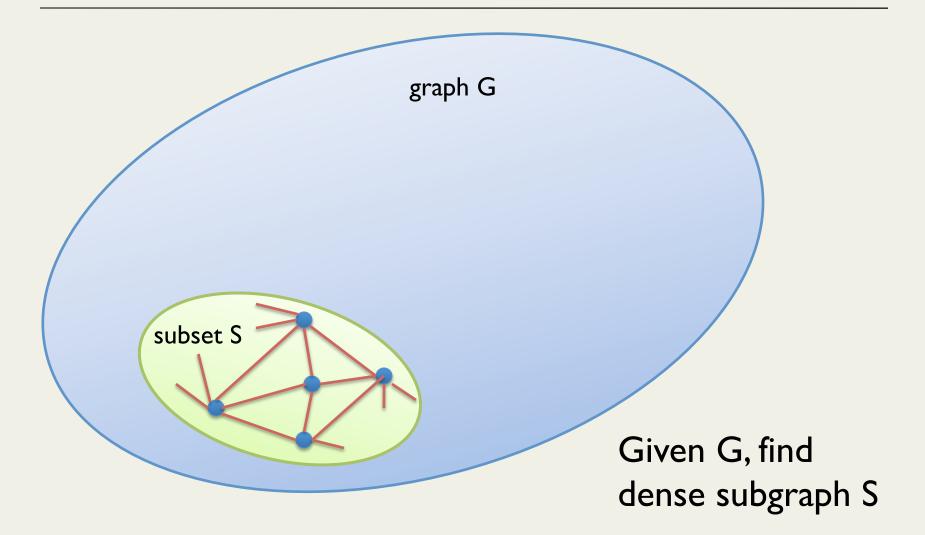
Finding Dense Subgraphs

Moses Charikar

Center for Computational Intractability

Dept of Computer Science Princeton University

The Dense Subgraph Problem

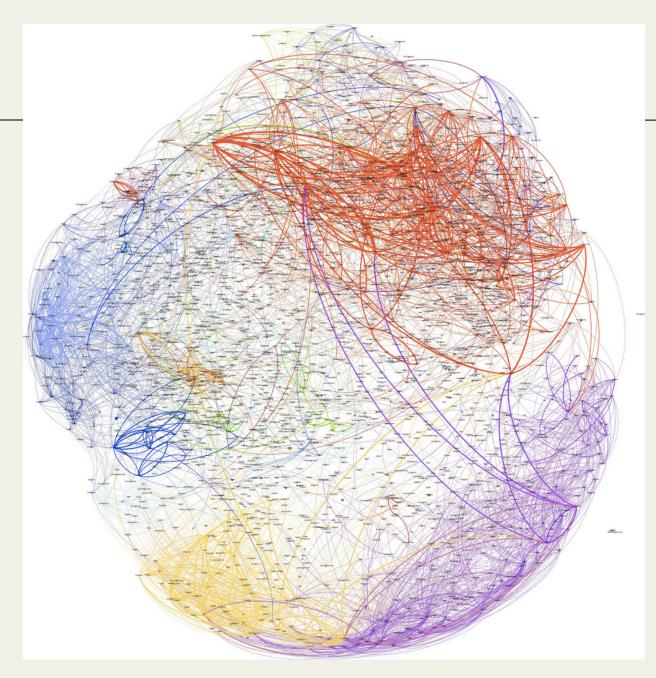


Dense subgraphs are everywhere !

• A useful subroutine for many applications.

Social Networks

- Trawling the Web for emerging cybercommunities [KRRT '99]
 - Web communities are characterized by dense bipartite subgraphs



Communities on gitweb

Computational Biology

- Mining coherent dense subgraphs across massive biological networks for functional discovery [HYHHZ '05]
 - dense protein interaction subgraph corresponds to a protein complex [BD'03] [SM'03]
 - dense co-expression subgraph represent tight coexpression cluster [SS '05]

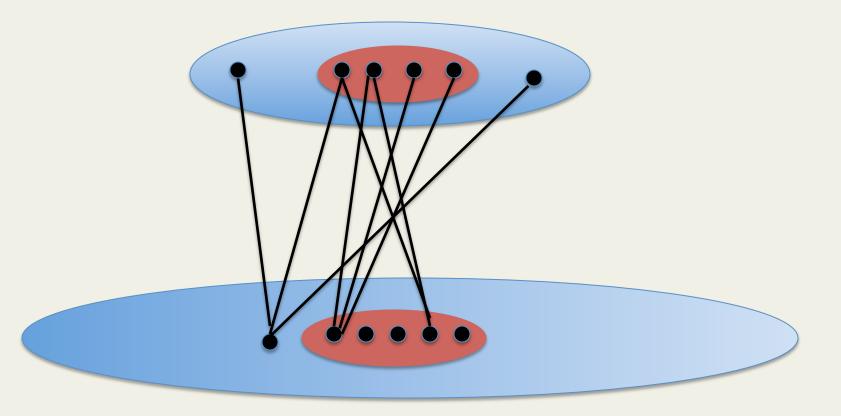
Dense subgraphs are everywhere !

• A useful subroutine for many applications.

• A useful candidate hard problem with many consequences

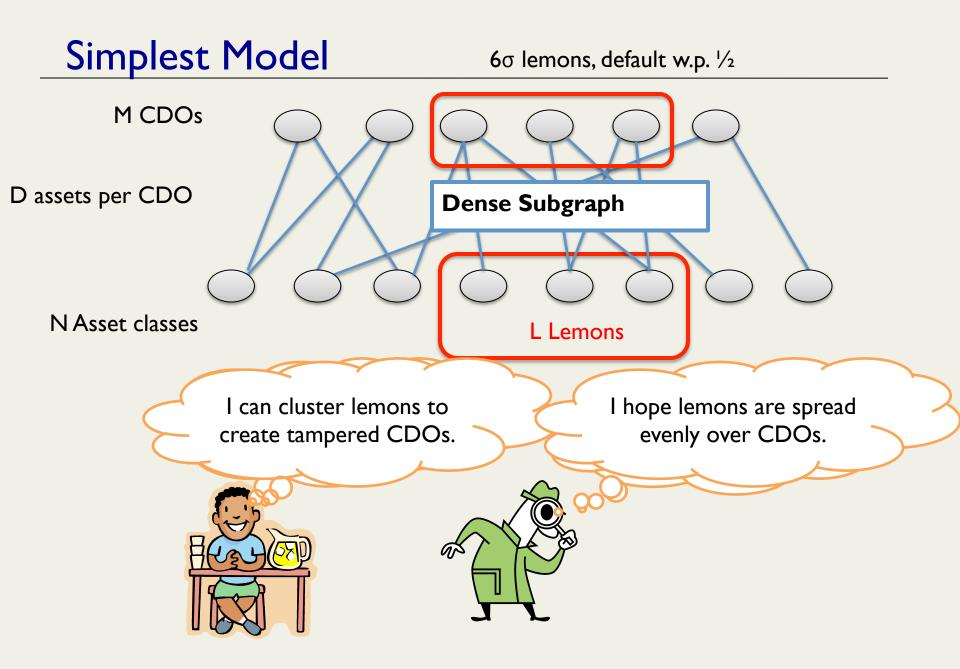
Public Key Cryptography [ABW '10]

• Hardness assumption



Complexity of Financial Derivatives

- Computational Complexity and Information Asymmetry in Financial Products [ABBG '10]
 - Evaluating the fair value of a derivative is a hard problem
 - Tampered derivatives (CDOs) can be hard to detect.
 - Derivative designer can gain a lot from small asymmetry in information (lemon cost).

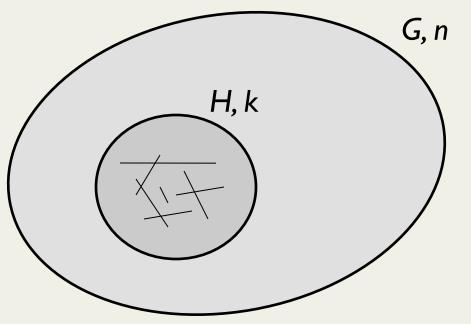


 Finding dense subgraphs is useful, both as a subroutine as well as a candidate hard problem

- So, what do we know about the problem ?
 - Formal definition
 - New results
 - New results on related problems

Densest k-subgraph

Problem. Given G, find a subgraph of size k with the maximum number of edges (think of k as $n^{\frac{1}{2}}$)



Problems of similar flavor

- Max clique
- Max density subgraph find H to maximize the ratio:

edges(H)

Approximation Algorithm

• Exact problem is hard, prove that efficient heuristic finds good solution.

• Approximation ratio =

Value of heuristic solution

Value of optimal solution

• Solution value = number of edges in subgraph

Densest k-subgraph

Problem. Given G, find a subgraph of size k with the maximum number of edges (think of k as $n^{\frac{1}{2}}$)

[Feige, Kortsarz, Peleg 93] $O(n^{1/3} - 1/90)$ approximation [Feige, Schechtman 97] $\Omega(n^{1/3})$ integrality gap for natural SDP

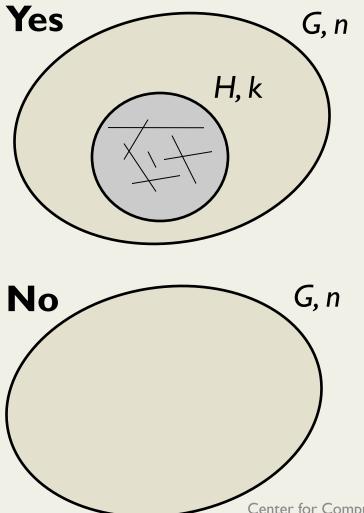
[Feige 03] Constant hardness under the Random 3-SAT assumption
[Khot 05] There is no PTAS unless NP ⊆ BPTIME(sub-exp) [Bhaskara, C, Chlamtac, Feige, Vijayaraghavan '10]

Theorem. $O(n^{1/4 + \varepsilon})$ approximation for DkS in time $O(n^{1/\varepsilon})$

(Informal) Theorem. Can efficiently detect subgraphs of high log-density.

- Introduce two average case problems
- 'Local counting' based algorithms for these
- Notion of log-density
- Techniques lead to algorithms for the DkS problem

Planted problems related to DkS



- Assume G does not have dense subgraphs
- Good algorithm for $DkS \Rightarrow$ we can distinguish

Two natural questions:

- I. Random in Random: G(k,q)planted in G(n,p)
- 2. Arbitrary in Random: Some dense subgraph planted in G(n,p)

Question. How large should q be so as to distinguish between

YES: G(n,p) with G(k,q) planted in it

NO: G(n,p)

When would looking for the presence of a subgraph help distinguish?

Random in Random

Question. How large should q be so as to distinguish between YES: G(n,p) with G(k,q) planted in it NO: G(n,p)

[Erdos-Renyi]:

- Appears w.h.p. in G(n,p) if $n^5p^6 >> 1$, i.e., degree $>> n^{1/6}$
- Does not appear w.h.p. in G(n,p) if $n^5p^6 \ll 1$, i.e., degree $\ll n^{1/6}$

Valid distinguishing algorithm if: $k^5q^6 >> 1$, and $n^5p^6 << 1$

I.e., degree $<< n^{1/6}$, and planted-degree $>> k^{1/6}$

Random in Random

Question. How large should q be so as to distinguish between YES: G(n,p) with G(k,q) planted in it NO: G(n,p)

In general, suppose degree < n^{δ} , and planted-degree > $k^{\delta+\epsilon}$

Find a rational number 1-r/s between δ and δ + ϵ , and use a graph with r vertices and s edges to distinguish.

A graph on *n* vertices has **log-density** δ if the average degree is n^{δ}

$$\delta = \frac{\log d_{avg}}{\log |V|}$$

Question. Given G, can we detect the presence of a subgraph on k vertices, with higher logdensity?

Dense vs. Random

Problem. Distinguish $G \sim G(n,p)$, log-density δ from a graph which has a *k*-subgraph of log-density $\delta + \varepsilon$

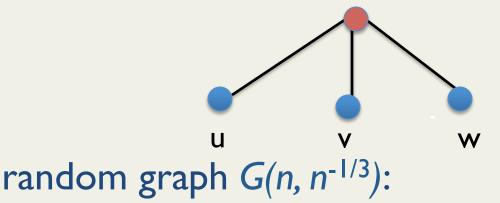
(Note.
$$kp = k(n^{\delta}/n) = k^{\delta}(k/n)^{1-\delta} < k^{\delta}$$
)

More difficult than the planted model earlier (graph inside is no longer *random*)

Eg. k-subgraph could have log-density=1 and not have triangles

Main idea

Example. Say $\delta = 2/3$, i.e., degree = $n^{2/3}$



any three vertices have O(log *n*) common neighbors w.h.p.

planted graph: size k, log-density $2/3+\varepsilon$: triple with $k^{3\varepsilon}$ common neighbors

Example 2. $\delta = 1/3$, i.e., degree = $n^{1/3}$

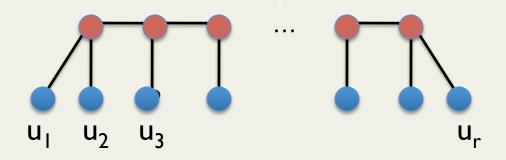
random graph $G(n, n^{-1/3})$:

any pair of vertices have O(log² n) **paths of length 3**, w.h.p.

planted graph: size k, log-density $1/3+\varepsilon$: exists a pair of vertices with k^{ε} paths

Main idea (contd.)

General strategy: For each rational δ, consider appropriate `caterpillar' structures, count how many `supported' on fixed set of leaves



Random graph G(n,p), log-density δ: every leaf tuple supports polylog(n) caterpillars
Planted graph, size k, log-density δ+ε : some leaf tuple supports at least k^ε caterpillars

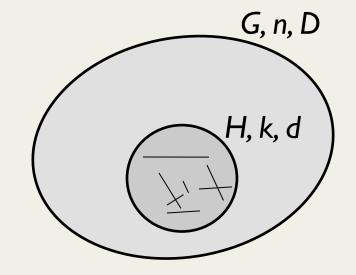
Theorem. For every $\varepsilon > 0$, and $0 < \delta < 1$, we can distinguish between G(n,p) of log-density δ , and an arbitrary graph with a *k*-subgraph of log-density $\delta + \varepsilon$, in time $n^{O(1/\varepsilon)}$.

(Pick a rational number between δ and δ + ϵ , and use the caterpillar corresponding to it)

DkS in general graphs

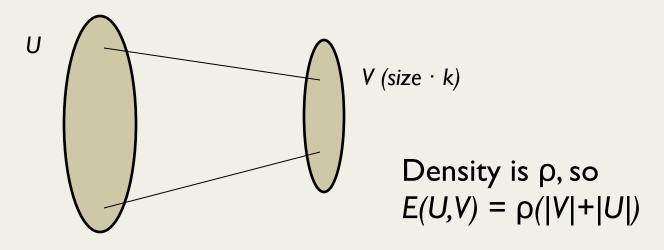
Preliminaries

- Aim. Obtain a k-subgraph of avg degree ρ
- **Observation I.** It suffices to return a ρ -dense subgraph with $\leq k$ vertices
 - (remove and repeat)



Preliminaries

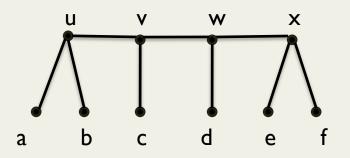
Observation 2. It suffices to return a bipartite subgraph with density ρ , and $\leq k$ vertices on one side



Pick the |V| vertices in U of largest degree
Density of the resulting subgraph is

$$\frac{1}{2|V|} \cdot \frac{|V|}{|U|} \cdot \rho(|V| + |U|) \geq \frac{\rho}{2}$$
Center for Computational Intractability, Princeton University

Algorithm using Cat_{δ}



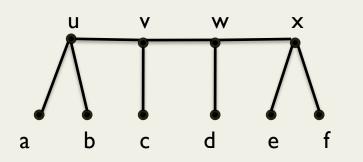
Idea. Look at the 'set of candidates' for a non-leaf after fixing a prefix of the leaves

Eg., define S_{abc}(v) = set of 'candidates' in G for internal vertex v after fixing a,b,c

(for instance, $S_{ab}(u)$ is the set of common nbrs of a, b) Denote $T_{abc}(v) = S_{abc}(v) \cap H$

Given a, b, .. and the structure, we can compute the S's

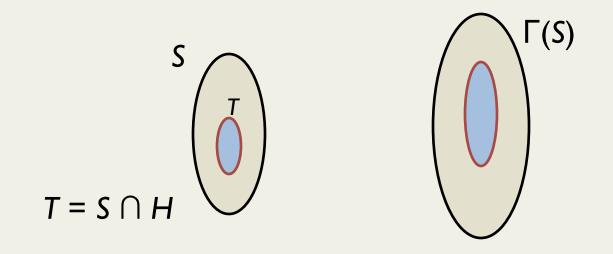
Algorithm using Cat_{δ} (plot outline)



Procedure LocalSearch(S)

- For every $a \in V$, perform LocalSearch($S_a(u)$)
- If it always fails, then $\exists a, b, s.t. |S_{ab}(u)| \le U_1$ and $|T_{ab}(u)| \ge L_1$
- For every *a*,*b*, perform LocalSearch($S_{ab}(u)$)
- If it fails each time, then $\exists a, b, s.t. |S_{ab}(v)| \le U_2$ and $|T_{ab}(v)| \ge L_2$
- Keep doing this ... At the last step, the parameters give a contradiction for Computational Intractability, Princeton University

Main Component – LocalSearch(S)



For each $i = 1 \dots k$, do:

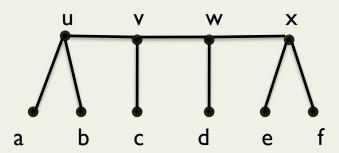
• Pick the *i* vertices on the right with the most edges to S (call this S_r). If S \cup S_r has density $\geq \rho$, return it.

If no dense subgraph is found, return Fail

Linear Programming view

• Can bound the quality of the solution w.r.t value of a Lift-and-project style LP relaxation.

 Algorithm can be viewed as rounding procedure for relaxation via successive conditioning



Subexponential algorithm

•
$$n^{(1-\varepsilon)/4}$$
 approximation in time $2^{n^{6\varepsilon}}$

• Guess subsets of size n^{ε} for every leaf in caterpillar structure.

New developments

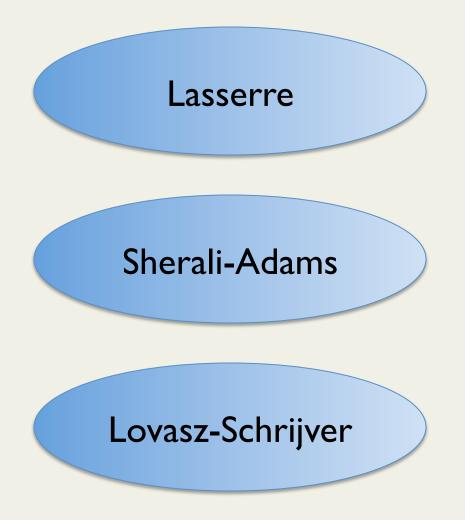
- Hardness based on non-standard assumptions
- Integrality gaps for lift-and-project relaxations

Hardness

- [AAMMW '11]
- No constant factor possible if random k-AND hard to refute.

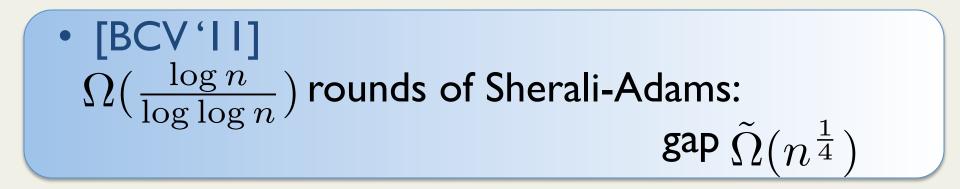
- No constant possible if planted cliques cannot be found in polynomial time.
- Super constant hardness based on stronger assumption.

Stronger relaxations



Gaps for lift-and-project

• [BCCFV '10] t rounds of Lovasz-Schrijver: gap $n^{\frac{1}{4}+O(1/t)}$



• [GZ'II] $n^{\Omega(1)}$ rounds of Lasserre: gap $n^{\Omega(1)}$

Open Problem

- Given random graph: n vertices, degree n^{1/2}
- Planted subgraph: $n^{1/2}$ vertices, degree $n^{1/4-\varepsilon}$

• Detect in polynomial time ?

Open Problem

