Allocating Goods to Maximize
Fairness

Deeparnab Chakrabarty Julia Chuzhoy Sanjeev Khanna

U. of Pennsylvania TTI-C U. of Pennsylvania

Max Min Allocation

4 N
Input: Notation
 Set A of m agents n - number of items
e Set] of nitems | I - number of agents

* Utilities u,; of agent A for item i.
Output: assignment of items to agents.

e Utility of agent A: > u 4 ; for items i assigned
to agent A.

Goal: Maximize minimum utility of any agent.

Example

-
Solution

value: 4

N

2N

)

Max-Min Allocation

Captures a natural notion of fairness in
allocation of indivisible goods.

Is related to the cake cutting theory.
Approximation is still poorly understood.

An interesting special case: Santa Claus
problem.

o

The Santa Claus Problem

Santa Claus: Known Results

 Natural LP has 2(m) integrality gap.

e [Bansal, Sviridenko ‘06]:
— Introduced a new configuration LP
— O(log log m/logloglog m)-approximation algorithm

* Non-constructive constant upper bounds on
integrality gap of the LP [Feige ‘08], [Asadpour, Feige,
Saberi ‘08].

* Constant approximation [Haeupler, Saha, Srinivasan
‘10]

Bad news: Configuration LP has £2(v/m) integrality

gap for Max-Min Allocation [Bansal, Sviridenko ‘06].

Known Results for
Max Min Allocation

(n-m+1)-approximation [Bezakova, Dani ‘05].

O(yv/m)-approximation via the configuration LP
[Asadpour, Saberi ‘07].

Configuration LP has Q(,/m) integrality gap
[Bansal, Sviridenko ‘06].

Best current hardness of approximation
factor: 2 [Bezakova, Dani’05]

Our Results

c O (n®)-approximation algorithm in time nO(1/¢€)

— Poly-logarithmic approximation in quasi-
polynomial time.

—n-approximation in poly-time for any constant € .

* We use an LP with)(/m) integrality gap as a
building block.

Independent Work

[Bateni, Charikar, Guruswami ‘09] obtained similar
results for special cases of the problem:

All utilities are in {0, 1, M},
where M=0PT.

— All items have degree at
most 2

— Graph contains no cycles

AnO (n€)-approximation in
time ,n,O1/¢€)

The O (n)-Approximation Algorithm

For simplicity, assume all utilities are in {0,1,M} where
M=OPT.

ltems

Agents

OPT=M Ophmql solyhon
- Each agent A is assigned:
utility 1 - :
N *One utility-M item or
utility M *M utility-1 items

ltems

Agents

OPT=M

utility 1

utility M

M/«

a-approximate solution

Each agent A is assighed:
*One utility-M item or

Mutility-l items

Canonical Instances

All agents are either heavy or light.

Heavy Agent Light Agent

distinct for each
light agent

Can assume w.l.0.g. we are given a canonical
Instance.

Step 1: Turn the Problem into a Flow
Problem!

Main ldea

 Temporarily assign private items to agents

ltems

Agents

OPT=M

utility 1
utility M

Main ldea

 Temporarily assign private items to agents
— Item can be private for at most one agent
— If i is private for A then u, ;=M
— Every light agent gets a private item

ltems ?
OPT=M
Agents utility 1
utility M

Main ldea

 Temporarily assign private items to agents
— Item can be private for at most one agent
— If i is private for A then u, ;=M
— Every light agent gets a private item

ltems f
source vertex

Agents

<D 2 @ terminal

Re-Assignment of [tems

e Use flow from source vertices towards
terminals.

* An agent releases its private item iff it is
satisfied by other items.

* Goal: find flow satisfying the terminals.

The Flow Network

The Flow Network

Heavy agent w. private item

Private
item

—

The Flow Network

Heavy agent w. private item Terminal

Sends 1 flow
~ unit iff receives Must receive
{ .nvate L 1 flow unit 1 flow unit
Item
Light Agent Source s and items in S

S

Sends 1 flow
unit iff receives
M flow units

p TthIow Network

Want to find integral
flow satisfying these

constraints...
\ %

=m Terminal

1 flow unit 1 flow unit

Sends 1 flow
: unit iff receives Must receive
Private
{ item L

At most 1 flow unit

leaves any vertex

Light Agent | couree oland items in S
Conservation of S
flow on items
Sends 1 flow

unit iff receives /
M flow units i S

Interpretation of Flow

Lies in the symmetric
Edge e carries 1 ' ' difference of OPT and
flow unit our assignment of
private items

No flow sent A is assigned its
through agent A (e .\ o item
Flow from item i (: ltem i is assigned
to agent A to A

Interpretation of Flow

Lies in the symmetric
Edge e carries 1 ' l difference of OPT and
flow unit our assignment of
private items

*/f OPT=M then such flow always exists!

The Flow Network

Heavy agent w. private item Terminal

Sends 1 flow
A unit iff receives Must receive
rivate . .
{ tem L 1 flow unit 1 flow unit
Light Agent Source s and items in S
Q-relaxed
flow >
Sends 1 flow
unit iff receives

M/ Xﬂow units

Interpretation of Flow

Lies in the symmetric
Edge e carries 1 l l difference of OPT and
flow unit our assignment of

private items

|/f OPT=M then such flow always exists!
*An a-relaxed flow gives an «a-approximation!

What Does a Feasible Flow Look Like?

A collection of structures like this:

What Does a Feasible Flow Look Like?

A collection of trees like this:

In-degree M

Equivalent Problem Statement

Find a collection of such disjoint
trees!

*A tree for each terminal

T *Solution value = min degree of

a light agent. .

*If we only want O (n°)-

approximation, can assume

that h < 1/e

R

Ny

Rest of the Algorithm

 LP and its rounding

e Use the LP-rounding as a sub-routine to get
final solution.

LP-rounding

e Can write LP relaxation of flow constraints and
try LP-rounding.
— Easy to see that such an LP is too weak.

*We write a stronger LP.

L P-variable for every h-tuple of
light agents.

*[P-size: no(h)

*Integrality gap: Q(y/m)
*LP-rounding gives poly(log n)-
approximate almost-feasible
solutions!

Almost Feasible Solutions

| 7 In-degree M } i

—> Flow directly to terminals
——> Flow to light agents

Almost Feasible Solutions

M/«

| 7 mdegred | |

—> Flow directly to terminals | | An item may appear on one blue and one green
——> Flow to light agents path.

Rest of the Algorithm

 LP and its rounding

e Use the LP-rounding as a sub-routine to get
final solution.

Rest of the Algorithm

 LP and its rounding

e Use the LP-rounding as a sub-routine to get
final solution.

Getting around the Integrality Gap

Integrality gap of the LP is 2(y/m)
= For some inputs to LP the gap is large

Assignment of
Instance I I porivate items

Can we find a better assignment of private items, to
make the gap go down?

Lower the Integrality Gap?

* The integrality gap is Q(1/m)
e Butitis no more than the number of terminals

* |f we assign private items so that we have few
terminals, the gap will go down!

* The integrality gap is Q(y/m)

Lower the Integrality Gap?

e Butitis no more than the number of terminals

* |f we assign private items so that we have few
terminals, the gap will go down!

ltems

Agents

?

Maximum A
matching gives
smallest
possible number

-

\ of terminals /

Lower the Integrality Gap?

* The'integrality gap is Q2(y/m
e Butitis no morethapthe number of terminals

* |f we assignprivate items so thatwe have few
eriminals, the gap will go down!
Items ? 4 Maximum A
matching gives
smallest
possible number

Agents

\ of terminals /

A Revised Plan

 Compute a good assignment of items to some
subset A’ of agents

* Remove agents of A’ from the instance
* Give their private items to other agents!

Number of terminals goes down
—- integrality gap improves!

A Revised Plan

 Compute a good assignment of items to some
subset A’ of agents

* Remove agents of A’ from the instance
* Give their private items to other agents!

Problem:
ltems that are assigned to agents in A’ may be
later assigned to other agents.

Nice
assignments!

On Nice Partial Assignments

{ Not nice }
9ation 2 }
{ Iteraticg
M M

On Nice Partial Assignments

-

lteration 2

lteration 1

Our Nice Partial Assighments

)

Find a collection of completely
disjoint trees.

*Will not get a tree for each
terminal

*For each such tree, remove A
from the instance

*Reassign private items along the
blue path

Our Nice Partial Assighments

)

Find a collection of completely
disjoint trees.

*Will not get a tree for each
terminal

*For each such tree, remove A
from the instance

*Reassign private items along the
blue path

Our Nice Partial Assignments

Ht

)

Find a collection of completely
disjoint trees.

*Will not get a tree for each
terminal

*For each such tree, remove A
from the instance

*Reassign private items along the
blue path

*t is not a terminal anymore!

If almost every terminal gets a tree, the
number of terminals goes down fast!

A Revised Plan

 Compute a nice assighment of items to some
subset A’ of agents

* Remove agents of A’ from the instance
* Give their private items to other agents

Question:
How do we find this nice assignment?

By LP-
rounding!

Assignment of
instance I I orivate items

of terminals
goes down!

LP-rounding

AI
Nice assignment for
set A’ of agents

New assignment
of private items

)

Assignment of
instance I I rivate items

LP-rounding

Nice assignment for
set A” of agents

New assignment
of private items

Assignment of
instance I I rivate items

LP-rounding

Nice assignment for
set A"’ of agents

l AIII
New assignment
of private items

Assignment of
instance I I orivate items

1/e iterations

-
use almost
feasible
. solutions A
AII

Nice assignment for
w” of agents

New assignment
of private items

combine the nice
solutions in the end

From Almost Feasible Solutions
to Nice Assignments

Input: Almost feasible solution

* Atree for every terminal

* Green and blue paths share vertices
Output: Nice partial solution

* Atree for almost every terminal

* The trees are completely disjoint

Assignment of
instance I I orivate items

1/e iterations

-
use almost
feasible
. solutions A
AII

Nice assignment for
w” of agents

New assignment
of private items

combine the nice
solutions in the end

Summary

» We have shown O (n¢) -approximation for
Max Min Allocation, in n°(/€ running time

— poly-logarithmic approximation in quasi-
polynomial time

* Best current hardness of approximation is 2.

* Can we use similar LP-rounding technique for
other problems?

Thank you!

