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1. Introduction

1.1. Motivation. Many modern computer science applications involve autonomous,
self-interested agents. It is therefore important for us to consider agents' strategic
behavior in modelling the problems, where non-cooperative game theory can be
very helpful. Unfortunately, as one can expect, strategic behavior of the agents of-
ten make full optimality di�cult or impossible for various reasons. Three common
reasons are the following:

(1) Equilibria (e.g., Nash) of noncooperative games are typically suboptimal.
(2) Auctions lose revenue from strategic behavior.
(3) Incentive constraints can make polynomial time approximation of NP-hard

problems even harder.

As a result, it is essential for approximation, or approximate optimality, to come
into play. In particular, approximation is relevant in several topics of study in
algorithmic game theory, notably:

(1) In the area of price of anarchy, we study worst-case approximation guaran-
tees for equilibria.

(2) In revenue maximization, we discuss approximately-optimal revenue guar-
antees for auctions in non-Bayesian settings.

(3) In algorithmic mechanism design, we study approximation algorithms ro-
bust to sel�sh behavior.

(4) In computing approximate equilibria, we study the question of whether
there is a PTAS for computing an approximate Nash equilibrium.

In this scribed talk, we focus on the �rst two topics. The third topic was covered
in a FOCS 2010 tutorial given by the speaker and available online.

2. Price of Anarchy and Smoothness

2.1. Price of Anarchy. The notion of price of anarchy was introduced by Kout-
soupias and Papadimitriou in [26]. It quanti�es the ine�ciency of equilibria w.r.t. an
objective function. E.g., a typical equilibrium concept is Nash equilibrium, where
at equilibrium, no player is better o� by switching her strategy unilaterally.

These are scribed notes for a talk given by Tim Roughgarden at an approximation algorithms
workshop held at Princeton University in June 2011.
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De�nition 1. The price of anarchy (POA) of a game (w.r.t. some nonnegative
minimization objective function) is the supremum of:

objective function value at equilibrium

optimal objective function value
.

Here the supremum is over all equilibria.

The POA for maximizing problems can be similarly de�ned. Either way, a ratio
closer to 1 is more desirable.

Example 2. Consider the following network1, where there are two players who
want to go from s to t. Each player chooses exactly one path. Each edge in the
network has a congestion function, which is the cost for each player using that edge,
as a function of the total number of players using that edge. In Nash equilibrium,
both players choose the same path, incurring a cost of 2× 2 + 5× 2 each, summing
up to 28 in total. On the other hand, to minimize total cost, one player should take
the �top� path, while the other player should take the �bottom� path, with total
cost of 24. Therefore, the price of anarchy in this case is 28

24 = 7
6 .
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Figure 2.1. Nash Equilibrium and Optimal

A remark here is that there might exist multiple equilibria. When this is the
case, we look at the worst one w.r.t. our objective.

2.2. Call for Robustness. A price of anarchy bound means that if the game
is at an equilibrium, then the outcome is near-optimal. However, the reality is
often much more complicated, and we may not reach equilibrium for the following
potential reasons:

• There may not exist a (pure) equilibrium at all.
• An equilibrium can be computationally hard to �nd. [19, 15, 11]
• The equilibrium might be hard to learn in a distributed way.

These raise the worry: are our price of anarchy bounds �meaningless�?

We do not think that these concerns render price of anarchy bounds meaningless.
However, we do need to look for more robust guarantees than simple POA bounds
to address these concerns. Our high-level goal is the following:

we want worst-case bounds that apply even to non-equilibrium
outcomes.

Such outcomes could be:

• best-response dynamics, pre-convergence outcomes [28, 20, 2]
• correlated equilibria [12]

1I thank Kshipra Bhawalkar for providing the nicely drawn �gures.
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• coarse correlated equilibria a.k.a. �price of total anarchy� a.k.a. �no-regret
players� [7, 8]

A smoothness condition will be the key to our goal.

2.3. Smoothness and Price of Anarchy. To de�ne our smoothness framework,
we need to introduce a somewhat abstract setup. In the setup, let there be n
players, each picking a strategy si. Player i incurs a cost of Ci(s), where s = (si)i

is the strategy vector. We assume that the objective function is the total cost
cost(s) =

∑
i Ci(s). We remark that it is important that the cost is additive.

Our smoothness condition is the following:

De�nition 3. A game is (λ, µ)-smooth (λ > 0, µ < 1) if for every pair s, s∗ of
outcomes, the following condition holds:∑

i

Ci(s∗i , s−i) ≤ λ · cost(s∗) + µ · cost(s)

This says that if we start with a strategy pro�le s, and consider for each agent i
the cost of i if she unilaterally deviates to her strategy in pro�le s∗, then the sum
of all such costs is upper-bounded jointly using costs of s and s∗.

To make sense out of this condition, we �rst see how the smoothness condition
implies price of anarchy bounds, in a canonical way. Such an argument is called a
smoothness argument.

Theorem 4. If a game is (λ, µ)-smooth, then the price of anarchy is at most λ
1−µ .

Proof. We assume that a game is (λ, µ)-smooth. Let s be a Nash equilibrium, and
let s∗ be an optimal solution. Then the following holds:

cost(s) =
∑

i

Ci(s)

≤
∑

i

Ci(s∗i , s−i)

≤ λ · cost(s∗) + µ · cost(s)
Here the �rst line is by the additive de�nition of total cost, the second line is

by the fact that s is a Nash equilibrium, and the third line is by the smoothness
condition.

Now by rearranging, it follows that cost(s) ≤ λ
1−µ · cost(s∗), i.e., the price of

anarchy of pure equilibria is at most λ
1−µ . �

Remark 5. Note that smoothness condition is a stronger condition than is necessary
to derive the above bound on the price of anarchy. To derive the price of anarchy
bound, one only needs the smoothness condition to hold in the special case where
s is a Nash equilibrium, and s∗ is optimal. On the other hand, the smoothness
condition requires the inequality to hold even when the pro�le s is not a pure Nash
equilibrium.

For the settings listed below, price of anarchy bounds can be obtained via
smoothness argumenta in this same canonical way.

• atomic (unweighted) sel�sh routing [3, 12, 1, 31]
• nonatomic sel�sh routing [32, 30, 14]
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• weighted congestion games [1, 6]
• submodular maximization games [33, 27]
• coordination mechanisms [13]

2.4. Beyond Nash Equilibria. Smoothness arguments can be used to prove
worst-case approximation guarantees for outcomes that are not Nash equilibria.
We illustrate the idea here using the example of no-regret outcomes.

De�nition 6. A sequence s1, s2, . . . , sT of outcomes is no-regret if for each player
i, and each �xed action qi of the player i, the average cost player i incurs over the
sequence is (in the limit as T goes to in�nity) no worse than playing qi every time.

It is well-known for example that if every player uses the multiplicative weights
algorithm, then o(1) regret is achieved in polynomial time.

Theorem 7 (An Out-Of-Equilibrium Bound). [31] In a (λ, µ)-smooth game, the
average cost of every no-regret sequence is at most λ

1−µ times the cost of an optimal

outcome, in the limit as T goes to in�nity. (I.e., the same upper bound proved for
pure Nash equilibria.)

Proof. (sketch) Let s1, s2, . . . , sT denote a no-regret outcome sequence, and let s∗

denote the optimal outcome.
Assuming (λ, µ)-smoothness, we have:

∑
t

cost(st) =
∑

t

∑
i

Ci(st)

=
∑

t

∑
i

[Ci(s∗i , s
t
−i) + ∆i,t]

≤
∑

t

[λ · cost(s∗) + µ · cost(st)] +
∑

i

∑
t

∆i,t

Here the �rst equality is by linear separability of cost, whereas in the second
equality, the regret term∆i,t is de�ned as Ci(st) − Ci(s∗i , s

∗
−i), and the inequality

follows from the smoothness condition.
Now by the no-regret assumption,

∑
t ∆i,t ≤ o(T ) for each i, and the proof

�nishes by rearranging, and dividing using T . �

Furthermore, the connection of the price of anarchy to smoothness is �intrinsic�:

Theorem 8. [31] For every set C of cost functions, unweighted congestion games
with cost functions restricted to C are �tight� in the following sense: the maximum
of the pure POA over congestion games with cost functions in C is equal to the
minimum of λ

1−µ over (λ, µ) such that all such games are (λ, µ)-smooth.

One can show that weighted congestion games [6] are also tight in this sense.

2.5. What's Next. There are several future research directions along these lines.
One direction is to beat the worst-case POA bounds by always reaching a non-

worst-case equilibrium. Non-worst-case equilibria might be reached due to learning
dynamics (e.g. [10, 25]) from modest intervention (e.g. [4]), etc.

Another direction is to study POA bounds for auctions. Practical auctions of-
ten lack "dominant strategies" (like in sponsored search, combinatorial auctions,
etc.), and therefore it would be nice if we can have bounds on their (Bayes-Nash)
equilibria [5, 24].
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2.6. Summary of Key Points. To summarize this section, smoothness is a �canon-
ical way� to bound the price of anarchy (for pure equilibria). It gives robust POA
bounds in the sense that smoothness bounds extend automatically beyond Nash
equilibria. Furthermore, smoothness bounds provably give optimal POA bounds in
fundamental cases, and can be extended to approximate equilibria; best-response
dynamics; local smoothness for correlated equilibria; and Bayes-Nash equilibria.

3. Auctions

In this section we study revenue-maximizing auctions. We start by pointing out
the failure of traditional competitive analysis in this context.

3.1. Failure of Traditional Competitive Analysis in Auctions. Let us con-
sider a very simple problem. We have two bidders and one item for sale. For
such problems, which auction (e.g., whether to pick an opening bid of 1 cent or 10
dollars) is best heavily depends on the (unknown) input bids from the bidders.

One could try to use competitive analysis: compare your revenue to that obtained
by an omniscient opponent. However, it is easy to prove that no auction can
guarantee a meaningful fraction of this benchmark, and all auctions are equally
terrible in terms of competitive ratio. Therefore, a novel analysis framework is
needed.

3.2. A New Analysis Framework. We consider the prior-independent analysis
framework of [21, 22], where we compare revenue to that of an opponent with
statistical information about input. The goal is then to design a distribution-
independent auction that is always near-optimal for the underlying distribution
(no matter what the distribution is). Note that here distribution over inputs is not
used in the design of the auction, but only used in its analysis.

3.2.1. Bulow-Klemperer Theorem. The classical Bulow-Klemperer theorem can be
seen as one such prior-independent result, and in the rest of this section we focus
on the Bulow-Klemperer theorem. (Technically, the Bulow-Klemperer theorem is
not exactly the same as a prior-independent approximation guarantee as it needs
the additional bidder. But this need can be easily eliminated [17] at a constant loss
in the approximation factor.)

Let us consider the auction problem of selling a single item to one of n bidders.
Each bidder i has a valuation vi for winning the item, where the vi's are drawn
i.i.d. from a distribution F . Myerson characterized the optimal auction for this
context, where the optimal auction is dependent on the distribution F .

We make the standard regularity condition on the distribution F , as de�ned in
Myerson [29]. The classical Bulow-Klemperer theorem [9] says the following:

Theorem 9. [9] For every n, and regular F , the expected revenue of Vickrey's
auction with n+1 i.i.d. bidders from F is at least the expected revenue of the optimal
auction with n i.i.d. bidders from F .

One interpretation of the theorem is that a small increase in competition is more
important than running the optimal auction. This also in some sense gives a "bicri-
teria bound". Note that the Bulow-Klemperer theorem is prior-independent, in that
the Vickrey auction does not need knowledge about the underlying distribution.
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3.2.2. Bayesian Pro�t Maximization. To prove the Bulow-Klemperer theorem, we
�rst need to understand the optimal auction given distributional information.

First, consider one bidder and one item. The value of the bidder for the item v
is drawn from a known distribution F , and we want to choose an optimal reserve
price p to maximize revenue. Suppose we o�er price p, the expected revenue of p is
p(1− F (p)). We can solve for the optimal p∗, e.g. p∗ = 1

2 for v ∼ uniform[0, 1].
But what about cases beyond one bidder and one item (and i.i.d. draws vi)?

Myerson characterized the optimal auction as follows:

Theorem 10. [29] The auction that gives the maximum expected revenue is the
second-price auction (or Vickrey auction) with the above-de�ned reserve p∗. (Note:
p∗ is independent of n.)

Recall that the Bulow-Klemperer theorem says that for every n, Vickrey's ex-
pected revenue over n+1 i.i.d. bidders is as good as the maximum-possible expected
revenue from n i.i.d. bidders. In the following, we prove this theorem for the case
of n = 1, which is in some sense the most interesting and non-trivial case.

Let n = 1 for now. Note that in a Vickrey auction with n + 1 = 2 i.i.d. bidders,
from each bidder's perspective, she faces a take-it-or-leave-it o�er which equals to
the bid of the other bidder, which is in turn is a random draw from distribution F .
Therefore, the Bulow-Klemperer theorem for the case of n = 1 can be reformulated
as follows:
Claim: twice the expected revenue from one bidder with a random reserve

(drawn from F ) is as good as the expected revenue from one bidder with an optimal
reserve r∗.

One advantage of this reformulation is that the problem is now purely about
selling one item to one bidder.

We de�ne the (expected) revenue function R(q) = q · F−1(1 − q) as a function
of sale probability. I.e., if we sell at a price so that the probability of sale is q, the
price has to be F−1(1− q), and the expected revenue is R(q). It turns out that the
revenue function R(q) is concave in q if and only if the distribution F is regular.

Now let q∗ maximize R(q). Then the optimal revenue is R(q∗), or the �height�
of the curve. On the other hand, the revenue of using a random reserve drawn from
F equals to the expected value of R(q) with q uniformly drawn from [0, 1], which
equals to the area under the curve and above the q axis. By concavity of R(q),
the area under the curve is at least half of the height of the curve, completing the
proof.

Figure 3.1. Revenue Curve
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3.3. Related Work. There has been a lot of recent progress on prior-independent
approximations. More general forms of such "bicriteria bounds" were obtained in
[22, 18], and more prior-independent approximations have been achieved in [16, 17,
23].

3.4. Summary. Standard competitive analysis is useless for worst-case revenue
maximization. But we can get a simultaneous competitive guarantee with all
Bayesian-optimal auctions.

Toward future directions, can we thoroughly understand problems in the so-
called �single-parameter� domain, include "non-downward-closed" ones, and what
about non-i.i.d. settings? Or what about multi-parameter settings, like combina-
torial auctions?

Epilogue

The higher-level moral of this survey talk is the following. Worst-case approxima-
tion guarantees can be a powerful "intellectual export" from theoretical computer
science to other �elds (e.g., to economics and game theory). There are many rea-
sons why we should consider approximation (not just computational tractability),
and studying approximation in various contexts gives not only robust guarantees,
but also new insights into the problem.
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