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Research Goal:
Exploiting planarity to achieve
• faster algorithms
• more accurate approximations

Combining the two thrusts, get fast and 
accurate approximation algorithms.

More accurate approximations
• Traveling salesman
•  Steiner tree
•  Multiterminal cut
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Computes shortest-path tree rooted at each boundary node in turn.
Total time required: O(n log n)
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Example of faster algorithm:
Multiple-source shortest paths (MSSP)

Computes shortest-path tree rooted at each boundary node in turn.
Total time required: O(n log n)

This algorithm has turned out to have many uses----including the 
approximation algorithms we will discuss.



Approximation schemes for NP-hard optimization 
problems in planar graphs:

Greatest hits of the 70’s, 80’s, and 90’s

1977 Lipton, Tarjan maximum independent set O(n log n)

1983 Baker max independent set, partition into triangles, 
min vertex-cover, min dominating set.... O(n)

1995
Grigni, 

Koutsoupias, 
Papadimitriou

Traveling salesman in unweighted graphs nO(1/ε)

1998
Arora, Grigni, 
Karger, Klein, 

Woloszyn 
Traveling salesman in graphs with weights nO(1/ε2)



Approximation schemes for NP-hard optimization 
problems in planar graphs:

Greatest hits of the 70’s, 80’s, and 90’s

1977 Lipton, Tarjan maximum independent set O(n log n)

1983 Baker max independent set, partition into triangles, 
min vertex-cover, min dominating set.... O(n)

1995
Grigni, 

Koutsoupias, 
Papadimitriou

Traveling salesman in unweighted graphs nO(1/ε)

1998
Arora, Grigni, 
Karger, Klein, 

Woloszyn 
Traveling salesman in graphs with weights nO(1/ε2)

Definition: An approximation scheme is efficient if  running time 
is a polynomial whose degree is fixed independent of ε



Approximation schemes for NP-hard optimization 
problems in planar graphs:

Greatest hits of the 70’s, 80’s, and 90’s
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1983 Baker max independent set, partition into triangles, 
min vertex-cover, min dominating set.... O(n)

1995
Grigni, 

Koutsoupias, 
Papadimitriou

Traveling salesman in unweighted graphs nO(1/ε)

1998
Arora, Grigni, 
Karger, Klein, 

Woloszyn 
Traveling salesman in graphs with weights nO(1/ε2)

Definition: An approximation scheme is efficient if  running time 
is a polynomial whose degree is fixed independent of ε

For the 00’s: give efficient approximation scheme for TSP,
address greater variety of traditional optimization problems.



Theorem [Klein, 2005]: There is a linear-time approximation scheme 
for the traveling-salesman problem in planar graphs with weights

Question: Is there an efficient approximation scheme for 
traveling salesman?

The framework introduced by this paper has since been used to 
address many other  problems....



Use of new framework for approximation schemes for 
planar graphs

• Traveling salesman [Klein, 2005]
• Traveling salesman on subset of vertices [Klein, 2006]
•  2-edge-connected spanning subgraph
                                [Berger, Grigni, 2007]
• Steiner tree [Borradaile, Klein, Mathieu, 2008]
• 2-edge-connected Steiner multisubgraph
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Planar duality

c

d
e

a
b

For each connected planar embedded graph, the dual is another 
connected planar embedded graph:
•Dual has a vertex for each face of the primal (the original graph)
•Dual has an edge for each edge of the primal.
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Choose p big enough so increase is ≤ ε OPT
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Ensure total cost of resulting graph is O(OPT)
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Ensure resulting graph has branchwidth O(p)
3.  Find (near-)optimal solution in low-branchwidth graph 

1.  Contract some edges while 
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by more than 1+ε factor

This was known before, 
implicit in Baker’s work.  

For planar graphs, do 
breadth-first search, p-

color the levels, and delete 
the cheapest level.

This is just deleting in the 
planar dual.  (In next talk, 
same idea in larger graph 

classes.)
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by more than 1+ε factor

Ensure total cost of resulting graph is O(OPT)
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Traveling salesman problem:
How to ensure that the resulting graph approximately preserves OPT?

Consider optimal tour.  Replace each edge by a 1+ε-approximate 
shortest path.  Resulting tour is 1+ε-approximate.

Therefore: it suffices to select a subset of edges that 
approximately preserves vertex-to-vertex distances.



Selecting a low-weight subset of edges that approximately 
preserves vertex-to-vertex distances

O(n2) time [Althoffer, Das, Dobkin, Joseph, Soares, 1993], linear time [Klein, 2005]

Step 1:  Let T be the minimum-weight spanning tree.
Include it in the spanner.

Just achieving finite distances requires a spanning tree.
To keep weight low, start with minimum-weight spanning tree (MST).
Will choose additional edges of total weight ≤  (2/ε) weight(MST).

Step 2:  Cut along T, duplicating edges and vertices.

Step 3:  Consider resulting face as infinite face.
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Step 4:  Consider nontree edges in order.
For each such edge uv, if

(1+ε) weight(uv) ≤ weight of corresponding boundary subpath
then add uv to spanner and chop along uv

For each edge uv added to spanner, boundary weight goes down by at least 
ε weight(uv)

Therefore, total weight added to spanner is at most
 ε-1 ⋅ decrease in boundary weight

Initial boundary weight is 2 weight(MST), so total weight added to spanner is 
 2 ε-1 weight(MST)
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Theorem: for any undirected planar graph G with edge-weights,
 ∃ subgraph of cost ≤ 2(ε-1+1) × min spanning tree cost

   such that, ∀u,v∊V, 
    u-to-v distance in subgraph ≤ (1 + ε) u-to-v distance in G

Corollary: There is a linear-time approximation scheme for 
traveling salesman in planar graphs.

In framework for approximation scheme, choose p = ε / 2(ε-1+1) so 
increase in cost is at most ε OPT
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Steiner tree weight.



Given subset S of vertices, we 
need a subgraph that 
approximately preserves 
Steiner tree weight.

Steiner tree

Theorem: for any undirected planar graph G with edge-weights, 
and any given subset S of vertices,

 ∃ subgraph of cost ≤ f(ε)× min Steiner tree cost such that
min Steiner tree cost in subgraph ≤ (1+ε) min Steiner tree cost in G



Tool for Step 1: Brick Decomposition

T:= 2-approx. 
Steiner tree

M := subgraph 
containing T

Bricks := faces 
of M

Connect each brick to copy of M using c(ε) portal edges
TSP Structure Theorem: There is a 1+ ε-approx. tour that uses 

portal edges to go between bricks. 
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B, all portal-to-portal shortest-

paths within B.

Steiner Structure Theorem: There is a 1+ ε-approx. Steiner 
tree that uses portal edges to go between bricks. 

Steiner Spanner construction: Include M and, for each brick B, 
for each subset of portal ends, the min Steiner tree within B.



TSP Structure Theorem: There is a 1+ ε-approx. tour that uses 
portal edges to go between bricks. 

TSP Spanner construction: 
Include M and, for each brick 
B, all portal-to-portal shortest-

paths within B.

Steiner Structure Theorem: There is a 1+ ε-approx. Steiner 
tree that uses portal edges to go between bricks. 

Steiner Spanner construction: Include M and, for each brick B, 
for each subset of portal ends, the min Steiner tree within B.



TSP Structure Theorem: There is a 1+ ε-approx. tour that uses 
portal edges to go between bricks. 

TSP Spanner construction: 
Include M and, for each brick 
B, all portal-to-portal shortest-

paths within B.

Steiner Structure Theorem: There is a 1+ ε-approx. Steiner 
tree that uses portal edges to go between bricks. 

Steiner Spanner construction: Include M and, for each brick B, 
for each subset of portal ends, the min Steiner tree within B.



Remarks about spanner methodology
• Brick-decomposition construction takes O(n log n) time.

• There’s a way to use brick decompositions that avoid some of 
the overhead of the spanner methodology, leads to better 
dependence on ε.

• Brick decomposition can start with any connected subgraph, 
not just tree.

• To cope with disconnected subgraphs, prize-collecting 
clustering (MohammadTaghi’s talk) has become an essential 
technique.

Steiner-tree approximation scheme has been implemented!
(Constants tweaked to get a fast algorithm that gets very 

good solutions.)
                   [Tazari, Müller-Hannemann, 2009] 

https://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/M=uuml=ller=Hannemann:Matthias.html
https://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/M=uuml=ller=Hannemann:Matthias.html


Open problems
Lots!  We’re just gaining steam.

Will need new techniques for these problems....
•  Facility location problems
•  Vehicle routing problems
•  k-tree
•  vertex-weighted Steiner tree
•  directed Steiner tree
•  two-edge connected Steiner
•  two-vertex-connected Steiner 
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Advertisements:
I’m writing a book about (some) optimization algorithms 
for planar graphs.  Email me if you want to receive a draft.

Also, we are working to develop a library of reference 
implementations of planar-graph algorithms.


