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Minimum Multicut

Input: A graph (directed or undirected) and a collection of   
k source-sink pairs (s1,t1),…(sk,tk).

Goal: Find a minimum-size subset of edges whose removal 

disconnects all si–ti pairs.

s1

s2

s3

t1

t2

t3

Solution cost: 2



Minimum Multicut

� k=1: Minimum s-t cut problem, solvable in polynomial 
time [Ford, Fulkerson ’56].

� k=2: Solvable in polynomial time for undirected graphs
[Yannakakis, Kanellakis, Cosmadakis, Papadimitriou
’83], but NP-hard for directed graphs [Garg, Vazirani,
Yannakakis ’94].

� k≥3: NP-hard for directed and undirected graphs
[Dahlhaus, Johnson, Papadimitriou, Seymour, 
Yannakakis ’94].

� Arbitrary k: NP-hard even on undirected star graphs
[Garg, Vazirani, Yannakakis ’93].



An Integer Program

� For each edge e, a 0/1 indicator variable xe: xe is 1 if 
e is in the solution and 0 otherwise.

� For each source-sink pair si-ti, let Pi be the set of all 
the paths connecting si to ti.

Constraint: For each path p ∈ Pi, xe = 1 for some e ∈∈∈∈ p.

Goal: Minimize ∑e xe.



An LP Relaxation 

Min ∑e xe

s.t.

∀∀∀∀ i ∈∈∈∈ [1..k], ∀∀∀∀ si →→→→ ti paths p

∑e ∈∈∈∈ p xe ≥≥≥≥ 1

∀∀∀∀ e ∈ E 0 ≤ xe ≤ 1 .

Constraint: Assign length to edges such that any

source-sink path has length ≥≥≥≥ 1.

Goal: Minimize total length assigned to edges.



Rounding for a Single s-t Pair (k=1)

� Choose r ∈∈∈∈ (0,1) uniformly at random.

� S = Vertices within distance r from source s.

� Output the cut (S, V/S).

Any edge e=(u,v) belongs to the cut with probability:

|dist(s,u) - dist(s,v)|≤≤≤≤ xe

Expected solution cost is ∑e xe = OPTLP



Arbitrary # of Pairs: Undirected Graphs

Lower bound: Ω(log n) [Leighton, Rao ‘88].

Upper bound: O(log n) [Garg, Vazirani, Yannakakis ’93].



Arbitrary # of Pairs: Directed Graphs

Lower bounds:
� Ω(log n).
� Ω(k) [Saks, Samorodnitsky, Zosin ’04]. 

But k = O( log n / log log n) !

Upper bound: O(n11/23) [Agarwal, Alon, Charikar’ 07]

(Improves O(n1/2) bound of [Cheriyan, Karloff, Rabani’ 01], 
[Gupta ’03].)

Integrality gap of directed multicut relaxation?



The Cut and Flow Duality

Min ∑e xe

s.t.
∀∀∀∀ i ∈∈∈∈ [1..k], ∀∀∀∀ p ∈∈∈∈ Pi

∑e ∈∈∈∈ P xe ≥≥≥≥ 1
∀∀∀∀ e ∈ E xe≥≥≥≥ 0

Max ∑i, p ∈∈∈∈ Pi
fp

s.t.
∀∀∀∀ i ∈∈∈∈ [1..k], ∀∀∀∀ p ∈∈∈∈ Pi

fp ≥≥≥≥ 0
∀∀∀∀ e ∈ E ∑p: e ∈∈∈∈ p fp ≤ 1 

Minimum
Fractional
Multicut

Maximum 
Multicommodity
Flow



Flow-Cut Gaps

Max Multicommodity Flow = Min Fractional Multicut

� Integrality gap of the Multicut LP = Gap between 
Max Multicommodity Flow and Minimum Integral 
Multicut = Flow-Cut Gap.

� Best known approximation guarantees for many 
problems are linked to flow-cut gaps.
� Multicut
� Well-linked decompositions
� Oblivious routing 



Our Results 

� Flow-cut gap for directed multicut is Ω(n1/7).

� Improves upon the previous Ω(log n) gap.

� An Ω(n1/7) gap between directed sparsest cut and 
concurrent multicommodity flow.

� Improves upon the previous Ω(log n) gap.

� For any ε > 0, a 2log1 - ε n-hardness for directed 
multicut and directed sparsest cut. 

� Improves upon earlier Ω(log n/log log n)-hardness. 



The Multicut Integrality Gap 
Construction



Vertex Version of Directed Multicut

Input: Same as before.

Goal: Smallest set of non-terminal vertices whose

removal disconnects all source-sink pairs.
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Integrality Gap Construction

� A parameter n.

� N = Total # of vertices = O(n7).

� L ≈≈≈≈ n/log n ≈≈≈≈ N1/7 .

A multicut instance where:

(1) # of vertices on any source-sink path is at least L.

(2) Cost of any integral solution is Ω(N).

Fractional Cost: O(N/L). Integrality Gap ≈≈≈≈ Ω(N1/7).



Overview 
Step One: A multicut instance H that 

� satisfies property (2), and

� satisfies property (1) on a restricted class of 
paths: the canonical paths are Ω(L) long.

Step Two: An instance B based on a labeling scheme

such that only possible source-sink paths are the

canonical paths. But these paths may be short.

Step Three: Compose H and  B:

� Only long canonical paths (1).

� Any integral solution has cost Ω(N) (2).



Step One: The Graph H 

� H is a union of k graphs, H1, H2, …, Hk

� All graphs Hi share the same set of non-terminal 
vertices, say, {1,...,n}.

� Each graph Hi has exactly one source-sink pair si–ti.



Graph H
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Properties of Graph H

What we need?

(1) Any  source-sink path has length ≥ L = n/(4 log n).

(2) Any integral solution needs to delete almost all 
vertices. 

� To separate a pair si–t, need to delete all vertices 
in one of the L layers in Hi.

� Prob. that a fixed subset S of n/16 non-terminal 
vertices disconnects all pairs is exp. small.

� By union bounds, almost certainly no small solution. 



What about Property (1)?

Canonical Paths: An si → ti path is canonical iff it

contains edges of type-i only.

� A canonical si-ti path uses only edges from Hi.

� Length of any canonical si-ti path in graph H is L.



Graph H
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What about Property (1)?

Canonical Paths: An si → ti path is canonical iff it 
contains edges of type-i only.

� Length of any canonical si-ti path in graph H is L.
� But there are short non-canonical paths between 

source-sink pairs.

Transform H so that
(1a) Length of any canonical path stays at least L.
(1b) There are no non-canonical source-sink paths.



Step Two

� A multicut instance B, with source-sink pairs and 
canonical paths for each source-sink pair.

� No non-canonical paths exist in the graph, ensured by 
using a labeling scheme.

� Any integral solution must remove almost all  vertices.

� But canonical paths in graph B can be “short”.



Final Step: Composing H and B

Final Graph G: A “composition” of H and B.

� No non-canonical paths in G: pre-images in B don’t 
have non-canonical paths.

� No short canonical paths: pre-images in H don’t have 
short canonical paths.

� Any integral solution must remove almost all  
vertices.



Putting Things Together …

� G has N = O(n7) vertices.

� Each source-sink pair is connected only by a canonical 
path of length at least L ≈≈≈≈ n / log n.

� So there is a fractional solution of cost O(N/L).

� Any integral solution must remove Ω(N) vertices.

Flow-Cut Gap = Ω(L) ≈ Ω(N1/7)



Concluding Remarks

� Polynomial flow-cut gaps in directed graphs.

� Almost polynomial inapproximability results.

� Still a large gap remains between best upper and lower 
bounds on the flow cut gap.



Thank you !


