PCPs and Inapproximability:

Recent Milestones and Continuing Challenges

Venkatesan Guruswami Carnegie Mellon University

---- Princeton, June 15, 2011 ----

Intended to be a survey^{*} of some key developments of last ≈ 10 years

Let's begin with a glimpse of where PCP theory was \approx a decade back

PCPs circa 2000

PCP theorem

- <u>PCP theorem</u>: [AS, ALMSS] Polynomial size witnesses for NP languages that can be checked by a randomized polytime verifier by just probing 3 bits (with soundness error < 0.999)
- Equivalently, Gap3SAT $_{\rm 1,\alpha}$ is NP-hard for some α < 1
- (Surprising?) Connection to approximating Clique (based on FGLSS graph) discovered before connection to approximating Max 3SAT
 - PCP theorem implies factor n^{γ} inapproximability for Clique

PCPs: early years

- PCP theorem implied APX hardness for many problems (via their classic reductions from 3SAT).
 - Generally very weak factors.
 - Quest for better (optimal?) factors followed
- 2-prover 1-round proof systems ("bipartite 2-query PCPs") emerged as the canonical PCP to reduce from:
 - Constraint satisfaction problem called Label Cover
 - Example early Label Cover-based success:

 $\Omega(\log n)$ hardness for set cover [Lund-Yannakakis]

Label Cover

- Binary (arity two) CSP over large domain [R] with "projection" constraints.
- Instance consists of:
 - Bipartite graph G=(V,VV,E)

- For each $e = (v, w) \in E$, a function $\pi_e : [R] \rightarrow [R]$.

- Assignment (labeling) A: $V \cup W \rightarrow [R]$ satisfies an edge e=(v,w) if $\pi_e(A(v)) = A(w)$
 - Value of instance = maximum fraction of edges satisfied by a labeling
- Raz's parallel repetition theorem gives a strong (value 1 vs $1/R^{\gamma}$) gap hardness for Label Cover

Strong(er)/optimal PCPs

- Improvements in PCP params, aimed in part at better hardness results (using specific predicates for PCP check)
 - Label Cover used as "outer" PCP
 - Composed with "inner" PCP (trading off soundness for much smaller # queries)
 - <u>Paradigm</u>: **Encode** labels & test codewords
 - "Inner" task: Check if π(a)=b reading very few bits of Enc(a) and Enc(b)
- Which code to use?

Brilliant invention of [Bellare-Goldreich-Sudan]: LONG CODE

Long Code (aka Dictator functions)

- For $a \in \{1, 2, ..., R\}$, LONG(a) : $\{0, 1\}^R \to \{0, 1\}$ LONG(a)(x) = x_a for every $x \in \{0, 1\}^R$
 - Very redundant (encodes log R bits into 2^R bits)
 - has the value of every function $[\mathbf{R}] \rightarrow \{0,1\}$ at a
 - but doesn't hurt to have around if R is constant.
 - Surprisingly useful!

The first optimal PCPs

- [Håstad'96]: zero "amortized free bit" PCP \Rightarrow factor $n^{1-\varepsilon}$ inapproximability for Clique
- [Håstad'97]: Gap3LIN_{1-ε,¹/2+ε} is NP-hard (3-query PCP) with completeness $1-\varepsilon$ and soundness $\frac{1}{2}+\varepsilon$). Optimal! Also, similar result mod p, and NP-hardness of **Optimal!**
 - Gap3SAT_{1.7/8+ ϵ} & Gap-4-Set-Splitting_{1.7/8+ ϵ}
- Several hardness results (currently best known, under NP \neq P) via gadget reductions from Håstad's results:
 - MaxCut: 16/17 Max2SAT: 21/22 MaxDiCut: 11/12
 - NAE-3SAT: 15/16 3-Set-Splitting: 19/20 3-coloring: 32/33 (these are with perfect completeness)

Approximation resistance

- The tight results for CSPs showed "approx. resistance"
 hard to beat naive random assignment.
- An exception: Max 3MAJ
 - 2/3+ ϵ hardness via reduction from 3LIN
 - Factor 2/3 algorithm [Zwick]
- In parallel with hardness revolution, sophisticated SDP rounding methods developed. Eg.
 - 7/8 algo for Max3SAT [Karloff-Zwick]
 - Factor $\frac{1}{2}$ algo for Max3CSP and factor 5/8 for satisfiable 3CSP.

Optimal PCPs: queries vs soundness

- [G.-Lewin-Sudan-Trevisan] 3-query adaptive PCP with perfect completeness & soundness ¹/₂+ε
- [Samorodnitsky-Trevisan] 1+ε amortized query complexity: k queries, soundness 2-k+o(k)

 $-2^{-k+o(k)}$ hardness for Max k-CSP.

- Later with perfect completeness [Håstad-Khot]
- Useful starting points in some reductions, eg. Lowcongestion path routing, Clique.

Low-soundness Multiprover systems

- [Arora-Sudan; Raz-Safra] O(1) prover 1-round proof systems with $exp(-(log n)^{\Omega(1)})$ soundness
 - NP-hardness of $\Omega(\log n)$ factor for set cover
 - Similar result for 2-prover case open
 - Would have more applications, like hardness of lattice problems
- [Dinur-Fischer-Kindler-Raz-Safra] O(1) prover systems with
 - $-\exp(-(\log n)^{0.99})$ soundness.
 - Proof of BGLR "sliding scale" conjecture for up to (log n)^{0.99} bits read

Covering PCPs

- Notion of soundness tailored to coloring problems
 - Covering soundness = minimum number of proofs that can "cover" all constraints (for every check, at least one proof should cause acceptance)
 - [G.-Håstad-Sudan] 4-query PCP with $\omega(1)$ covering soundness
 - Super-constant hardness for coloring 2-colorable 4-uniform hypergraphs.
 - Later also for 3-uniform hypergraphs [Khot] [Dinur-Regev-Smyth]

<u>Frontier:</u> Rule out 5-coloring 3-colorable graphs in polytime

PCPs till ~ 2000 summary

- Label Cover hardness
 - versatile starting point for inapproximability (continues to be prominent)
- Label Cover + Long Code + Fourier analysis paradigm
- Tight hardness results for several CSPs of arity ≥ 3
- Arity 2 CSPs not well understood (results only via gadgets)

Low soundness error 2-query PCPs

Short PCPs (n^{1+o(1)} size): - Best known n (log n)^{O(1)}

PCPs in the last decade New "outer" PCPs - multilayered, smooth, mixing, Dinur-Safra, etc. - <u>Conjectural</u> forms: Unique Games, 2-to-1, ...

New proofs, notions:

- Dinur's gap amplification
- Robust PCPs
- PCP of proximity (PCPP)

Dictatorship tests and new "inner" PCPs

- New analytic machinery

New proofs and notions

Dinur's proof

- <u>Gap amplification</u>: Reduce Gap-3Color_{1,1- δ} to Gap-3Color_{1,1-2 δ} provided $\delta < 10^{-6}$
 - Apply O(log n) times starting with $\delta\text{=}1/\text{m}$
 - Shows that Gap-3Color_{1, α} is NP-hard for some constant α <1 (this implies the PCP theorem)
- PCP via inapproximability instead of other way around
- Requires elements of old PCP in alphabet reduction
 - Constant sized PCP: variant called "assignment tester" that checks if assignment x is close to satisfying circuit C

Robust PCPs

PCP soundness: When φ∉ SAT, for all proofs π, with probability ρ, check C_I rejects π_I (I=randomly chosen query positions)

Proof π

Check $C_I(\pi_I) = 1$

- Robust PCP: stronger soundness guarantee
 - $-\pi_{I}$ far from satisfying C_I (with good prob.)
 - Formally,

 $\mathbb{E}_{I}[\Delta(\pi_{I}, \operatorname{SAT}(C_{I}))] > \eta$ (η = robust soundness)

Robust PCPs & PCPPs

- Check if π_1 satisfies C_1 or is *far* from satisfying C_1 *recursively,* using another "inner" PCP
- Inner primitive: *PCP of proximity* (PCPP)
 - Input: circuit C
 - Proof: (purported) satisfying assignment x and proof of proximity σ that x satisfies C
 - Verifier (Assignment Tester): read few bits in *both* x and σ ;
 - For satisfying x, $\exists \sigma$ with acc. prob. 1
 - If x is δ -far from satisfying C, then $\forall \sigma$, $\Omega(1)$ rej. prob.
- Useful when proximity parameter δ of inner PCPP is

 robust distance η of outer PCP

Composition streamlined

- Robust PCPs compose "syntactically" with "inner" PCPs of proximity (when PCPP proximity parameter < robustness)
- [Ben-Sasson, Goldreich, Harsha, Sudan, Vadhan] Can check that original polynomial and Hadamard based PCPs can be made robust PCPPs.
 - Simplifies details of composition
 - Used to give near-linear size PCPs
- PCPP also used in Dinur's alphabet reduction step
 - Explicit coding used to create distance between inconsistent assignments

Talk Plan

- New proofs and notions
- Robust PCPs and PCPs for proximity
- Short PCPs
- Low-soundness error Label Cover
- Unique Games, Dictatorship tests, etc.
- NP-hardness via structured outer PCPs
- Some challenges

Quasi-linear PCPs

- [BGHSV] PCPs of length $n \cdot 2^{(\log n)^{\epsilon}}$ (O(1/ ϵ) queries)
- [Ben-Sasson, Sudan] Univariate polynomial based PCP
 - Proof of proximity for Reed-Solomon codes which makes it locally testable
 - n (log n)^{O(1)} sized PCP with (log n)^{O(1)} queries
 - O(log log n) steps of Dinur's gap amplification gives
 n (log n)^{O(1)} sized PCP with O(1) queries
- Implication for approximation: APX-hardness via reduction from 3SAT hold for $2^{\tilde{\Omega}(n)}$ time algos, under the ETH

• New proofs and notions

- Robust PCPs and PCPs for proximity
- Short PCPs
- Low-soundness error Label Cover
- Unique Games, Dictatorship tests, etc.
- NP-hardness via structured outer PCPs
- Some challenges

Label cover with o(1) soundness

- Håstad's 7/8+ε hardness for 3SAT requires soundness error of Label Cover to be << ε
- Getting this via parallel repetition makes Label Cover instance size $n^{\Omega(\log(1/\epsilon))}$ (with large hidden constant factor)
- Can we get such soundness with LC size say $O_{\epsilon}(n^3)$?

<u>Answer</u>: [Moshkovitz-Raz] YES. In fact, with *near-linear* size ! (Was very surprising to me)

For soundness ε , Label Cover with $n^{1+o(1)} \operatorname{poly}(1/\varepsilon)$ vertices.

• Worse dependence on domain size: $R = exp(poly(1/\epsilon))$ instead of $poly(1/\epsilon)$ in Raz. Inapproximability consequence

- 7/8+ ε approx. for 3SAT requires $\exp(\Omega_{\epsilon}(n^{1-o(1)}))$ time (under "Exponential Time Hypothesis")
 - constant factor: doubly exponentially small in ϵ
 - Similar claims for other hardness results based on Label cover + Long code testing
- Sharp complexity dichotomy at the approximation threshold: polytime vs. exponential time.
 - Eg. unlikely that there's a factor $7/8+\epsilon$ approx. algo for Max3SAT with runtime $exp(n^{10}\sqrt{\epsilon})$

[Moshkovitz-Raz] approach

- Start with Label Cover of low soundness error ϵ but large alphabet Σ
 - $-\epsilon = (\log n)^{-\beta}, |\Sigma| = \operatorname{poly}(n)$ (based on low-degree testing in list-decoding regime)
 - reduce alphabet size via composition
- New composition method for low-error regime that does not increase # provers
 - Based on "Locally Decode/Reject Codes"

<u>Next</u>: Few words on an alternate approach (giving polynomial instead of near-linear size)

Derandomized parallel repetition

- *u-parallel repetition* of Label Cover reduces soundness error from (say) 0.99 to $\varepsilon = 2^{-O(u)}$, but blows up size to $\approx n^{u}$
 - Can't get o(1) soundness with polytime reduction (const. u)
- <u>Derandomization</u>: Can we select a *poly-sized subset* of all possible u questions?
 - Limitation [Feige-Kilian]: for u=O(log n) and poly(n) size subsets, $\epsilon \ge 1/poly(log n)$
- [Dinur-Meir] Match this lower bound, combining
 - Derandomized direct product testing based on subspaces
 [Impagliazzo-Kabanets-Wigderson]
 - Structured "linear" PCPs
 - Identify proof coordinates (vertices) with F^m
 - Edges corresponding to 2-query checks form a subspace of F^{2m}

Composing without an extra prover

- [Dinur-Harsha] alternate composition method to reduce alphabet size keeping #provers at 2
 - Based on "decodable PCPs"
 - Exploit equivalence between robust PCPs and Label Cover
- Applying this to [Dinur-Meir] 2-query PCP, gives:
 Label Cover of *fixed polynomial* (though not near-

linear) size with soundness ε , \forall constants $\varepsilon > 0$

Label Cover \Leftrightarrow Robust PCPs

Label Cover \Rightarrow Robust PCPs

<u>Verifier</u>

- I. Selects a random "big" vertex $\mathbf{v} \in \mathbf{V}$
- 2. Reads entire neighborhood of ${\boldsymbol{v}}$
- 3. Accepts iff there is a value for **v** that would cause all edge constraints to accept.

Label Cover \Rightarrow Robust PCPs

NO instances – average view is very "unhappy", i.e. view from a random window is at most δ -close to a satisfying view.

Label Cover \Leftarrow Robust PCPs

- This transformation is "invertible" (rotate back!)
- $|\Sigma|$ corresponds to the number of accepting configurations, which is $\leq \exp(\# \text{PCP queries})$
 - Reducing PCP queries \Rightarrow reducing LC alphabet size

Low-error 2-prover systems summary

- Some very exciting recent constructions
- <u>Frontier</u>: 2-query PCP of polynomial size and polynomial alphabet with soundness error $1/(\log n)^{10}$

• New proofs and notions

- Robust PCPs and PCPs for proximity
- Short PCPs
- Low-soundness error Label Cover
- Unique Games, Dictatorship tests, etc.
- NP-hardness via structured outer PCPs
- Some challenges

Long code based "inner" PCPs

- <u>Task</u>: Checking that labels a=A(v) and b=A(w) satisfy some Label Cover projection constraint $\pi(a) = b$
- Check constraints on few (say q) bits of (purported) long codes f, g : $\{0,1\}^R \rightarrow \{0,1\}$ of labels a and b
 - If f and g are long codes of "consistent" a, b (i.e., $\pi(a) = b$), accept with prob. 1 (or $1-\epsilon$)
 - Acceptance with prob. > s + ε implies one can randomly "decode" f, g into labels a', b' s.t. $\pi(a') = b'$ with prob. $\theta = \theta(\varepsilon)$

Recall:

 $f=LONG(a) \Rightarrow$

- This would imply a soundness s + 2ϵ q-query PCP

Let's see Håstad's 3-query PCP, and constructing 2-query PCPs.

Håstad's 3-query PCP

- Pick $x, y \in \{0, 1\}^R$ u.a.r.
- Pick $\mu \in \{0,1\}^R$ from the ϵ -biased distribution.
- Define $z \in \{0,1\}^R$ by $z_j = y_j \oplus x_{\pi(j)} \oplus \mu_j$.
- With prob. 1/2 check $g(x) \oplus f(y) \oplus f(z) = 0$, and with prob. 1/2 check $g(x) \oplus f(y) \oplus f(\overline{z}) = 1$ $(\overline{z} = \text{coordinate-wise complement of } z).$

Completeness: If $f(y) = y_a$ and $g(x) = x_b$ and $\pi(a) = b$, then $g(x) \oplus f(y) \oplus f(z) = x_b \oplus y_a \oplus y_a \oplus x_{\pi(a)} \oplus \mu_a = \mu_a$ Suffices for decoding labels

Soundness: Acceptance prob. > $\frac{1}{2} + \varepsilon \Rightarrow g$, f have non-trivial agreement with "consistent" low-weight linear functions
3 vs. 2 queries

- Get (1-ε) vs. (½ +ε) hardness for Max3LIN (mod 2)
 Approximation resistant
- Each query point x,y, z is uniformly distributed in $\{0,1\}^{R}$
 - y,z are correlated, but f has to give value to each separately (and each is uniform)
- What about 2-variable linear equations mod 2?
 - [Goemans-Williamson] algo finds assignment of value $1-O(\sqrt{\epsilon})$ in $(1-\epsilon)$ -satisfiable instance
 - Matching hardness through a 2-query PCP ?

A 2-query PCP?

Here's a natural test, saving 1 query in Håstad's test:

- Pick $x \in \{0,1\}^R$ u.a.r, and ϵ -biased noise vector $\mu \in \{0,1\}^R$
- Set $y = x \circ \pi \oplus \mu$, i.e., for $j \in [R]$, set $y_j = x_{\pi(j)} \oplus \mu_j$.
- With prob. 1/2, check $g(x) \oplus f(y) = 0$, with prob. 1/2, check $g(x) \oplus f(\overline{y}) = 1$.

<u>Trouble</u>: query y to f is not uniform. $y_j = y_k$ with prob. close to 1 when $\pi(j) = \pi(k)$

Query y reveals lots of information about projection π Could form "cheating" f by "piecing together" many inconsistent long codes, for portions of $\{0,1\}^R$ this?

Unique Games

• Khot's insight: if π is a **bijection**, then $y = x^{\circ} \pi$ is uniformly distributed (since x is); gives no clue about π

Unique Game (UG) * Label Cover where all projection constraints are bijections Khot's Unique Games Conjecture (UGC): $GapUG_{1-\epsilon,\epsilon}$ is NP-hard for R > R(ϵ)

- UGC \Rightarrow analysis of 2-query test reduces to f=g case
 - show that if f passes w.h.p, then f is "like" a long code (modern term: dictator)
 - just codeword testing, no "consistency" checking

2-query dictator testing

The core question becomes analyzing "noise stability" $NS_{\varepsilon}(f) = Prob_{x,\mu} [f(x) = f(x \oplus \mu)]$ (assume f is balanced)

- If f = dictator, then $NS_{\varepsilon}(f) = 1 \varepsilon$
- If $NS_{\varepsilon}(f)$ is close to 1ε , what can we say?

[Bourgain] If $NS_{\varepsilon}(f) > 1 - \varepsilon^{0.51}$ then f is close to a junta (depends on few coordinates)

[Mossel-O'Donnell-Oleszkiewicz] (Majority is Stablest Thm) If $NS_{\varepsilon}(f) > 1 - \Theta(\sqrt{\varepsilon})$ then f has an *influential* coordinate.

Both of these can be used in reduction from Unique Games

UGC consequences...

- (2- ε) hardness for Vertex cover [Khot-Regev]
- 0.878.. hardness for Max Cut [Khot-Kindler-Mossel-O'Donnell] (using Majority is Stablest)
- Near-tight hardness for all Boolean 2CSPs [Austrin]
- Optimal hardness for every CSP [Raghavendra] (using invariance principle of [Mossel])
- Approximation resistance of every ordering CSP [G.-Håstad-Manokaran-Raghavendra-Charikar]

Hardness matching *LP* integrality gaps:

- Multiway Cut, Metric Labeling [Manokaran-Naor-Raghavendra-Schwartz]
- Strict CSPs, covering problems [Kumar-Manokaran-Tulsiani-Vishnoi]

- New proofs and notions
- Robust PCPs and PCPs for proximity
- Short PCPs
- Low-soundness error Label Cover
- Unique Games, Dictatorship tests, etc.
- NP-hardness via structured outer PCPs
- Some challenges

Proving UGC predictions without UGC?

Bypassing UGC?

- UGC has predicted many strong results
 - All plausible & consistent with our knowledge
 - "combinatorial" ones (like embedding lower bound) confirmed unconditionally
- Yet, **no** UG-completeness result so far
 - Possible that consequences of UGC are true but conjecture itself is false
- <u>Natural question</u>: Can we verify some of UGC's predictions *without* resorting to UGC?
 - Ideally, show NP-hardness
 - Or hardness under weaker assumptions (like optimality of Goemans-Williamson, 2-to-1 conjecture)?

Smooth Label Cover

• [Khot] Label Cover where for each $v \in V$, the projections π_e for edges e incident on v form a "hash family"

 $\forall a \neq a' \operatorname{Prob}_{e \ni v}[\pi_e(a) = \pi_e(a')] \to 0 \quad \text{(for large } R)$

- Gap-Smooth-Label-Cover_{1,ε} is NP-hard
 Reduction from Label Cover (note perfect completeness)
- Such "locally unique" projections have been useful in some NP-hardness reductions
 - 3-coloring 3-uniform hypergraphs [Khot]
 - Learning intersection of two halfspaces [Khot-Saket]
 - Agnostic learning monomials by halfspaces

[Feldman-G.-Raghavendra-Wu]

A Gaussian approximation threshold

L_p Subspace approximation problem (2 \infty)

Input: A set of m points $a_1, a_2, \ldots, a_m \in \mathbb{R}^n$. <u>Goal</u>: Find a (n-1)-dimensional subspace (hyperplane) H minimizing

$$\sum_{i=1}^{m} \operatorname{dist}(H, a_i)^p$$

where dist(H, a) is the min. Euclidean distance between a and any point in H.

[Deshpande-Tulsiani-Vishnoi] Factor β_p algorithm where $\beta_p = \mathbb{E}_{g \sim N(0,1)} [|g|^p]$ is the p'th moment of the standard Gaussian. And matching $\beta_p - \varepsilon$ Unique-Games-hardness

[G.-Raghavendra-Saket-Wu] NP-hardness of factor $\beta_p - \epsilon$ approximation, using smooth Label Cover

Other Label Cover variants

Other structured Label Cover instances discovered in the last decade:

- Multilayered PCPs
- 2-to-1 projections (conjectural)
- Dinur-Safra

Multilayered PCP

- Multipartite label cover:
 - L layers of vertices V_1, V_2, \dots, V_L
 - Projection maps between every pair of layers:
 - for edge e between $v_i \in V_i$ and $v_j \in V_j$ (i < j), $\pi_e : [R] \rightarrow [R]$ from label of v_i to label of v_j
- Ensure every γ fraction of vertices have many constraints amongst them (for L > L(γ))
- Introduced in [Dinur-G.-Khot-Regev] to show factor (k-1-ε) hardness for vertex cover on k-uniform hypergraphs
- Later use in hypergraph coloring, non-mixed 3SAT, etc.

2-to-1 conjecture

- Label Cover where projection maps are 2-to-1
- <u>Conjecture [Khot]</u>: Gap-2-to-1-LC_{1,ε} is NP-hard
 Parallel repetition gives poly(1/ε)-to-1 projections
- Consequences:
 - $-\sqrt{2}-\epsilon$ hardness for vertex cover [Dinur-Safra], [Khot]
 - Hardness of O(1)-coloring 4-colorable graphs [Dinur-Mossel-Regev]
 - Hardness of Gap-No-Two_{1,5/8+ ε} [O'Donnell-Wu]
 - Factor $1 \frac{1}{k} + O\left(\frac{\ln k}{k^2}\right)$ hardness for Max k-coloring [G.-Sinop]

[Dinur-Safra]

- This remarkable paper showed factor 1.3606 NP-hardness for vertex cover
- Underlying this was a "2-to-1 like" Label Cover
 label for v consistent with one or two labels for w
 - Soundness: ∀ labeling, every ε fraction of vertices
 has a 100-clique of inconsistent pairs.
- Other applications?

Wrap-up

- PCPs remarkably successful in showing inapproximability (even beyond initial expectations?)
 - Breadth of problems.
 - I find it amazing what all Label Cover can be reduced to!
 - Many tight results
- Some notorious problems have withstood resolution
 - Densest subgraph, minimum linear arrangement, bipartite clique, sparsest cut, graph bisection, etc.
 - Known algorithms have superconstant approx. ratio, but even APX-hardness not known

Cut challenges

Eg. Uniform Sparsest Cut, Minimum Bisection:

Best approximation (log n) $\Omega(1)$. Hardness evidence:

- I. Refuting random 3SAT is hard \Rightarrow Factor 1.1 hardness [Feige]
- 2. Polytime (1+ ε) approximation \Rightarrow NP has $2^{n^{\epsilon'}}$ time algorithms [Khot, "quasi-random PCPs"]
- 3. Superconstant hardness under "SSE hypothesis" (stronger than Unique Games conjecture) [Raghavendra-Steurer-Tulsiani]

"Easiness" evidence [G.-Sinop]

Factor (1+ε)/λ_r approximation in 2^{O_ε(r)}n^{O(1)} time where λ_r is the r'th smallest eigenvalue of normalized Laplacian.
 Factor 3/λ_r for minimum uncut

Challenges

- Can PCP machinery (even assuming UGC) give strong hardness results for Steiner Tree, TSP, Asymmetric TSP ?
- Lasserre integrality gaps beyond known hardness bound for Vertex Cover, Max Cut (or Unique Games)?

– Just 4 rounds could improve [GW] and refute UGC !

- Unique-Games-completeness?
- Bypass UGC for some other consequences?
- Other hardness assumptions: eg. Densest subgraph?
 Or finding indep. Sets of size εn when one of size n/100 exists
- Unchartered terrain for inapproximability:
 - eg., nearest codeword in algebraic codes, bin packing, ...