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1 Overview

This lecture provides an overview of problems and results in the space of universal approximations.
We provide some insight into current techniques, connect the problems to other related areas, and
introduce open problems in the field. The primary motivation for the problems considered in this
lecture is efficient network design under dynamic, adversarial network conditions.

2 Universal Approximations

The notion of universal approximations was formally introduced in [15], with a focus on three op-
timization problems: Traveling Salesman (TSP), Minimum Steiner Tree, and Minimum Set Cover.

2.1 Universal Traveling Salesman

Suppose there are two couriers, a ”standard” courier and and a ”lazy” courier. Every day, each
courier is given a list of addresses to deliver packages to. Each day, however, the list each courier
receives is only a subset of the set of all the addresses in the company database. Assume also that
there is also a table which lists pairwise distances between every address.

The standard courier does the following: every day he receives a fresh list of addresses, from which
he computes a TSP tour (only using the addresses he received that day). The lazy courier, being
lazy, would like to avoid the work of having to compute a new tour every day. He decides to use all
of the addresses in the database to compute a single TSP tour. He will then follow that tour every
day, stopping only at the addresses in that day’s assignment, and shortcutting wherever possible.
For instance, if the single TSP tour computed over the set {A,B, C, D, E, F,G,H} of addresses
is A → B → C → D → E → F → G → H → A, and the list of addresses to visit on a given
day is {A,D, E, G}, the lazy courier will travel along the route A → D → E → G. Clearly, the
computation done by the lazy courier each day is minimal, while the standard courier needs to
solve a (possibly new) TSP problem every day. On the other hand, it is not hard to see that on
some days the lazy courier will travel more than the standard courier for a given address list. This
raises the following question: how good of an approximation is this universal tour (computed by
the lazy courier) as compared to the method of computing a separate tour for each day’s delivery
assignment?

Formally, given a metric space (V, d), can we design a tour T over V that has minimum stretch,
which is defined as

maxS⊆V
Cost(TS)
OPT(S)
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where TS is the subtour of T induced by S, Cost(X) is the length of tour X, and OPT(S) is the
cost of an optimal tour for S.

2.2 Universal Steiner Tree (UST)

We can similarly formulate a universal approximation version of the Minimum Steiner Tree problem.
We are given a weighted undirected graph G(V,E) and a root vertex, r. The goal is to find a
spanning tree T of G of minimum stretch, which is defined as

maxS⊆V
Cost(TS)
OPT(S)

where TS is the subtree of T induced by S and root r, OPT(S) is the cost of an optimal tree
connecting S to r, and Cost(X) = Σe∈Xw(e).

There are two main versions of this problem: graphical UST and the metric UST. In the graphical
version, the tree T can only draw its edges from G. In the metric version, we work with the metric
completion of any underlying graph; i.e., we can assume that G is the complete graph with the
weight of edge (u, v) being the shortest path distance between u and v in the original graph. We
can easily see that the best stretch achievable in graphical UST is at least as large as that achieved
in the metric version.

2.3 Universal Set Cover

Here is a universal approximation version of minimum set cover. Given a set V of elements, a
collection C of subsets of V , determine f : V 7→ C that satisfies the constraint that for all x ∈ V ,
f(x) contains x, and minimizes stretch, which is defined as

maxS⊆V
Cost(f(S))
OPT(S)

,

where Cost(X) is the sum of the costs of the sets in X and OPT(S) is the cost of a minimum-cost
set cover for S.

3 General Framework, Motivation, and Summary of Relevant Re-
sults

3.1 Framework

We can now specify a general framework for universal approximations. The universal version of an
optimization problem P has two additional notions :

• A sub-instance relation ≤
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• A restriction function R, which takes a solution S for instance I, I ≤ I ′ and returns a
solution R(S, I, I ′) for I ′

For a given instance I, the goal is to determine a solution TI for instance I that minimizes the
stretch, which is defined as

maxI′≤I
Cost(R(S, I, I ′))

OPT(I ′)
,

where Cost(X) is the cost of the solution X and OPT(I ′) is the cost of a minimum-cost solution
for instance I ′.

3.2 Motivation

Under what circumstances would finding a universal approximation be a good strategy? A primary
example is when one is trying to optimize under uncertain inputs; universal solutions are particularly
robust against adversarial inputs. For example, consider the problem of trying to aggregate data
in a sensor network. Data is being generated at multiple sensors and must be be aggregated at a
single sink. In each ”round” the input sources change, as well as the type of query. Dynamically
setting up an aggregation tree on this network as all input factors change may be expensive or
impractical. On the other hand, a Universal Steiner Tree can provide a good approximation across
all query and input patterns. Universal solutions are also useful in the privacy and security, since
they are differentially private [3].

3.3 Current Results

Upper Bound Lower Bound
UTSP O(log4 n/ log log n) [15] Ω(log n) [10, 3]

O(log2 n) [12]
O(log n) for doubling metrics [15] Ω(log

1
6 n) Euclidean [13]

Metric UST O(log4 n/ log log n) [15]
O(log2 n) [12] Ω(log n) [15]

O(log n) for doubling metrics [15] Ω(log n/ log log n) Euclidean [15]
O(log n) for planar [13]

Graphical UST 2Õ(log
3
4 n) [6] Same as for metric UST

2Õ(
√

log n) for doubling graphs
USC Weighted: O(

√
n log n) [15] Ω(

√
n) [15]

Unweighted: O(
√

n)

Table 1: Universal Approximation Results

3.4 The ”universal” landscape

The following is a summary of progress on universal approximation problems and related results.
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• Perhaps, the earliest result in the space of universal approximations is due to Platzman and
Bartholdi, who showed that space-filling curves satisfying certain technical conditions provide
an O(log n)-stretch universal TSP in the Euclidean plane [17].

• An early result in the area of network design that is similar in spirit to universal approxi-
mations is due to Goel and Estrin [8]. They studied the single-sink, buy-at-bulk problem:
Given a graph G, a set of demands to be routed to a sink s, and a cost for each edge, the
goal is to route all demands to minimize total cost. They gave a randomized construction of
a tree that achieves expected O(log n)-approximation for all concave cost functions. This has
subsequently been improved to O(1) in recent work by Goel and Post [9].

• The UST problem seeks a single tree that simultaneously approximates all minimum Steiner
trees for a given root. A series of very important results on metric embeddings have shown that
for every metric space, there exist tree metrics that well-approximate all pairwise distances
in the original metric space. Here is a very brief summary of results in tree embeddings.

– Results of [7] yield metric tree whose expected stretch for each set is O(log n).

– An O(log n log log n) expected stretch is achieved using distribution over spanning trees [1,
5].

Also related are the cut-based decompositions of [18, 19] that aim for a distribution over
trees or a tree with a distribution over embeddings, which well-approximate all the cuts in
the original graph.

• Gupta, Hajiaghayi, and Räcke formulated problems in oblivious routing and oblivious net-
work design that share the notion of “universality”: Given a graph, source-sink pairs, and
a per-edge routing cost, determine routes that are oblivious to demand pairs and cost func-
tion [12].

Other related results include a-priori approximations for the TSP, in which a set of vertices to be
visited is drawn from a probability distribution [20, 21], and stochastic set covering, in which the
goal is to find a single mapping of elements to sets to minimize the expected cost of covering a
randomly chosen subset of elements [11].

4 A closer look at Universal Steiner Tree (UST)

4.1 Metric UST

Recall the definition of the metric UST problem from above. Our goal is to find a spanning tree
of the complete graph G (whose edge weights form a distance metric) with minimum stretch.
Intuitively, what would make a good UST? Proceeding from root r, at each distance level from r
we can view T as providing a clustering of G. If an adversary were to try and find the worst-possible
nodes nodes to pick as the subset, S, it would look for notes that are ”well separated” in T but
”close” in G - that is nodes that appear in totally different clusters through T but are not far
apart in G. Thus, to avoid this problem, the UST should cluster nodes in T so that each node’s
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neighborhood does not intersect many clusters. Otherwise, the adversary could select several nodes
from this neighborhood that lie in different clusters.

4.1.1 Partition using bounded, locally consistent partitions

Motivated by the above discussion, we introduce the notion of bounded, locally consistent par-
titions. We define an (α, β, R)-partition as a partition of the metric space such that the diameter
of every cluster in the partition is at most αR and every ball of radius R around any node intersects
at most β clusters. It can be shown that every n-node metric space has an (O(log n), O(log n), R)-
partition for every R (see [4, 16] on sparse partitions).

We can put bounded locally consistent partitions together to form hierarchical partitions: We
create a collection of partitions {Pi} of G with the following properties:

• Partition Pi is an (α, β, Ri)-partition.

• Hierarchy: Pi is a refinement of Pi+1 .

• Root padding: The cluster in Pi containing the root contains a ball of radius Ri around the
root.

Using the sparse partitions of Awerbuch-Peleg, one can obtain a hierarchical (O(log n), O(log n), O(log n))-
partition for every metric space. We then have a metric UST algorithm:

Metric UST Algorithm [15]

• Compute a hierarchical (O(log n), O(log n), O(log n))-partition

• For each level i, from lowest to highest:

– For each level-i cluster

∗ Select leader from leaders of its constituent level i− 1 clusters (root is always made
leader of its cluster)

∗ Connect level i leader to level i− 1 leaders

We sketch a proof that the stretch for the UST using this algorithm is at most polylog(n). Note
that for level j, the cost in UST is O(nj logj+1 n), where nj is the number of level-j ancestors of
nodes in S. To do this we need to prove the following main lemma:

Main Lemma. If Pj is a maximal set of nodes in S pair-wise separated by logj−1 n, then nj =
O(|Pj | logj−1 n).

Proof Sketch. nj is the number of nodes at level j of the induced tree, and Pj is the maximal set
of nodes in S pair-wise separated by logj−1 n. Any node v’s ancestor at level j is within O(logj n)
cost of v. Therefore, an O(logj n)-ball around the ancestors of Pj at level j covers all nj ancestors
of S at level j. Thus by the partitioning scheme, it follows that nj is O(|Pj | log n).
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Since Cost(OPT(S)) is Ω(|Pj | logj−1 n), the cost at level j in the UST is thus O(log3 n)Cost(OPT(S)).
Since the number of levels in the hierarchical decomposition is O(log n/ log log n), we obtain an
O(log4 n/ log logn)-stretch UST.

4.1.2 An O(log2 n) stretch for metric UST.

Gupta, Hajiaghayi, and Räcke obtain an improved bound for metric UST in [12]. We say that a
node v is α-padded in a hierarchical decomposition if, at level i, the ball of radius 2αi around v is
fully contained within its cluster at level i. Then we have the following theorem:

Theorem 1. [12] For any v, in any tree drawn from the FRT distribution [7], probability that v is
is Ω(1/ log n)-padded is at least 3/4.

Using this theorem we can create a simple metric UST construction to give us an O(log2 n) stretch:

1. Sample O(log n) trees from the FRT distribution.

2. For each vertex v select a tree where v is Ω(1/ log n)-padded.

3. In each tree, build the sub-tree induced by the root and vertices that selected the tree (using
metric completion).

4. Return the union of the O(log n) sub-trees computed above.

4.1.3 Improved bounds for doubling metrics

We define the doubling dimension of a metric to be the smallest σ such that every ball of radius
2r can be covered by 2σ balls of radius r, for every r. A doubling metric is a metric that has
constant doubling dimension. Euclidean metrics are the simplest examples of doubling metrics.
For doubling metrics, the algorithm of [15] achieves a stretch of O(log n) through a hierarchical
(O(1), O(1), O(1)) partition.

4.2 Graphical UST

Recall that in the graphical version of universal UST, we require that T can only draw its edges from
G. How does this change the bounds achievable on the stretch? In the graphical case, we can natural
extend the notion of bounded, locally consistent partition: we want to partition G into clusters of
strong diameter at most αR and such that each R-ball intersects at most β clusters. We now ask,
how small can α and β be? An intriguing open question is if (polylog(n),polylog(n), 1)-partition
is achievable.

The following lemma states a necessary condition for a certain partition bound:

Lemma 2. [6] If a σ-stretch is achievable for a graphical UST, then an (O(σ), O(σ2), R)-partition
exists for all R.
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We face two major challenges in applying the partition-based approach that was successful for
metric MST. First, as mentioned above, we do not know yet how to obtain the desired partitions
with polylogarithmic parameters. Second, we also run in to problems when we try to create
a hierarchical partition. Unlike in the metric case we cannot simply choose leaders from each
subcluster and connect directly, because connecting lower level partition arbitrarily may introduce
huge blow-up costs. One approach following [12] is to replace O(log n) FRT trees by spanning trees
drawn from the distribution of [5]. However, even with this, it is not clear how to combine paths
drawn from these trees into a single spanning tree.

Dutta et al. propose the following UST construction [6].

1. Construct (2Õ(
√

log n), 2Õ(
√

log n), R) partition for all R; for graphs with constant doubling
dimension, we can achieve (O(1), O(1), R)-partitions.

2. Construct a hierarchical (2Õ(
√

log n), 2Õ(
√

log n), 2Õ(
√

log n))-partition; for graphs with constant
doubling dimension, a hierarchical (O(1), O(1), O(log2 n))-partition can be achieved.

3. Then build a UST from the hierarchical partition by connecting lower-level trees using shortest
paths and invoke the properties of partitioning to bound the stretch, obtaining a 2Õ(log3/4 n)

bound for general graphs and a 2Õ(
√

log n) for doubling graphs.

4.3 Lower bound for UST

We find lower bounds for UST by looking at lower-bounds for on-line Steiner tree problems. Over
n-nodes, the on-line Steiner Tree problem has a competitive ratio of Θ(log n) for general metric
spaces [14] and Ω(log n/ log log n) for Euclidean metric spaces [2]. Every UST for an n-node metric
space with stretch s(n) can be transformed into an on-line algorithm with a competitive ratio of
s(n). Hence, every UST has a stretch of Ω(log n) for n-node metrics and Ω(log n/ log log n) for
Euclidean metrics.

5 Conclusion and Open Problems

5.1 Complexity of Universal Problems

Consider again the stretch function:

maxS⊆V
Cost(TS

OPT(S)

We know that for a given terminal set S, finding OPT(S) is hard, although there are polynomial-
time O(1) approximations are known (MST, for example, in the UST case). For a candidate UST,
finding the the worst-case set is also NP-hard. Finding whether there exists a UST a stretch with at
most σ is coNP-hard. The problem of finding the minimum stretch UST is in Σ2, and we conjecture
that it is Σ2-hard.

7



5.2 Open Problems

1. Close the gaps for UTSP and UST

• Euclidean UTSP: Ω(log1/6 n) vs O(log n)

• UTSP: Ω(log n) vs O(log2 n)

• Metric UTSP: Ω(log n) vs O(log2 n)

2. Is there a polylog(n)-stretch graphical UST?

3. Strong diameter-partitions: Can we partition any graph into components of strong diameter
polylog(n) such that each vertex has neighbors in polylog(n) components? (See [16] for similar
related questions.)

4. Explore universal approximations for other optimization problems.
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