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1 Overview

Online matching is a core algorithmic problem in Internet ad allocation. The question of precisely which
ads to show on a page is a problem of finding an optimal matching between supply (e.g., page views) and
demand (e.g., advertiser budgets).

The biggest example is that of search based advertising: In this system the advertisers submit bids to the
search engine, stating how much they are willing to pay to get an ad placed for a certain keyword search.
This is done offline. The search engine then gets requests online, in the form of queries from users. For each
arriving query, the search engine finds the ad candidates, scores them, and runs an auction to determine
which ads to show, and how much does each ad pay (on a click). One important aspect of search based
advertising is the existence of daily budgets which an advertiser can specify to cap the maximum amount of
money that it would pay through a day. With the introduction of budgets the system is no longer stateless,
and this induces online matching and allocation problems.

Another important example is that of display advertising, on external webpages. Ad contracts are often
determined offline by negotiations between publishers and advertisers based on requirements such as targeting
and serving quantity. The supply arrives online in the form of page views. Again the problem for the display
advertising platform becomes an online matching problem, that of matching the online supply to the offline
demand (with prices predetermined via the contracts). Other examples, like ad exchanges also involve online
matching or allocations.

In each of these examples, the objective function used in the online matching problem is important for
the business motivation. Since there are three players – users, advertisers and search engine (or platform,
exchange, or publishers) – there are three objective functions: user happiness, advertiser ROI and pubmisher’s
short term revenue. The first two objectives are important for long term growth, and in practice one would
maximize some well-chosen convex combination of the three. In the abstractions below, we will be maximizing
the efficiency of the matching, namely, the total value that is matched. This can be a reasonable proxy for
all three objective functions. Furthermore, in the real problems, there are several domain specifications,
e.g., in search ads, advertisers pay only when a user clicks, and pays the price determined by a second price
auction. In our abstractions, we shall work with first-price, pay on impression settings.

1.1 Models for Studying Online Allocation Problems

Online allocation problems such as the ones described above have been studied in 4 models. These models
make progressively stronger assumptions about the available information about the arriving requests.

1. Adversarial: In this model we assume we are presented with the worst possible sequence of requests
in adversarial order.

2. Random Order Arrival (ROA): Here we assume that the requests are presented to us in random
order though they may be adversarially chosen.

3. Unknown Distribution: In this model we assume that the requests are drawn from as distribution
that is not known to us before-hand.
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4. Known Distribution: Here we assume that the requests are drawn from a distribution that is
available to us a blackbox.

Note that the adversarial model has the least amount of information about the arriving requests while the
known distribution model assumes the maximum amount of information about the query stream. Despite
their apparent differences there is no known separation result differentiating the Unknown distribution model
from the Random Order model. In the next sections, we will consider different matching and allocation
problems, under these different arrival models. Table 1.1 provides a preview summary of the results surveyed
here.

Adversarial Input Unknown Distribution Known Distribution
/ Random Order

Bipartite Matching 1− 1
e 0.696 0.702

(optimal) (0.823) (0.823)
Vertex Weighted Matching 1− 1

e ? ?
(optimal)

Adwords 1− 1/e 1− ε 1− ε
(optimal) (optimal) (optimal)

Table 1: Summary of Results for Online Matching Problems in different arrival models. Rows correspond
to problem and columns to arrival model. The entries are the best known factors, and the corresponding
upper bounds (in parenthesis). Citations are provided in the text.

2 Online Bipartite Matching

This is the simplest and most basic problem in online matching. In this problem, first introduced by Karp
et al. in [KVV90], we are given a bipartite graph G(L,R,E) whose left side L is known to us in advance
and the right R arrives online one vertex at a time. For each incoming vertex we are revealed its neighbors
among vertices on the left side. The arriving vertex needs to be matched irrevocably to an available neighbor
(if any). The objective is to maximize the number of vertices that get matched. In terms of the motivating
problem, the left-hand side corresponds to advertisers and the right refers to page views.

Figure 1: The core difficulty for online bipartite matching

The core difficulty in the problem is the following (see left side of Figure 1). Suppose we have two vertices
u and v, on the left (given) side, and suppose the first vertex to arrive has edges to both of them and we
match it to v. This decision would turn out to be a sub-optimal choice if the next vertex to arrive is only
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adjacent to v which is already matched. In fact this example shows that no deterministic online algorithm
can attain a factor better than 1/2.

Uncorrelated Randomness: One might be tempted to think that a simple application of randomization
will overcome this difficulty: Consider the algorithm RANDOM, which lets each arriving vertex pick one of
its available neighbors at random. It performs with factor 3/4 in this example. However this strategy does
not generalize to any better than 1/2, as the following graph shows (see Figure 1, right side). Each side of
the bipartition has n vertices such that there is a perfect matching between them. There is also a complete
bipartite graph between the first n/2 vertices to arrive on the right and the “incorrect” set of n/2 vertices
on the left side. It can be shown that RANDOM attains a factor of 1/2− o(1) for this instance, essentially
since almost all the first half of arriving vertices match to the incorrect set. Next we present an algorithm
that is able to significantly improve the 1/2 bound in the adversarial model using correlated randomness.

2.1 Adversarial Order Model

In [KVV90] the authors introduced the Ranking algorithm for the Online Bipartite Matching problem in
the adversarial model. This algorithm uses correlated randomness to get an expected competitive ratio of
1− 1/e.

The Ranking Algorithm: In this algorithm we begin by permuting the vertices on the left side according
to a random permutation. We match each incoming vertex to the first available neighbor according to this
permutation. The vertex remains unmatched if none of its neighbors are available.

We will now briefly analyze this algorithm based on a proof by Birnbaum and Matheiu [BM08] (this is the
only proof provided in this talk).

Theorem 1. The Ranking algorithm attains a factor of 1−1/e for the Online Bipartite Matching Problem
in the adversarial arrival model.

Proof. The analysis is based on the following observations:

1. If a vertex u at the tth position on the left side, is left unmatched in an execution of the algorithm then
its neighbor (u∗) in the optimal solution should surely be matched (for simplicity, assume that OPT is
a perfect matching, so every u has a corresponding u∗). In fact we can show something stronger than
this: not only should u∗ be matched, it should be matched to a vertex placed higher than u in the
permutation for this execution.

2. Furthermore if we consider the the n permutations produced by moving u to all possible positions
keeping the relative order of all other vertices fixed, then u∗ continues to be matched above position t,
in each of these permutations.

This yields the following equation relating miss-events and matches.

Pr [miss at position t] ≤
∑

s≤t Pr [match at position s]

n

The equation can solved to show that the algorithm attains a factor of at least 1− 1/e.

In [KVV90] the authors also gave an example to show that their bound is essentially tight in this model.
They considered the graph shown in Figure 2 and showed that if the vertices arrive from right to left in the
adjacency matrix as shown, then no online algorithm can hope to achieve a factor better than 1 − 1/e for
this problem. Intuitively the first few vertices to arrive have lots of alternatives and most of them do not
end up matching their partner in the optimal solution. This exhausts the options for the vertices arriving
at the end and they are left unmatched.
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Figure 2: Tight Example for the Ranking Algorithm

2.2 Random Order Arrival Model

In this model (shortened to ROA) we assume that the graph is adversarial, but the vertices on the right arrive
online in random order. The model was introduced by Goel and Mehta in [GM08]. They showed that the
greedy algorithm that matches each incoming vertex to the first available neighbor on the left side (breaking
ties consistently), attains a factor of 1 − 1/e. In fact this is easy to prove once we have the analysis of
Ranking in the adversarial model, since Greedy with random order input simulates the Ranking algorithm.
The paper also provided an upper bound of 5/6 for this model.

Since 1 − 1/e is no longer an upper bound on the performance of an online algorithm in this model, an
intriguing unanswered question in the work of Goel and Mehta was whether it was possible to beat this
bound in the ROA (and hence Unknown Distribution) model. This question was answered in the affirmative
by Karande et al. [KMT11] and Mahdian and Yan [MY11] where they showed that the Ranking algorithm
attains a factor strictly greater than 1 − 1/e in the ROA model. The analysis is based on the observation
that the output of the Ranking algorithm is independent of which side is considered as the streaming side
and which one is assumed to be given offline, i.e. we can switch the roles of the known and streaming
side in the ROA model and the output would remain unchanged. Comparing to the proof on KVV in the
adversarial model, the increase in factor is provided by considering amplified maps to matches, not only
from miss events, but also from certain types of matches themselves. Their results are summarized in the
following theorems.

Theorem 2 ([KMT11, MY11]). The Ranking algorithm attains a factor of at least 0.656 [KMT11] (0.696
[MY11]) for the online bipartite matching problem in the ROA model.

The 0.696 factor uses a computer aided proof to solve a “strong” factor revealing LP.

In [KMT11] the authors also showed that if the underlying graph has k disjoint (nearly) perfect matchings
then the Ranking algorithm attains a factor of at least 1 − 1/

√
k. Intuitively this result states that if the

given graph is internally robust then it is easy to find a large matching in it. This theorem explains the
intriguing empirical observation seen in experiments that indicated that the performance of the Ranking
algorithm goes to 1 for the worst case graph for the adversarial model shown in Figure 2 (note that this
graph has a large number of nearly perfect matchings).

In terms of tight examples for Ranking, [KMT11] provided two examples for which the algorithm does
significantly worse than 1 and attains a factor of 0.75 and 0.726 respectively. These graphs are shown in
Figure 3. Using a result by Mahshadi et al. [MOGS11] we know that no online algorithm can attain a
competitive ratio better than 0.83 even in the known distribution model (next section). Since the known
distribution model is a special case of the ROA model the upper bound carries over to this setting.

4



Figure 3: Tight Example for Ranking in the ROA model.

2.3 Known Distribution Model

This model was first introduced by Feldman et al. in [FMMM09]. Here we assume that there are a poly-
nomially bounded number of types of vertices and this is known to us in advance. Vertices are drawn
independently and with replacement from these types and have to be matched irrevocably upon arrival.
More formally: We are given a base graph G(L, R̂, Ê) in advance, and also a distribution D on R̂. The
outcome graph, G(L,R,E), is obtained through the process in which the next vertex v ∈ R to arrive is
picked iid from D, with the neighbors of v being identical to that of the chosen base vertex v̂ ∈ R̂. Let us
begin by considering a simple algorithm for this problem that is based on the idea of using offline estimates
to guide online decisions.

The Suggested-Matching algorithm: This is the simplest idea in this setting: find the optimal matching
in the base graph and for each arriving vertex v match it to the optimal match for its base type v̂, according
to this matching. However, the core difficulty in this approach is that the types of vertices can repeat across
different samples drawn from the underlying graph, i.e., we may get several draws v1, v2, ..., vk ∈ R for the
same base type v̂ ∈ R̂. Since the algorithm tries to match each such vi to the same vertex in L (the match
of v̂), this will result in all but the first arriving vertex, v1, remaining unmatched. In fact by a standard
balls-in-bins argument we can show that Suggested-Matching algorithm attains a factor of 1−1/e (when
D is the uniform distribution).

We will now discuss an algorithm that does better than 1− 1/e in this model.

The Two-Suggested-Matching (TSM) algorithm, is based on the idea of the power of two choices.
As above, it exploits offline statistics to guide its choices as the vertices arrive online. However instead of
having one suggested matching to guide in decision making, it uses two matchings for this purpose. We use
maximum 2-flow on the base graph network to calculate two large disjoint matchings (say M1 and M2) in
the base graph. The TSM algorithm tries to match each arriving vertex it to the match of its type in M1;
if it fails then it attempts to match according to M2. If both these attempts fail then the vertex remains
unmatched. Their result is summarized in the following theorem. Thus each arriving vertex now has two
attempts at finding a match. The difficulty introduced is that two vertices of different types now interact,
since the M1 match of one may be the M2 match of the other.

Theorem 3. The Two-Suggested-Matching algorithm attains a factor of
1− 2

e2
4
3−

2
3e

' 0.67 for the Online Bi-

partite Matching problem in the Known Distribution Model.

The above theorem holds for the case of integral rates, i.e., when the distribution D is such that the expected
number of arrivals of each type is integral. In [FMMM09] the authors also showed that their analysis was
tight by showing an example for which the TSM algorithm attains exactly this factor. They also showed that
even in this model, with complete information about the distribution from which the vertices are drawn, no
online algorithm can achieve a competitive ratio of 1− o(1). Their results were later improved by Bahmani
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Figure 4: Two extreme examples for vertex weighted matching.

and Kapralov [BK10] to a 0.70 factor algorithm (which is a modification of TSM), and an upper bound
of 0.902. Mahshadi et al. [MOGS11] provided a different algorithm, based on finding two matchings, as in
TSM, but with the difference in how the two matchings are chosen: they choose them by simply sampling
from the optimal fractional solution. They also provide an adaptive algorithm using a new idea of using
a joint distribution on matchings obtained from the optimal fractional matching. They showed that this
algorithm achieves a factor of 0.702, even for the case when the rates are not integral. They also improved
the upper bound to 0.83.

In the next two sections, we will deal with two related, but different variants of matching with weights. The
optimal algorithms for these two problems, although very different, have related intuition and techniques.

3 Weighted Vertex Matching

We will now focus our attention on the vertex weighted version of the online matching problem discussed
earlier. In this problem the vertices on the right arrive online and reveal their neighbors on the left side,
as before. The left side is known in advance and each vertex (say v) on the left also has a weight (w(v))
associated with it. We wish to maximize the sum of weights of vertices on the left that get matched.

Intuition: Let us consider two cases for this problem. Consider the graph shown on the left in Figure
4. Here the two vertices on the left have the same weight. For this instance Ranking, attains a factor of
3/4 and 1− 1/e in general (as we saw in Section 2). Also, Greedy (which matches to the highest weighted
neighbor, breaking ties arbitrarily) only attains a factor of 1/2 for such instances. Next consider the graph
on the right in Figure 4. Here the weight of one of the vertices is much greater than that of the other. In
this setting Ranking attains a factor of 1/2 in the examples (which goes to 0 for larger examples) whereas
Greedy is almost optimal (factor ≈ 1). Thus while Ranking works well for uniformly weighted graphs, it
fails badly when the vertex weights are highly skewed. On the other hand the other hand Greedy does well
for highly skewed weights but fails when the weights are equal.

The examples explore two different aspects of the Weighted Vertex Matching problem and suggest two
candidate algorithms.

1. Ranking with non-uniform permutations: Instead of using a random permutation for the Rank-
ing algorithm, we can draw a permutation for a distribution that depends on the weights on the
vertices.

2. Perturbed Greedy: Run Greedy with a “soft-max”: allow vertex weights to flip with some prob-
ability. (As discussed in Section 2 no deterministic algorithm can attains a competitive ratio better
than 1/2, thus we can hope to use randomness in the greedy algorithm to circumvent this problem).

In the next section we will present an algorithm that has both these properties.
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Figure 5: Two extreme examples for the Adwords problem.

3.1 Algorithm for weighted vertex matching

In [AGKM10] the authors presented the following algorithm for the weighted vertex matching problem.

1. For every vertex v pick a random number rv between 0 and 1.

2. For every vertex v, define its perturbed weight as W ∗(v) = W (v)ψ(r(v)), where ψ(x) = 1− e−x

3. For each arriving vertex on the right, match it to the available neighbor with the highest perturbed
weight.

Note that the above algorithm is exactly equal to the Ranking algorithm when all weights are equal and
morphs in to the greedy algorithm when the weights are highly skewed. In [AGKM10] the authors proved
the following theorem.

Theorem 4. The Perturbed-Greedy / Non-uniform-KVV algorithm above attains a factor of 1 − 1/e for
the Weighted Vertex Matching problem. This is optimal (follows from the unweighted case).

Remark: It is not known whether one can better this 1 − 1/e bound for the adversarial model in other
models such as the ROA model and the Known Distribution model.

4 Adwords Problem

Finally we move on to Adwords problem. We are given a set of advertisers each of who have a daily budget
Bi. Ad requests arrive online and the advertisers place a (possibly different) bid on the ad-request (so that
the bid of advertiser i for request q is biq). We assume that the bids are small with respect to the daily
budgets of the agents (i.e., ∀ i, q : biq � Bi). Each ad slot can be allocated to at most one advertiser and
the advertiser is charged his bid for the item from his budget. The objective is to maximize the amount
of money spent by the advertisers. We will assume that the advertisers’ bids are much smaller than their
budget. Thus, one may still consider this as a generalized matching (or allocation) problem, with each vertex
on the left (known) side having a budget constraint, and the edges having weights.

Intuition: We will consider two algorithms - Greedy and Load-Balance. Greedy assigns each ad-slot
to the advertiser with the highest bid who still has not exhausted his budget. On the other hand Load-
Balance gives it to the advertiser who has spent the least fraction of his budget. Consider the example on
the left in Figure 5. Here Greedy will assign the first 100 copies to the second advertiser and the latter 100
copies would remain unsold. Whereas Load-Balance would attain a factor of 3/4.

On the other hand for the setting on the right Greedy does well attaining a factor of 1 while the Load-
Balance gets a factor of 1/2. The main intuition in solving the Adwords problem is to find a hybrid
algorithm that combines these ideas and performs well on all instances. This is achieved by perturbing the
bids for the agents to reflect the fraction of their budget spent. The complete algorithm is described in the
following section.
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Figure 6: Landscape of problems.

4.1 Deterministic Algorithm for the Adwords Problem

As with the algorithm for weighted vertex matching we use a perturbation function to modify the input and
then run the greedy algorithm. However the perturbation function used here is deterministic.

The MSVV Algorithm: For advertiser i and for the arriving query q define the scaled bid b̂iq = biq×ψ(fi),
where fi is the fraction of unspent budget of i, and ψ(x) = 1− e−x. For each arriving query we allocate it
to the advertiser with the highest scaled bid.

In [MSVV05] Mehta et al. showed that this algorithm attains a factor of 1 − 1/e and it is optimal. The
curious thing is to recall that this is the same perturbation function as the one used for weighted vertex
matching in Section 3. Buchbinder et. al [BJN07] gave a different (though related) online algorithm, based
on the primal dual programs for the problem.

Theorem 5. The MSVV algorithm above attains a factor of 1 − 1/e for the Adwords problem. This is
optimal even among randomized algorithms. The BJN primal-dual online algorithm also achieves an optimal
1− 1/e factor.

4.2 Adwords in the Random Order Arrival Model

In [DH09] Devanur and Hayes considered the Adwords problem in the ROA model. They presented a factor
1 − ε competitive algorithm that was also based on the primal dual method. The main idea behind the
algorithm was to use a fraction of the input to approximate the entire query stream. However the primal
variables in the linear program corresponding to the offline solution are hard to approximate by sampling
a fraction of the query stream. On the other hand the dual variables (as in the BJN algorithm) can be
approximated and can be used to guide the allocation problem for the rest of the query stream.

Theorem 6. The DH dual sampling algorithm attains a factor of 1− ε for the Adwords problem, where ε is
a function of the ratio of bid to budget.

5 Discussion

In this lecture we have covered various online allocation problems, starting with the foundational (and
simplest) case of online bipartite matching and using those ideas to build towards a solution for the Adwords

8



problem. In Figure 6 we show the complete landscape of problems. All the problems considered here are
special cases of the Adwords problem with arbitrary bids (not necessarily small compared to the budget).
All the offline versions of the problems discussed in this lecture are either in P or approximated to 1 − ε
(for the Adwords problem with small bids). Unlike those, the Adwords problem with arbitrary bids (also
known as Maximum Budgeted Allocation) is NP-hard to approximate to a factor better than 15/16 [CG08],
and the best known offline algorithm is 3

4 [CG08, Sri08]. The greedy algorithm attains a factor of 1
2 in the

online setting and nothing better than 1/2 is known for the online setting. A further generalization of these
problems is the Submodular Welfare Maximization problem, where the advertisers have general submodular
functions as their objective. Once again this problem is hard to approximate to a factor better than 1− 1/e
in the offline setting and the best online algorithm only attains a factor of 1

2 . Proving optimal algorithms or
hardness results for these problems remains an exciting open question.
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