
Vertex-Connectivity 
Survivable Network Design

Sanjeev Khanna

University of Pennsylvania

Joint work with: Julia Chuzhoy (TTI)



Survivable Network Design (SNDP)

Input: A graph G(V,E) with costs on edges, and pairwise

connectivity requirements r(u,v). 

Goal: Minimum cost subset E’ ⊆⊆⊆⊆ E s.t. G(V,E’) has r(u,v)

disjoint paths for each pair u,v.

EC-SNDP: r(u,v) edge-disjoint paths.

VC-SNDP: r(u,v) vertex-disjoint paths.

k = Max connectivity requirement for any pair.



SNDP Example
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EC-SNDP Solution
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VC-SNDP Solution
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Directed Graphs

[Dodis-K ’99]
If the underlying graph is directed, then even for k=1,
SNDP is 2log1 - εn-hard to approximate for any ǫǫǫǫ > 0.

We focus on the undirected case from here on.



EC-SNDP Results

� 2-approximation for k = 1 via a primal-dual approach 
[Agrawal, Klein, Ravi ’95].

� Extended to higher connectivity values. [Goemans, 
Mihail, Vazirani, Williamson ’95], [Goemans,Goldberg, 
Plotkin, Shmoys, Williamson’94].

� 2-approximation by iterative LP-rounding. [Jain ’98].



VC-SNDP Results

� 2log1 - εεεε n hardness for any εεεε > 0, for k=poly(n)
[Kortsarz, Krauthgamer, Lee ’03].

� kΩ(1) –hardness [Chakraborty, Chuzhoy, K ’08].

� 2-approximation if k = 2   
[Fleischer, Jain, Williamson ’06].

� O((log k).log (n/n-k))-approx. if r(u,v) =k ∀∀∀∀ u,v. 
[Cheriyan, Vempala, Vetta ’03], [Kortsarz, Nutov ’04], 
[Fakcharoenphol, Laekhanukit ’08], [Nutov ’08].



Single-Source Vertex Connectivity 

All vertex connectivity requirements are between a

source s and a set T of terminals. 

� O(k2 log n)-approximation                  
[Chuzhoy,K ’08]; [Nutov’ 08].

� O(k log n)-approximation if r(s,t) = k ∀∀∀∀ t ∈∈∈∈ T 
[Chuzhoy,K’08]; (an elegant simpler proof 

[Chekuri, Korula ’08].)



Our Results

Nothing better than O(n log n) approximation for

VC-SNDP even for k=3.

Theorem 1: VC-SNDP has a randomized O(k3 log n)

approximation algorithm for any k.

Theorem 2: Single-source VC-SNDP has a randomized

O(k2 log n)-approximation algorithm.



Rest of This Talk …

� Element connectivity problem.

� Resilient set systems.

� Algorithm for general VC-SNDP.

� Improved algorithm for single-source VC-SNDP.

� Further developments.



Element Connectivity SNDP

Terminal: A vertex u s.t. r(u,v) > 0 for some v.

Element: An edge or a non-terminal vertex.

Goal: A minimum cost subset E’ ⊆⊆⊆⊆ E s.t. G(V,E’) has

r(u,v) element-disjoint paths for each u, v.

If u and v are k-element connected then they are 

k-edge connected as well, but may not be k-vertex

connected.



Element Connectivity SNDP
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Element Connectivity is Transitive

t1
t2

t3

Only true for terminals.

Edge-connectivity is also transitive but not 
vertex-connectivity.

t1 and t2 are k-element connected, and t2 and t3
are k-element connected, then so are t1 and t3.



Element Connectivity is not Monotone
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Element Connectivity SNDP

� [Jain,Mandoiu,Vazirani,Williamson ’99]    

� Introduced element connectivity SNDP.

� A primal-dual O(log k)-approximation.

� 2-approximation via iterative LP-rounding     
[Fleischer, Jain, Williamson ’01]    
[Cheriyan, Vempala, Vetta ’03]

� Matches approximation ratio for EC-SNDP.



k-Resilient Family of Sets

A family {T1, T2, …, Tp} of vertex subsets is k-resilient

if for every pair (s,t) of vertices and every subset 

X ⊆⊆⊆⊆ V\{s,t} of size (k-1), there is a Ti such that

s,t ∈∈∈∈ Ti and X ���� Ti = ∅∅∅∅.

If s and t are k-element connected w.r.t. terminal set

Ti, then X can not disconnect s from t.



Algorithm for General VC-SNDP

Input: A graph G and a set P of pairs of vertices with

connectivity requirements between 1 from k. 

� Let {T1, T2, …, Tp} be a k-resilient family.

� Let Pi = { (s,t) ∈ P | s, t ∈ Ti } for 1 ≤≤≤≤ i ≤≤≤≤ p.

� Solve the element-connectivity instance defined by 
Pi on the input graph G.

� Let Gi be the 2-approximate solution obtained for Pi.

� Output G1 ∪∪∪∪ G2 … ∪∪∪∪ Gp. 



Feasibility of the Solution

Fix any pair (s,t) with vertex-connectivity requirement

r(s,t) ∈∈∈∈ [1..k].

� Consider any X ⊆⊆⊆⊆ V\\\\{s,t} s.t. |X| ≤≤≤≤ r(s,t)–1 ≤≤≤≤ (k-1).

� Since {T1, T2, …, Tp} is a k-resilient family, there 
exists Ti s.t. s,t ∈∈∈∈ Ti and X ���� Ti = ∅∅∅∅.

� So X is a set of non-terminals in the instance for Ti.

The pair (s,t) is r(s,t)-element connected in Gi, so X can

not disconnect s from t.



Cost Analysis of the Solution

� Let OPT denote the cost of an optimal solution for 
the given VC-SNDP instance.

� Then cost of each element connectivity instance Pi is 
at most OPT.

� Cost of each solution Gi is at most 2····OPT. 

Thus we get an O(p)-approximation.



Constructing a k-Resilient Family

� Set p ≈≈≈≈ 2k3 log n.

� Each terminal t ∈∈∈∈ T selects uniformly at random        
q ≈≈≈≈ p/2k ≈≈≈≈ k2 log n indices from {1, 2, …, p}. 

� Let φφφφ(t) be the set of indices chosen by t.
� Define Ti = {t | i ∈∈∈∈ φφφφ(t) }.

Lemma: With high probability, {T1, T2, …, Tp} is a 

k-resilient family.



Proof of k-Resiliency

� Fix a pair (s,t).

� Let X be any set of ≤≤≤≤ (k-1) vertices in V\\\\{s,t}.

� Bad event E(s,t, X):  φφφφ(s) ���� φφφφ(t) ⊆⊆⊆⊆ UUUUt’ ∈∈∈∈ X ���� T φφφφ(t’). 

� Probability of E(s,t,X) ≤≤≤≤ n-4k.

� Key observation: |UUUUt’ ∈∈∈∈ X ���� T φφφφ(t’) | ≤≤≤≤ p/2.

� So w.h.p. φφφφ(s) ���� φφφφ(t) contains an index outside the 
union UUUUt’ ∈∈∈∈ X ���� T φφφφ(t’).

� By union bounds, w.h.p. bad event E(s,t,X) does not 
occur for any s,t, X.



(w,r)-Cover-Free Families 

� A family F of sets is (w,r)-cover-free if for any 
distinct A1, …, Aw ∈∈∈∈ F, and any other B1, …, Br ∈∈∈∈ F if 
we have

A1 ���� A2 ���� … ���� Aw B1 ∪∪∪∪ B2 ∪ ∪ ∪ ∪ … ∪∪∪∪ Br.

� Set w = 2, r = (k-1).

� Then { T1, T2, …, Tp } is k-resilient ⇔⇔⇔⇔

F = { φφφφ(t) | t ∈∈∈∈ T } is a (2,k-1)-cover-free family on 
elements {1, 2, ..., p}.



Implication for k-Resilient Family

Need a (2,k-1)-cover-free family with n sets.

How small can we make the universe size p?

Theorem [Stinson, Wei, and Zhu ’00]

A (2,k-1)-cover-free family with n sets exists on a

universe of p elements only if p = ΩΩΩΩ( (k3 log n) / log k).

The simple randomized construction is tight to within 

an O(log k) factor.



Single-Source VC-SNDP

Same algorithm but more efficient k-resilient family.

� Set p= 4(k2 log n), each terminal t ∈∈∈∈ T selects 
uniformly at random q= p/(2k) indices from {1, 2,…, p}. 

� Let φφφφ(t) be the set of indices chosen by t. 
� Define Ti = { t | i ∈∈∈∈ φφφφ(t) }.

Lemma: W.h.p. {T1, T2, …, Tp} is a k-resilient family.

We get an O(k2 log n)-approximation algorithm.



When Costs are on Vertices …

� Provably harder: even for k = 1, ΩΩΩΩ(log n)-hard while a  
2-approximation exists for edge costs.

� Our approach is oblivious to edge costs vs. vertex 
costs issue: αααα-approximation for element connectivity 
SNDP in vertex cost model gives an O(ααααk3log n)-
approximation for VC-SNDP with vertex costs.



Further Developments …

[Nutov ’09]

� For edge costs:

� O(k log k)-approximation for single-source VC-
SNDP.

� For vertex costs:

� O(k log n)-approx. for element connectivity SNDP.

� O(k4 log2 n)-approximation for general SNDP.

Can be used with our approach to get same bound for

vertex costs.



Concluding Remarks

� Simple reduction from vertex-connectivity to 
element-connectivity problem. 

� Highlights an interesting connection between distinct 
notions of connectivity.

� Single-source case:

� Ω(log2-εεεε n)-hardness[Kortsarz,Krauthgamer,Lee’03] 
[Lando,Nutov ’08].

� O(k log k)-approximation.

� Poly-logarithmic approximation when k is large?



Thank You!


