
Finding Dense Subgraphs

Moses Charikar

Center for Computational Intractability

Dept of Computer Science
Princeton University

P=NP

?

The Dense Subgraph Problem

Center for Computational Intractability, Princeton University

graph G

subset S

Given G, find
dense subgraph S

Dense subgraphs are everywhere !

•  A useful subroutine for many applications.

Center for Computational Intractability, Princeton University

Social Networks

•  Trawling the Web for emerging cyber-
communities [KRRT ‘99]
– Web communities are characterized by dense

bipartite subgraphs

Center for Computational Intractability, Princeton University

Center for Computational Intractability, Princeton University

Communities
on gitweb

Computational Biology

•  Mining coherent dense subgraphs across
massive biological networks for functional
discovery [HYHHZ ’05]

– dense protein interaction subgraph corresponds to a

protein complex [BD’03] [SM’03]

– dense co-expression subgraph represent tight co-
expression cluster [SS ‘05]

Center for Computational Intractability, Princeton University

Dense subgraphs are everywhere !

•  A useful subroutine for many applications.

•  A useful candidate hard problem with many
consequences

Center for Computational Intractability, Princeton University

Public Key Cryptography [ABW ‘10]

•  Hardness assumption

Center for Computational Intractability, Princeton University

Complexity of Financial Derivatives

•  Computational Complexity and Information
Asymmetry in Financial Products [ABBG ’10]
– Evaluating the fair value of a derivative is a hard

problem
– Tampered derivatives (CDOs) can be hard to detect.
– Derivative designer can gain a lot from small

asymmetry in information (lemon cost).

Center for Computational Intractability, Princeton University

Simplest Model
M CDOs

N Asset classes L Lemons

D assets per CDO

I know which asset
classes are lemons

There are L lemons,
but which are they?

Dense Subgraph

6σ lemons, default w.p. ½

I can cluster lemons to
create tampered CDOs.

I hope lemons are spread
evenly over CDOs.

Summary so far

•  Finding dense subgraphs is useful, both as a
subroutine as well as a candidate hard
problem

•  So, what do we know about the problem ?
– Formal definition
– New results
– New results on related problems

Center for Computational Intractability, Princeton University

Densest k-subgraph

Problem. Given G, find a subgraph of size k with the
maximum number of edges (think of k as n½)

G, n

H, k

Problems of similar flavor

§  Max clique
§  Max density subgraph – find H
to maximize the ratio:

||
)(edges#

H
H

Center for Computational Intractability, Princeton University

Approximation Algorithm

•  Exact problem is hard, prove that efficient
heuristic finds good solution.

•  Approximation ratio =

•  Solution value = number of edges in subgraph

Center for Computational Intractability, Princeton University

Value of optimal solution
Value of heuristic solution

Densest k-subgraph

Problem. Given G, find a subgraph of size k with the
maximum number of edges (think of k as n½)

[Feige, Kortsarz, Peleg 93] O(n1/3 – 1/90) approximation
[Feige, Schechtman 97] Ω(n1/3) integrality gap for natural SDP

[Feige 03] Constant hardness under the Random 3-SAT

assumption
[Khot 05] There is no PTAS unless NP ⊆ BPTIME(sub-exp)

Center for Computational Intractability, Princeton University

Main Result

Theorem. O(n1/4 +ε) approximation for DkS in
time O(n1/ε)

Center for Computational Intractability, Princeton University

(Informal) Theorem. Can efficiently detect
subgraphs of high log-density.

[Bhaskara, C, Chlamtac, Feige, Vijayaraghavan ‘10]

Outline

•  Introduce two average case problems
•  ‘Local counting’ based algorithms for these
•  Notion of log-density
•  Techniques lead to algorithms for the DkS

problem

Center for Computational Intractability, Princeton University

Planted problems related to DkS

G, n

H, k

G, n

Yes

No

•  Assume G does not have dense
subgraphs
•  Good algorithm for DkS ⇒ we
can distinguish

Two natural questions:
1.  Random in Random: G(k,q)

planted in G(n,p)
2.  Arbitrary in Random: Some

dense subgraph planted in G(n,p)

Center for Computational Intractability, Princeton University

Random in Random

Question. How large should q be so as to
distinguish between

YES: G(n,p) with G(k,q) planted in it
NO: G(n,p)

When would looking for the presence of a
subgraph help distinguish?

Eg. K2,3

Center for Computational Intractability, Princeton University

Random in Random

Question. How large should q be so as to distinguish between
 YES: G(n,p) with G(k,q) planted in it
 NO: G(n,p)

[Erdos-Renyi]:
•  Appears w.h.p. in G(n,p) if n5p6 >> 1,
i.e., degree >> n1/6

•  Does not appear w.h.p. in G(n,p) if
n5p6 << 1, i.e., degree << n1/6

Valid distinguishing algorithm if: k5q6 >> 1, and n5p6 << 1

I.e., degree << n1/6, and planted-degree >> k1/6

Center for Computational Intractability, Princeton University

Random in Random

Question. How large should q be so as to distinguish between
 YES: G(n,p) with G(k,q) planted in it
 NO: G(n,p)

In general, suppose degree < nδ, and planted-degree
> kδ+ε

Find a rational number 1-r/s between δ and δ+ε, and use
a graph with r vertices and s edges to distinguish.

Center for Computational Intractability, Princeton University

Log density

A graph on n vertices has log-density δ if the
average degree is nδ

 δ =

Question. Given G, can we detect the presence

of a subgraph on k vertices, with higher log-
density?

||log
log

V
davg

Center for Computational Intractability, Princeton University

Dense vs. Random

Problem. Distinguish G ~ G(n,p), log-density δ from
a graph which has a k-subgraph of log-density δ+ε

(Note. kp = k(nδ/n) = kδ(k/n)1-δ < kδ)

More difficult than the planted model earlier
(graph inside is no longer random)

Eg. k-subgraph could have log-density=1 and not

have triangles
Center for Computational Intractability, Princeton University

Example. Say δ = 2/3, i.e., degree = n2/3

random graph G(n, n-1/3):

any three vertices have O(log n) common
neighbors w.h.p.

planted graph: size k, log-density 2/3+ε:

Main idea

P
triples no. of common neighbors =

P
v dv 3

X

trip les

no. of common neighbors =
X

v

µ
dv
3

¶

> k3k3²

X

trip les

no. of common neighbors =
X

v

µ
dv
3

¶

triple with k3ε common neighbors
Center for Computational Intractability, Princeton University

u v w

Main idea (contd.)
Example 2. δ = 1/3, i.e., degree = n1/3

random graph G(n, n-1/3):

any pair of vertices have O(log2 n) paths of
length 3, w.h.p.

planted graph: size k, log-density 1/3+ε:
exists a pair of vertices with kε paths

P
triples no. of common neighbors =

P
v dv 3

X

trip les

no. of common neighbors =
X

v

µ
dv
3

¶

> k3k3²

X

trip les

no. of common neighbors =
X

v

µ
dv
3

¶

Center for Computational Intractability, Princeton University

P
triples no. of common neighbors =

P
v dv 3

X

trip les

no. of common neighbors =
X

v

µ
dv
3

¶

> k3k3²

X

trip les

no. of common neighbors =
X

v

µ
dv
3

¶

u v

Main idea (contd.)

General strategy: For each rational δ, consider
appropriate `caterpillar’ structures, count how
many `supported’ on fixed set of leaves

P
triples no. of common neighbors =

P
v dv 3

X

trip les

no. of common neighbors =
X

v

µ
dv
3

¶

> k3k3²

X

trip les

no. of common neighbors =
X

v

µ
dv
3

¶

…

§  Random graph G(n,p), log-density δ:
 every leaf tuple supports polylog(n) caterpillars
§  Planted graph, size k, log-density δ+ε :
 some leaf tuple supports at least kε caterpillars

Center for Computational Intractability, Princeton University

u1 u2 u3 ur

Dense vs. Random – conclusion

Theorem. For every ε>0, and 0<δ<1, we can
distinguish between G(n,p) of log-density δ, and
an arbitrary graph with a k-subgraph of log-
density δ+ε, in time nO(1/ε).

(Pick a rational number between δ and δ+ε, and use the

caterpillar corresponding to it)

Center for Computational Intractability, Princeton University

DkS in general graphs

Preliminaries

Aim. Obtain a k-subgraph of
avg degree ρ

Observation 1. It suffices to

return a ρ-dense subgraph with
≤ k vertices
 (remove and repeat)

G, n, D

H, k, d

Center for Computational Intractability, Princeton University

Preliminaries

Observation 2. It suffices to return a bipartite
subgraph with density ρ, and ≤ k vertices on one side

U
V (size · k)

§  Pick the |V| vertices in U of largest degree
§  Density of the resulting subgraph is

Density is ρ, so
E(U,V) = ρ(|V|+|U|)

Center for Computational Intractability, Princeton University

Algorithm using Catδ

Idea. Look at the ‘set of candidates’ for a non-leaf after
fixing a prefix of the leaves

Eg., define Sabc(v) = set of ‘candidates’ in G for internal
vertex v after fixing a,b,c

(for instance, Sab(u) is the set of common nbrs of a, b)
Denote Tabc(v) = Sabc(v) ∩ H
Given a, b, .. and the structure, we can compute the S’s

a b c d e f

u v w x

Center for Computational Intractability, Princeton University

Algorithm using Catδ (plot outline)

•  For every a ∈ V, perform LocalSearch(Sa(u))
•  If it always fails, then ∃a, b, s.t. |Sab(u)| ≤ U1 and

|Tab(u)| ≥ L1

•  For every a,b, perform LocalSearch(Sab(u))
•  If it fails each time, then ∃a, b, s.t. |Sab(v)| ≤ U2 and

|Tab(v)| ≥ L2

•  Keep doing this … At the last step, the parameters give
a contradiction!

a b c d e f

u v w x

Procedure
LocalSearch(S)

Center for Computational Intractability, Princeton University

Main Component – LocalSearch(S)

For each i = 1…k, do:
•  Pick the i vertices on the right with the most edges to

S (call this Sr). If S ∪ Sr has density ≥ ρ, return it.
If no dense subgraph is found, return Fail

S
Γ(S)

T

T = S ∩ H

Center for Computational Intractability, Princeton University

•  Can bound the quality of the solution w.r.t
value of a Lift-and-project style LP relaxation.

•  Algorithm can be viewed as rounding
procedure for relaxation via successive
conditioning

Linear Programming view

Center for Computational Intractability, Princeton University

a b c d e f

u v w x

Subexponential algorithm

•  approximation in time

•  Guess subsets of size for every leaf in
caterpillar structure.

Center for Computational Intractability, Princeton University

n(1−ε)/4 2n
6ε

nε

New developments

•  Hardness based on non-standard assumptions
•  Integrality gaps for lift-and-project relaxations

Center for Computational Intractability, Princeton University

Hardness

•  [AAMMW ’11]
•  No constant factor possible if random k-AND

hard to refute.

•  No constant possible if planted cliques cannot
be found in polynomial time.

•  Super constant hardness based on stronger
assumption.

Center for Computational Intractability, Princeton University

Stronger relaxations

Center for Computational Intractability, Princeton University

Lasserre

Sherali-Adams

Lovasz-Schrijver

Gaps for lift-and-project

•  [BCCFV ’10]
 rounds of Lovasz-Schrijver: gap

•  [BCV ‘11]
 rounds of Sherali-Adams:
 gap

•  [GZ ‘11]
 rounds of Lasserre: gap

Center for Computational Intractability, Princeton University

nΩ(1) nΩ(1)

t n
1
4+O(1/t)

Ω(logn
log logn)

Ω̃(n
1
4)

Open Problem

•  Given random graph: n vertices, degree n1/2

•  Planted subgraph: n1/2 vertices, degree n1/4-ε

•  Detect in polynomial time ?

Center for Computational Intractability, Princeton University

Open Problem

Center for Computational Intractability, Princeton University

graph G

subset S
size √n

Given G, find
dense subgraph S

Degree √n

degree n¼

