0/1 integer quadratic program.
@ Think “big" variables Zs = [ ;.5 Zi.
@ Associated psd matrix Y (moment matrix)
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The Lasserre Hierarchy

@ Start with a 0/1 integer quadratic program.
@ Think “big" variables Zs = [ ;.5 Zi.
@ Associated psd matrix Y (moment matrix)

Ys,5,=E[Zs - Zs,] =E | [] z| = P[Allvarsin S;US; are 1]
i€S1US,

@ (Y > 0) + original constraints + consistency constraints.
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The Lasserre hierarchy (constraints)

@ Yispsd. (i.e. find vectors Us satisfying Ys, s, = (Us,,Us,))
@ Ys, s, only depends on Sy U Sp. (Vs, s, = P[Allvarsin Sy U S; are 1))

@ Original quadratic constraints as inner products.

SDP for Independent Set

maximize ST U
eV
subject to <U{,‘}, U{j}> =0 v (la/) €E

<US1,U32>:<U33,U34> VS US, =S3US;
<U317U32> €[0,1] V51, Sz
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The “Mixed” hierarchy

@ Motivated by [Raghavendra 08]. Used by [CS 08] for Hypergraph
Independent Set.

@ Captures what we actually know how to use about Lasserre
solutions.

@ Level r has
e Variables Xs for |S| < r and all Sherali-Adams constraints.

e Vectors Up, Uy, ..., U, satisfying

(U, Uj) = Xiijy, (Uo, Uj) = Xpjy and [Up| = 1.
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The triangle inequality

o |U— U,'|2 + |U; — Uc® > |U; — Ui[? is equivalent to
(Ui—U,U—-U)) >0

@ Mix® = Jdistribution on z;, z;, zx such that
E[z - z)] = (U;,U;) (and so on).

@ For all integer solutions (z; — z;) - (zx — z;) > 0.

(U-UjU-U) =E[(z—2) (zx—2)] =0
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“Clique constraints” for Independent Set

@ For every clique K in a graph, adding the constraint

ZX,‘ < 1
ieK
makes the independent set LP tight for perfect graphs.

@ Too many constraints, but all implied by one level of the mixed hierarchy.

@ Fori,je K, (U;,U;) =0. Also, Vi (U, U;) = |Ui|? = x;. By Pythagoras,

Uo. Y\ < 1o = 1 5
2 AUoqgy) Sllf=t = 3 5=t

ieK ieB ™!

@ Derived by Lovasz using the ¥-function.
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The Lovasz-Schrijver Hierarchy

@ Start with a 0/1 integer program and a relaxation P. Define
tigher relaxation LS(P).

@ Hope: Fractional (x1,...,x,) =E|[(z1,..., z,)] for integral
(z1,...,2n)

@ Restriction: x = (x1,...,Xp) € LS(P) if 3Y satisfying
(think Y,'/' =E [Z,‘Zj] =P [Z,' A\ Z/])

o Y=YT

OY,',':X,' Vi

oﬁeP,x_Y"eP Vi
Xi 1—X,'

e Y>>0

@ Above is an LP (SDP) in n? + n variables.
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And if you just woke up ...

Us
SA + U;
D las®
Mix(®) Las(l
/ Mix(1) \

Xs sA® Ls® Y =0

SAM \ : / Ll
Ls®

Ls(™

Yix-Y,
X,'717X,'




Algorithmic Applications

@ Many known LP/SDP relaxations captured by 2-3 levels.

@ [Chlamtac 07]: Explicitly used level-3 Lasserre SDP for
graph coloring.

@ [CS 08]: Algorithms using Mixed and Lasserre hierarchies
for hypergraph independent set (guarantee improves with
more levels).

@ [KKMN 10]: Hierarchies yield a PTAS for Knapsack.

@ [BRS 11, GS 11]: Algorithms for Unique Games using n®
levels of Lassere.
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Lower bound techniques

@ Expansion in CSP instances (Proof Complexity)

@ Reductions

@ [ABLT 06, STT 07, dIVKM 07, CMM 09]: Distributions from
local probabilistic processes.

@ [Charikar 02, GMPT 07, BCGM 10]: Polynomial tensoring.

@ [RS 09, KS 09]: Higher level distributions from level-1
vectors.



Integrality Gaps for Expanding CSPs



CSP Expansion

@ MAX k-CSP: m constraints on k-tuples of (n) boolean variables.
Satisfy maximum. e.g. MAX 3-XOR (linear equations mod 2)

Z1—|—22—|—23:0 Z3+Z4—|—Z5:1



CSP Expansion

@ MAX k-CSP: m constraints on k-tuples of (n) boolean variables.
Satisfy maximum. e.g. MAX 3-XOR (linear equations mod 2)

Z1—|—22—|—23:0 Z3+Z4—|—Z5:1

@ Expansion: Every set S of constraints involves at least j3|S]
variables (for |S| < am).



CSP Expansion

@ MAX k-CSP: m constraints on k-tuples of (n) boolean variables.
Satisfy maximum. e.g. MAX 3-XOR (linear equations mod 2)
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@ Expansion: Every set S of constraints involves at least j3|S]
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@ MAX k-CSP: m constraints on k-tuples of (n) boolean variables.
Satisfy maximum. e.g. MAX 3-XOR (linear equations mod 2)
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CSP Expansion

@ MAX k-CSP: m constraints on k-tuples of (n) boolean variables.
Satisfy maximum. e.g. MAX 3-XOR (linear equations mod 2)

Z1+22+23=0

3+ 24+ 25 =1

@ Expansion: Every set S of constraints involves at least j3|S]

variables (for |S| < am).
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CSP Expansion

@ MAX k-CSP: m constraints on k-tuples of (n) boolean variables.
Satisfy maximum. e.g. MAX 3-XOR (linear equations mod 2)

Z1—|—22—|—23:0 Z3+Z4—|—Z5:1

@ Expansion: Every set S of constraints involves at least j3|S]
variables (for |S| < am).

Ci s==z------+ Z
L] ~ “;‘.
. <
L] \\
<
Ll
o // L[]
. P _ e
LT -
S R
—
o LT
Cm =" e Zp

In fact, v|S| variables appearing in only one constraint in S.

@ Used extensively in proof complexity e.g. [BWO01], [BGHMPOQ3].
For LS, by [AAT04].
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Sherali-Adams LP for CSPs

Variables:  X(s ) for |S| < t, partial assignments o € {0,1}°
m
maximize o> Cla)Xaa
=1 aefo,1}7i
subject to X(su{it,ac0) + X(sugit,act)y = X(s,0) vigs
Xs,a) =2 0
Xo0 = 1

@ Xs,n) ~ P[Vars in S assigned according to «]

@ Need distributions D(S) such that D(Sy), D(S,) agree on
SN Ss.

@ Distributions should “locally look like" supported on satisfying
assignments.
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Local Satisfiability
e2) eTakey=09

- o Can show any three 3-XOR constraints are
= @ simultaneously satisfiable.

Ez,..2 [C1(21, 22, Z3) - Ca(23, 24, Z5) - C3(2a, 25, Z6)]
= B2 [Co(2Z3, 24, 25) - C3(24, 25, 26) - Bz, [Ci(21, 22, 23)]]
= Ez,,z,2 [(C3(24, 25, Z6) - Bz [Co(23, 24, Z5)] - (1/2)]
1/8



Local Satisfiability
e2) eTakey=09

- o Can show any three 3-XOR constraints are
= @ simultaneously satisfiable.

Coe=---~~~#Z  ,Cantake ~ (k — 2) and any an constraints.
oz
e Just require E[C(zy, ..., zx)] overany k — 2
Cs % vars to be constant.

Ez ..z [C1(21, 22, 23) - Co(23, 24, Z5) - C3(24, Zs, Z5)]
= B2 [Co(2Z3, 24, 25) - C3(24, 25, 26) - Bz, [Ci(21, 22, 23)]]
= Ez,,z,2 [(C3(24, 25, Z6) - Bz [Co(23, 24, Z5)] - (1/2)]
1/8
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Obtaining integrality gaps for CSPs [BGMT 09]

Ci

® o 0 0 00 0 0 0 0 o

Cm
@ Want to define distribution D(S) for set S of variables.

@ Find set of constraints C such that G — C — S remains expanding.
D(S) = uniform over assignments satisfying C

@ Remaining constraints “independent” of this assignment.

@ Gives optimal integrality gaps for Q(n) levels in the mixed hierarchy.
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A “new look” Lasserre

@ Start with a {—1, 1} quadratic integer program.
(zt,-- s z0) = (1), (1))

@ Define big variables Zs = [[;cs(—1)7.

@ Consider the psd matrix Y
V.5 = E[Zs 25| =E| ] (-1)*
i€S1AS,

@ Write program for inner products of vectors W s.t.
Ys.s5, = (Ws,, Wsg,)
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Gaps for 3-XOR

SDP for MAX 3-XOR

Z 1+ (-1 )bi <W{/‘1v"2!f3}7 W@>

maximize 5
Ci=(2j, +2j,+2i;=bj)
subject to <Ws1 ,W32> = <W53,W34> A4 S1A82 = 83A84
|Ws| =1 VS, |S|<r

@ [Schoenebeck’08]: If width 2r resolution does not derive
contradiction, then SDP value =1 after r levels of Lasserre.

@ Expansion guarantees there are no width 2r contradictions.

@ Used by [FO 06], [STT 07] for LS, hierarchy.
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Schonebeck’s construction

@ zi+2+2z3=1 mod2 = (-1)""2=—(-1)>
= Wpay =W

@ Equations of width 2r divide | S| < r into equivalence classes. Choose
orthogonal e¢ for each class C.

@ No contradictions ensure each S € C can be uniquely assigned +ec.

@ Relies heavily on constraints being linear equations.

( )

Ws, = —ec,

Ws; =ec,

Ws, =ec,
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Spreading the hardness around (Reductions) [T]

@ If problem A reduces to B, can we say
Integrality Gap for A —> Integrality Gap for B?

@ Reductions are (often) local algorithms.

@ Reduction from integer program A to integer program B. Each
variable z of B is a boolean function of few (say 5) variables
Zj,, ...,z of A.

@ To show: If A has good vector solution, so does B.

@ Question posed in [AAT 04]. First done by [KV 05] from Unique
Games to Sparsest Cut.
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Integrality Gaps for Independent Set

@ FGLSS: Reduction from MAX k-CSP to Independent Set in

graph Gg.
21+ 2o +23 =1 Zz3+24+25=0
001 o0 C 110 011
111 100 - - 1ot 000

@ Need vectors for subsets of vertices in the Ge.

@ Every vertex (or set of vertices) in Gy is an indicator function!

Ul(zr.zp.z3)=0,0.)3 = g (Wo +Winy +Weay = Weay + Wer oy = Wizay = Wiigy —Wia23))
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Graph Products

] U{(V1,V2,V3)} — r)
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Graph Products

® Uiv v = Uy @ U,y @ Upyy

@ Similar transformation for sets (project to each copy of G).

@ Intuition: Independent set in product graph is product of
independent sets in G.

@ Together give a gap of W\/’;lo—gm



A few problems



Problem 1: Lasserre Gaps

@ Show an integrality gap of 2 — € for Vertex Cover, even for O(1)
levels of the Lasserre hierarchy.

@ Obtain integrality gaps Unique Games (and Small-Set
Expansion)

o Gaps for O((loglog n)'/#) levels of mixed hierarchy were
obtained by [RS 09] and [KS 09].

o Extension to Lasserre?
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Problem 2: Generalize Schoenebeck’s technique

@ Technique seems specialized for linear equations.

@ Breaks down even if there are few local contradictions (which
doesn’t rule out a gap).

@ We know mixed hierarchy gaps for other CSPs: know local
distributions, but not vectors.

@ What extra constraints do vectors capture?



Thank You

Questions?



