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1 Combinatorial Discrepancy

Given a universe U = {1, . . . , n} and a set system S = {S1, . . . , Sm} on U , we define the discrepancy
of the set system S as

disc(S) = min
χ:U→{−1,1}

max
S∈S
|χ(S)|

where χ(S) =
∑

i∈S χ(i). Here we want to color the elements of U such that each set S1, . . . , Sm is
colored as evenly as possible, i.e. we want nearly as many 1s and −1s in each set.

The Minimum Discrepancy Problem for the set system S is to find a coloring χ : U → {−1, 1}
which minimizes discrepancy, i.e. the function

max
S∈S

∣∣∣∣∣∑
i∈S

χ(i)

∣∣∣∣∣ .
We will be interested in polytime algorithms for computing these low discrepancy colorings.

In terms of applications, the min discrepancy problem appears in many varied areas of both Com-
puter Science (Computational Geometry, Comb. Optimization, Monte-Carlo simulation, Machine
learning, Complexity, Pseudo-Randomness) and Mathematics (Dynamical Systems, Combinatorics,
Mathematical Finance, Number Theory, Ramsey Theory, Algebra, Measure Theory,...). One may
consult any of the following books [Cha01, AS00, Mat10] for an in depth view of the subject.

1.1 Discrepancy Bounds for General Set Systems

In this section, we will be interested in computing upper bounds for the discrepancy of an arbitrary
set system S based solely on n and m (U = [n] and |S| = m). For simplicity, we will mostly
examine the case where m = n.

The following lemma gives us a simple bound on disc(S).

Lemma 1 (Random Coloring). disc(S) = O(
√
n log n)

Proof. Let χ(i) denote a uniform {−1, 1} random variable for each i ∈ [n]. Now note that for each
S ∈ S, the variance of χ(S) =

∑
i∈S χ(i) is exactly |S| ≤ n. Therefore by the Chernoff bounds, we

get that

Pr(|χ(S)| ≥ c
√
n) < 2e−

1
4
c2

for c ≤
√
n. Let c =

√
4 log(4n), we get that

Pr
(
|χ(S)| ≥

(√
4 log(4n)

)√
n
)
<

1

2n
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Applying the union bound on the n sets in S, we get that a random coloring achieves discrepancy√
4n log(4n) with probability at least 1

2 . Hence disc(S) = O(
√
n log n) as claimed.

We note that the above lemma immediately implies an algorithm for the discrepancy problem, i.e.
that of choosing a random coloring on U . Until recently, this was indeed the best known algorithm
for coloring a general set system. Furthermore, the above analysis of the random coloring technique
is tight, i.e. there are examples where a random coloring yields discrepancy Θ(

√
n log n) with very

high probability.

Even though random colorings gave the best algorithmic technique, a beautiful theorem of Spencer
[Spe85] shows that the discrepancy of general set systems is in fact always better than O(

√
n log n).

Theorem 2 (Spencer). disc(S) ≤ 6
√
n

For general set systems, i.e. |S| = m, Spencer shows that disc(S) = O(
√
n log m

n ). Furthermore,
for m = n, the theorem is tight, since one can show that Hadamard set systems have discrepancy
.5
√
n [Cha01].

Unfortunately, Spencer’s proof is inherently non-constructive (uses pigeon hole principle on expo-
nentially many elements) and hence cannot directly be made into an algorithm.

Challenge: Can we find a Spencer type coloring algorithmically?

On this front, Spencer proved that no non-adaptive or online algorithm can achieve better that√
n logm (see for e.g. [AS00]). Given these bounds, and the non-constructive nature of Spencer’s

proof, the following has been conjectured [AS00]:

Conjecture: No efficient algorithm to find such a coloring exists.

1.2 Approximating Discrepancy

Question: If S has low discrepancy (say disc(S) <<
√
n), can we find a good coloring?

Unfortunately, the answer to this question was shown to be strongly negative by Charikar, Newman,
and Nikolov [CNN11]:

Theorem 3 (Hardness). It is NP-Hard to distinguish between disc(S) = 0 and disc(S) = O(
√
n),

even for systems with m = O(n).

The above result suggests that disc(S) maybe too strong a quantity to measure directly. One may
ask, if there is not a more “robust” measure of the discrepancy of S which would be amenable to
approximation. In particular, we may examine the Hereditary Discrepancy of S, which is defined
as

herdisc(S) = max
U ′⊆U

disc(S|U ′)

where S|U ′ = {S∩U ′ : S ∈ S, S∩U ′ 6= ∅} is the restriction of the S to the subuniverse U ′ ⊆ U . The
notion of Hereditary Discrepancy indeed appears quite naturally in many settings, for example in
the definition of totally unimodular matrices and certain geometric contexts.
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Question: (Matousek) Can we find a low discrepancy coloring of S given that herdisc(S) is low?

2 Results

We present our algorithmic results here.

Theorem 4 (Hereditary Discrepancy). Given a set system S, |S| = m on a universe U =
[n], a coloring χ : U → {−1, 1} can be computed in polytime achieving discrepancy at most
O(log(mn))herdisc(S), or more precisely O(

√
logm log n)herdisc(S).

Building upon the techniques of this theorem, with some additional ideas, we can also show that

Theorem 5 (Constructive Spencer). Given a set system S, |S| = n on a universe U = [n], a
coloring χ : U → {−1, 1} can be computed polytime achieving discrepancy at most O(

√
n).

This effectively makes Spencer’s theorem constructive.

The general techniques developed for these algorithms can also be used to get constructive bounds
for various other discrepancy problems such as those arising in geometric contexts, and to build
low discrepancy colorings in both the k-permutation (set system is defined by all prefixes from a
collection of k permutations of U) and beck-fiala setting (each element of u ∈ U appears in at most
t sets).

3 Algorithm

We first write down two convex relaxations for Spencer’s problem. Given the set system S, |S| = n
on U = [n], we first examine the following linear program

√
n ≤

∑
i∈S

x+i −
∑
i∈S

x−i ≤
√
n ∀S ∈ S

x+i + x−i = 1 ∀i ∈ [n]

x+i , x
−
i ≥ 0 ∀i ∈ [n]

Here the intent is for the LP to set x+i = 1 if it wishes to color i to 1 and set x−i = −1 if it wants
to color i to −1. Unfortunately, the above LP is completely useless, since no matter the set system
it will set x+i = x−i = 1

2 , achieving a discrepancy of 0 for each set.

To achieve a more meaningful convex program, we examine the following SDP relaxation. We may
interpret the following SDP as coloring each element of U with vectors as opposed to −1 or 1.

‖
∑
i∈S

vi‖2 ≤ n ∀S ∈ S

‖vi‖2 = 1 ∀i ∈ [n]

vi ∈ Rn
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Here the intended solution is vi = (−1, 0, . . . , 0) or vi = (1, 0, . . . , 0) if element i is colored −1 or
1 respectively. Here again, unfortunately, irrespective of the set system S, the solution vi = ei
(the ith unit vector) satisfies each of the above constraints at equality. Even though, the above
example may make this SDP seem useless, modifications of the above program will form the central
component of our discrepancy algorithm.

The key point is that the trivial solution no longer becomes viable if we ask for slightly tighter
discrepancy restrictions on some of the sets. I.e. if we ask that

‖
∑
i∈S′

vi‖2 ≤
n

log n

for certain sets S′ ⊆ S, we force the SDP to give non-trivial information on the sets. Of course,
the SDP may not be feasible if we set the discrepancy constraints too tight, so this will need to be
handled carefully.

In the sections that follow, we will first discuss the high level approach for the SDP based algo-
rithm. Then we will show how to apply this algorithm in the Hereditary Discrepancy setting, and
subsequently the additional ideas needed to make it work in Spencer’s setting.

3.1 High Level Description

To find a small discrepancy coloring χ of [n] for S, our algorithm will perform a random walk on
the coordinates of χ, whose movement is seeded by a sequence of SDPs. Starting from an initial
“fractional” coloring χ = (0, . . . , 0), we proceed as follows:

• At timestep t, use an SDP to generate a small random pertubation δt, and let χ← δt + χ.

• Freeze all the coordinates of χ which get pushed above 1 or below −1. Repeat.

Once all the coordinates of χ are frozen, we round each component of χ to the its nearest value in
−1, 1 and return the associated vector. We will make sure the random walk increments are small
enough so that the rounding cost (in terms of accumulated discrepancy) is negligible. The above
process can therefore be thought of as a “sticky” random walk in [−1, 1]n, which sticks to the faces
of the cube it hits during its execution.

For the above approach to work, we will attempt to ensure the random perturbations induce a
large variance random walk on the coordinates of χ, i.e. χ(i) ∀i ∈ [n], but a low variance random
walk on the set discrepancies, i.e.

∑
i∈S χ(i). These two properties together will allow us to argue

that many coordinates get frozen while keeping the set discrepancies low.

3.2 SDP / Random Walk for Hereditary Discrepancy

Examining the Hereditary Discrepancy setting, we are given a set system S on [n] and a guarantee
that herdisc(S) ≤ λ. We wish to construct a coloring χ whose discrepancy w.r.t. S is bounded by
O(log(mn)λ).
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Given the bound on the hereditary discrepancy, we have that for any choice of U ′ ⊆ [n] the following
SDP is feasible

‖
∑
i∈S

vi‖2 ≤ λ2 ∀S ∈ S|U ′

‖vi‖2 = 1 ∀i ∈ U ′

vi ∈ R|U
′|

(1)

Therefore, no matter which coordinates we freeze in our random walk, the above SDP will always
be able to give us useful information about the remaining free coordinates.

The random walk we will use works as follows. Let χ denote the current fractional coloring, and
for notational simplicity let us assume that the set of free coordinates is [n].

1. Let v1, . . . , vn denote a solution to the above SDP (U ′ = [n]).

2. Let g = (g1, . . . , gn) denote a random gaussian vector in Rn, where each gi are i.i.d. N(0,1).

3. Let ηi = vi · g, ∀i ∈ [n].

4. Update χ by setting
χ(i) = χ(i) + γηi,

where γ > 0 is a positive parameter (we want small increments, but γ = 1
n2 will easily suffice).

5. Freeze all coordinates of χ where |χ(i)| ≥ 1.

To apply the above update when some of the coordinates of χ are frozen, we simply restrict both
the SDP solution and the random coordinate updates to the set of free coordinates.

Properties of the Random Walk: The following lemma recalls the fundamental
property of the gaussian.

Lemma 6. For a gaussian random vector g = (g1, . . . , gn) ∈ Rn, where each gi is iid N(0, 1), and
v ∈ Rn then v · g is distributed as N(0, ‖v‖2).

Proof. Simply note that v · g =
∑

i vigi, and that sum of independent one dimensional gaussians is
another gaussian with both mean and variance equal to sum of the individual means and variances.

We now analyze the evolution of χ over time. The relevant quantities at timestep t as follows:

• χt denotes the fractional coloring at time t, with free variables Ut ⊆ [n].

• vti , i ∈ Ut, denotes the SDP solution, and gt ∈ R|Ut| denotes the gaussian vector generated at
time t ( gt is independent of gaussian generated at previous steps).

• For i ∈ Ut, the coordinate updates at time t are χt(i) = χt−1(i) + γηti where ηti = vti · gt ∼
N(0, ‖vti‖2) = N(0, 1), and ηti = 0 for i ∈ [n] \ Ut.
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We first note that for t ≥ 1 that

χt(i) =

t−1∑
i=0

γηti ∼ N(0, γ2t)

Hence for each i, the color χt(i) performs a random walk of step size γN(0, 1) at each timestep
(though note that the random walks for the various colors are correlated). Now for S ∈ S, and for
t ≥ 0, we see that ∑

i∈S
ηti ∼ N(0, ‖

∑
i∈S∩Ut

vti‖2) (2)

where ‖
∑

i∈S∩Ut
vti‖2 ≤ λ2 by construction. Hence we get that χt(S) also performs a random walk

of step size at most γN(0, λ2) at each timestep (again the walks for various sets may be correlated
arbitrarily).

Analysis: Let a round consist of T = 12 1
γ2

random walk steps. We first show that after one
round, we expect a good fraction of the free coordinates of our fractional coloring to be frozen.

Lemma 7. For a round k ∈ N, with probability at least 1
2 at least half the of the free coordinates

of χT (k−1) are frozen in χTk.

Proof. We only show the statement for k = 0; for general k is analysis is basically identical. We
examine the probability that χT (i) is not frozen. Let Y1, . . . , YT be iid N(0, γ2) variables, and let
St =

∑t
i=1 Yi. By construction, we can generate the distribution of χT (i) by sampling Y1, . . . , YT

independently, returning either Si if i the first index where Si jumps out of (−1, 1) or ST if no such
i ∈ [T − 1] exists.

Now note that

Pr(χT (i) is not frozen ) = Pr(∩Tt=0{|St| < 1}) ≤ Pr(|ST | < 1)

Now ST is distributed as N(0, Tγ2) = N(0, 12), and hence has density 1
2
√
6π
e
− 1

2
‖ x
2
√
3
‖2

. Therefore

the Pr(|ST | ≤ 1) ≤ 1
2
√
6π

(2) = 1√
6π
< 1

4 .

Let Ei, i ∈ [n], be the indicator denoting whether χT (i) is not frozen. The above computation
shows that Pr(Ei) ≤ 1

4 . Therefore by Markov’s inequality, we have that Pr(
∑n

i=1Ei ≥
1
2n) ≤ 1

2 .
Hence with probability at least 1

2 at least 1
2n of the coordinates of χT are frozen as claimed.

Remark: We note that the above argument does not quite work for Spencer’s setting, since for each
element we have the constraint |vi| ≤ 1 together with an aggregate constraint that |

∑
i vi|2 ≥ n/2

instead of the constraints |vi = 1| above. This may cause the variance of some element walks to
be small (though on average the walks have large variance at each step). To handle this, we use a
more careful argument based on potential functions. This can be found in our paper.

The next lemma helps us bound how much discrepancy we have accumulated in k rounds.

Lemma 8. Take S ∈ S. For any round k ∈ N, and set S ∈ S, we have that

Pr(|χTk(S)| ≥ 6
√
m
√
kλ) ≤ 1

m2
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To see why the above is true, we remember that χt(S) performs a random walk of step size roughly
N(0, γ2λ2). Since we perform O( k

γ2
) steps of the random walk, we expect to total length of the

walk to look like N(0, kλ2), where the bound we want would now follow from the standard gaussian
tail bound. The formal proof uses a standard martingale argument.

We sketch the remainder of the proof.

• Claim 1: After 6 log n rounds, all the coordinates are frozen with high probability.

To see this, let Ei denote the indicator of whether the number of free coordinates dropped
by half in the ith round. We call a round “successful” if Ei = 1. By Lemma 7 we know that
E[Ei] = Pr(Ei = 1) ≥ 1

2 . Since there are only n elements to start with, we can have at most
log n successful rounds before all the coordinates are frozen. Since the rounds are essentially
independent, we can use the Chernoff bounds to show that in 6 log n rounds there are at least
log n successful rounds with probability at least 1 − 1

n2 . Hence with probability 1 − 1
n2 , all

the coordinates are frozen in at most 6 log n rounds.

• Claim 2: After 6 log n rounds, every set S ∈ S has discrepancy O(
√

log n logm) with high
probability.

By Lemma 8, we have that

Pr(|χ6 lognT (S)| ≥ 20
√

log n logmλ) ≤ 1

m2

for each S ∈ S. Therefore by the union bound, the probability that any set has discrepancy
bigger than 20

√
log n logmλ after 6 log n rounds is at most m 1

m2 = 1
m . Hence with probability

at least 1− 1
m all sets have discrepancy O(

√
logm log nλ) after 6 log n rounds.

• Claim 3: With high probability, we output a valid coloring of U of discrepancyO(
√

logm log nλ)
after 6 log n steps.

The claim follows by combining claim 1 and 2 and applying the union bound. The only thing
we did not discuss is the error in discrepancy induced by rounding the fractional solution to
{−1, 1}. Here, since we set the step size to γ = 1

n2 , the probability that any step of the random
walk is larger than 1

n is exponentially small in n. Hence with overwhelming probability, we
never have to update any coordinate of χ by more than 1

n , and hence the error induced by
rounding is at most additive O(1), i.e. negligible since λ ≥ 1.

Recap: In this section, we used Hereditary Discrepancy to guarantee that a specific SDP was
feasible at each step. With this SDP, we generated a random walk which satisfied the following
two properties:

1. High Variance on Coordinates: guaranteed Rapid Convergence of the algorithm.

2. Low Variance on Sets: guaranteed Low Discrepancy of the final solution.

In the next section, we will discuss what is needed to generalize this approach to work in Spencer’s
setting.
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4 Spencer’s Setting

Given a set system S, |S| = n, on [n], our goal is to find a coloring χ of discrepancy O(
√
n).

If we try to adapt the previous approach in this setting, we have to first understand what SDP
to use. Previously, we were able to use the bound on Hereditary discrepancy to guarantee the
feasibility of our SDPs. Now the naive approach would be to simply plug in an upper bound of√
n on the Hereditary discrepancy. This clearly performs poorly, since it only achieves discrepancy

O(
√
n
√

logm log n) which is even worse than a random coloring. The next idea would be to tighten
the bounds of the SDP used in the previous section to those predicted by Spencer’s theorem
itself. I.e. if we have k free variables and n sets left at time t, we may use the SDP from (1)
with a right hand side of O(k log n

k ), which is guaranteed to be feasible by Spencer’s theorem.
Unfortunately, even with this strengthening, we can show that the coloring produced only has
discrepancy O(

√
n
√

logm) (the main issue is the union bound over all sets) which again is no
better than random.

4.1 Partial Colorings

To find the right SDP, we will have to examine the details of Spencer’s proof. The main crux of
his proof is the following partial coloring lemma.

Lemma 9. For any set system S, |S| = m, on [n], there exists a coloring χ : {−1, 0, 1} → [n] on
n
2 elements (i.e. |{i : χ(i) 6= 0}| ≥ n

2 |) elements such that

max
S∈S
|χ(S)| = O

(√
n

√
log

m

n

)
Note that for m = n, the above gives discrepancy O(

√
n). With above lemma in hand, the full proof

of Spencer’s theorem is straightforward: we color the first n
2 elements, then n

4 of the remaining,
and so forth. We finish in at most log n rounds, and hence the total discrepancy will be at most
(case m = n)

O(1)

logn∑
i=1

√
n

2i−1

√
log

(
2i−1m

n

)
= O(

√
n)

by a simple computation (the terms decrease faster than a geometric series).

Sketch of the Proof: For simplicity, we examine the case m = n. Spencer’s main idea here
is to use the Pigeon Hole principle to find two proper coloring χ1, χ2 ∈ {−1, 1}n satisfying the
following two properties:

1. χ1, χ2 have “similar” discrepancy profiles:

max
S∈S
|χ1(S)− χ2(S)| =

√
n

2. χ1, χ2 have large hamming distance:

|{i ∈ [n] : χ1(i) 6= χ2(i)}| ≥
n

2
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With these two properties, we get that 1
2 (χ1 − χ2) ∈ {−1, 0, 1}n is a valid partial coloring on at

least n
2 elements with discrepancy O(

√
n).

To find these colorings we proceed as follows. For every vector z ∈ Zn, we associate the bucket

Bz =
√
n [

z1 − 1

2
,
z1 + 1

2
]× · · · × [

zn − 1

2
,
zn + 1

2
]

Now let χ denote a random {−1, 1}n coloring. Let S1, . . . , Sn denote the sets of S. Using the
concentration of χ(Si) for i ∈ [n] (Chernoff bounds suffice), one can show that there exists a bucket
Bz, z ∈ Zn such that

Pr((χ(S1), . . . , χ(Sn)) ∈ Bz) ≥ 2−
1
5
n

This implies that there are at least 2
4
5
n colorings c ∈ {−1, 1}n such that (c(S1), . . . , c(Sn)) ∈ Bz.

Note now that any two such colorings satisfy property (1) above, so we need only show that we can
find 2 such colorings that lie “far” apart. For this, we use the classic bound from combinatorics,
which states that any subset of the n dimensional Hamming cube having of diameter of most d has
at most

d∑
i=0

(
n

i

)
elements (size of the Hamming ball of radius d). From here, one can work out that since the subset

of colorings we are interested in has size at least 2
4
5
n, it must have diameter at least Ω(n). This

allows us to produce the colorings χ1, χ2 as needed.

The Entropy Method: To get at the right type of SDP for Spencer’s problem, we will need
a generalization of the partial coloring Lemma. Spencer’s Lemma only deals with finding partial
colorings having uniform discrepancy bounds. We will need a criterion to guarantee the existence
of partial colorings having more general discrepancy requirements.

The entropy method, developed by Beck in [Bec81], provides such a criterion. We do not state the
theorem here, but generally speaking, it says that for a set system S = (S1, . . . , Sm) on a universe
[n], there exists a partial coloring χ on n

2 elements satisfying |χ(Si)| ≤ ∆i, i ∈ [m], provided that
the ∆i’s are not too “tight on average”.

Therefore from the SDP standpoint, as long as the sequence ∆i satisfies Beck’s criterion, we get
that the following SDP is feasible:

‖
∑
i∈Sj

vi‖2 ≤ ∆2
j ∀j ∈ [m] Low Discrepancy

‖
n∑
i=1

vi‖2 ≥
n

2
High Coordinate Variance

‖vi‖2 ≤ 1 ∀i ∈ [n]

(3)

As before, we generate a random n dimensional gaussian g = (g1, . . . , gn), where our coordinate
updates will be ηi = vi · gi. The vector (η1, . . . , ηn) will “mimic” a true partial coloring.
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New Approach: We will leverage the above type SDP to generate the random walk steps. We
analyze the case where S = {S1, . . . , Sn} with each Sj ⊆ [n]. The main idea is as follows:

1. Start with random walk with SDP right hand sides, ∆j = c
√
n for j ∈ [n]. Let χ denote our

current fractional coloring.

2. Each χ(Sj) will do a random walk with expected discrepancy O(
√
n). However some of the

χ(Sj) will become problematic, so we adjust their ∆’s on the fly.

3. To do this we set thresholds T1 ≤ T2 ≤ T3 . . . where say Ti = (2−1/i)c′
√
n for some constant

c′, with associated delta values d1 ≥ d2 ≥ d3 ≥ . . . . Whenever an |χ(Sj)| passes a threshold
Tr, we set its ∆j = dr and continue.

4. The analysis will show that there are only a few problematic sets at any step, and hence the
entropy penalty will be low enough for us continue (i.e. the SDP will always remain feasible).

5 Conclusion

We end with some remarks and open problems.

Problem: Find polytime algorithm which outputs a coloring achieving discrepancy at most
herdisc(S)

√
logm.

Upcoming Work: [Bansal - Spencer] All the algorithms above can be derandomized (add new
constraint to the SDP). This work gives derandomizations for probabilistic inequalities that are
stronger than Chernoff bounds (Exponential moment technique for derandomizing Chernoff loses√

log n).

One may wish to examine other non-constructive proofs:

1. Lattices (Minkowski’s Theorem).

2. Fixed-Point Based (Nash, Sperner’s Lemma).

3. Topological (Hypergraph Matching).

There are also other discrepancy problems where progress can be made:

1. Beck-Fiala Conjecture (More generally Komlos conjecture).

2. Erdos Discrepancy Problem.
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