
Approximation Schemes
 for Optimization Problems

 in Planar Graphs

Philip Klein

The world is flat....

... but it’s not Euclidean!

Traveling-salesman tour in the plane

... but it’s not Euclidean!

Traveling-salesman tour in the plane

... but it’s not Euclidean!

Traveling-salesman tour in the plane a planar embedded graph

... but it’s not Euclidean!

Traveling-salesman tour in the plane a planar embedded graph

Planar graphs

Can be drawn
in the plane
with no
crossings

4

[Harris and Ross, The RAND Corporation, 1955, declassified 1999]

Planar graphs

Can be drawn
in the plane
with no
crossings

4

[Harris and Ross, The RAND Corporation, 1955, declassified 1999]

Research Goal:
Exploiting planarity to achieve
• faster algorithms
• more accurate approximations

Faster algorithms
• Shortest paths
• Maximum flow

Research Goal:
Exploiting planarity to achieve
• faster algorithms
• more accurate approximations

Combining the two thrusts, get fast and
accurate approximation algorithms.

More accurate approximations
• Traveling salesman
• Steiner tree
• Multiterminal cut

Example of faster algorithm:
Multiple-source shortest paths (MSSP)

Computes shortest-path tree rooted at each boundary node in turn.
Total time required: O(n log n)

Example of faster algorithm:
Multiple-source shortest paths (MSSP)

Computes shortest-path tree rooted at each boundary node in turn.
Total time required: O(n log n)

Example of faster algorithm:
Multiple-source shortest paths (MSSP)

Computes shortest-path tree rooted at each boundary node in turn.
Total time required: O(n log n)

Example of faster algorithm:
Multiple-source shortest paths (MSSP)

Computes shortest-path tree rooted at each boundary node in turn.
Total time required: O(n log n)

This algorithm has turned out to have many uses----including the
approximation algorithms we will discuss.

Approximation schemes for NP-hard optimization
problems in planar graphs:

Greatest hits of the 70’s, 80’s, and 90’s

1977 Lipton, Tarjan maximum independent set O(n log n)

1983 Baker max independent set, partition into triangles,
min vertex-cover, min dominating set.... O(n)

1995
Grigni,

Koutsoupias,
Papadimitriou

Traveling salesman in unweighted graphs nO(1/ε)

1998
Arora, Grigni,
Karger, Klein,

Woloszyn
Traveling salesman in graphs with weights nO(1/ε2)

Approximation schemes for NP-hard optimization
problems in planar graphs:

Greatest hits of the 70’s, 80’s, and 90’s

1977 Lipton, Tarjan maximum independent set O(n log n)

1983 Baker max independent set, partition into triangles,
min vertex-cover, min dominating set.... O(n)

1995
Grigni,

Koutsoupias,
Papadimitriou

Traveling salesman in unweighted graphs nO(1/ε)

1998
Arora, Grigni,
Karger, Klein,

Woloszyn
Traveling salesman in graphs with weights nO(1/ε2)

Definition: An approximation scheme is efficient if running time
is a polynomial whose degree is fixed independent of ε

Approximation schemes for NP-hard optimization
problems in planar graphs:

Greatest hits of the 70’s, 80’s, and 90’s

1977 Lipton, Tarjan maximum independent set O(n log n)

1983 Baker max independent set, partition into triangles,
min vertex-cover, min dominating set.... O(n)

1995
Grigni,

Koutsoupias,
Papadimitriou

Traveling salesman in unweighted graphs nO(1/ε)

1998
Arora, Grigni,
Karger, Klein,

Woloszyn
Traveling salesman in graphs with weights nO(1/ε2)

Definition: An approximation scheme is efficient if running time
is a polynomial whose degree is fixed independent of ε

For the 00’s: give efficient approximation scheme for TSP,
address greater variety of traditional optimization problems.

Theorem [Klein, 2005]: There is a linear-time approximation scheme
for the traveling-salesman problem in planar graphs with weights

Question: Is there an efficient approximation scheme for
traveling salesman?

The framework introduced by this paper has since been used to
address many other problems....

Use of new framework for approximation schemes for
planar graphs

• Traveling salesman [Klein, 2005]
• Traveling salesman on subset of vertices [Klein, 2006]
• 2-edge-connected spanning subgraph
 [Berger, Grigni, 2007]
• Steiner tree [Borradaile, Klein, Mathieu, 2008]
• 2-edge-connected Steiner multisubgraph
 [Borradaile, Klein, 2008]
• Steiner forest [Bateni, Hajiaghayi, Marx, 2010]

• Prize-collecting Steiner tree, TSP, stroll
 [Bateni, Chekuri, Ene, Hajiaghayi, Korula, Marx, 2011]
• Multiterminal cut [Bateni, Hajiaghayi, K., Mathieu, unpublished]

speed-up [Eisenstat et al., new]

Use of new framework for approximation schemes for
planar graphs

• Traveling salesman [Klein, 2005]
• Traveling salesman on subset of vertices [Klein, 2006]
• 2-edge-connected spanning subgraph
 [Berger, Grigni, 2007]
• Steiner tree [Borradaile, Klein, Mathieu, 2008]
• 2-edge-connected Steiner multisubgraph
 [Borradaile, Klein, 2008]
• Steiner forest [Bateni, Hajiaghayi, Marx, 2010]

• Prize-collecting Steiner tree, TSP, stroll
 [Bateni, Chekuri, Ene, Hajiaghayi, Korula, Marx, 2011]
• Multiterminal cut [Bateni, Hajiaghayi, K., Mathieu, unpublished]

• Steiner tree in bounded-genus graphs
 [Borradaile, Demaine, Tazari, 2009]
• TSP in excluded-minor graphs
 [Demaine, Hajiaghayi, and Kawarabayashi, 2011]

Framework generalized to broader graph classes

speed-up [Eisenstat et al., new]

Use of new framework for approximation schemes for
planar graphs

• Traveling salesman [Klein, 2005]
• Traveling salesman on subset of vertices [Klein, 2006]
• 2-edge-connected spanning subgraph
 [Berger, Grigni, 2007]
• Steiner tree [Borradaile, Klein, Mathieu, 2008]
• 2-edge-connected Steiner multisubgraph
 [Borradaile, Klein, 2008]
• Steiner forest [Bateni, Hajiaghayi, Marx, 2010]

• Prize-collecting Steiner tree, TSP, stroll
 [Bateni, Chekuri, Ene, Hajiaghayi, Korula, Marx, 2011]
• Multiterminal cut [Bateni, Hajiaghayi, K., Mathieu, unpublished]

• Steiner tree in bounded-genus graphs
 [Borradaile, Demaine, Tazari, 2009]
• TSP in excluded-minor graphs
 [Demaine, Hajiaghayi, and Kawarabayashi, 2011]

Framework generalized to broader graph classes

Time efficient?

speed-up [Eisenstat et al., new]

Use of new framework for approximation schemes for
planar graphs

• Traveling salesman [Klein, 2005]
• Traveling salesman on subset of vertices [Klein, 2006]
• 2-edge-connected spanning subgraph
 [Berger, Grigni, 2007]
• Steiner tree [Borradaile, Klein, Mathieu, 2008]
• 2-edge-connected Steiner multisubgraph
 [Borradaile, Klein, 2008]
• Steiner forest [Bateni, Hajiaghayi, Marx, 2010]

• Prize-collecting Steiner tree, TSP, stroll
 [Bateni, Chekuri, Ene, Hajiaghayi, Korula, Marx, 2011]
• Multiterminal cut [Bateni, Hajiaghayi, K., Mathieu, unpublished]

• Steiner tree in bounded-genus graphs
 [Borradaile, Demaine, Tazari, 2009]
• TSP in excluded-minor graphs
 [Demaine, Hajiaghayi, and Kawarabayashi, 2011]

Framework generalized to broader graph classes

O(n)
Time

O(n log n)
unit-weights: O(n)

general weights: O(nf(ε))
O(n log n)
O(n log n)

efficient?

O(nf(ε))
speed-up [Eisenstat et al., new] O(n logf(ε) n)

O(nc)

O(nc)

Use of new framework for approximation schemes for
planar graphs

• Traveling salesman [Klein, 2005]
• Traveling salesman on subset of vertices [Klein, 2006]
• 2-edge-connected spanning subgraph
 [Berger, Grigni, 2007]
• Steiner tree [Borradaile, Klein, Mathieu, 2008]
• 2-edge-connected Steiner multisubgraph
 [Borradaile, Klein, 2008]
• Steiner forest [Bateni, Hajiaghayi, Marx, 2010]

• Prize-collecting Steiner tree, TSP, stroll
 [Bateni, Chekuri, Ene, Hajiaghayi, Korula, Marx, 2011]
• Multiterminal cut [Bateni, Hajiaghayi, K., Mathieu, unpublished]

• Steiner tree in bounded-genus graphs
 [Borradaile, Demaine, Tazari, 2009]
• TSP in excluded-minor graphs
 [Demaine, Hajiaghayi, and Kawarabayashi, 2011]

Framework generalized to broader graph classes

O(n)
Time

O(n log n)
unit-weights: O(n)

general weights: O(nf(ε))
O(n log n)
O(n log n)

efficient?

O(nf(ε))
speed-up [Eisenstat et al., new] O(n logf(ε) n)

O(nc)

O(nc)

Planar duality

c

d
e

a
b

For each connected planar embedded graph, the dual is another
connected planar embedded graph:
•Dual has a vertex for each face of the primal (the original graph)
•Dual has an edge for each edge of the primal.

Deletion and contraction* are dual to each other

Deletion of a (non-self-loop) edge in the primal
corresponds to contraction in the dual
and vice versa

One key idea for framework

Deletion and contraction* are dual to each other

Deletion of a (non-self-loop) edge in the primal
corresponds to contraction in the dual
and vice versa

One key idea for framework

Deletion and contraction* are dual to each other

Deletion of a (non-self-loop) edge in the primal
corresponds to contraction in the dual
and vice versa

One key idea for framework

1. Delete some edges while
keeping OPT from increasing

by more than 1+ε factor

Framework for approximation schemes for planar graphs
[Klein, 2005]

Ensure total cost of resulting graph is O(OPT)

2. Contract edges of total
cost at most 1/p times total

Ensure resulting graph has branchwidth O(p)
3. Find (near-)optimal solution in low-branchwidth graph

4. Lift solution to original graph,
increasing cost by 1/p × O(OPT)

1. Delete some edges while
keeping OPT from increasing

by more than 1+ε factor

Framework for approximation schemes for planar graphs
[Klein, 2005]

Ensure total cost of resulting graph is O(OPT)

2. Contract edges of total
cost at most 1/p times total

Ensure resulting graph has branchwidth O(p)
3. Find (near-)optimal solution in low-branchwidth graph

4. Lift solution to original graph,
increasing cost by 1/p × O(OPT)

1. Delete some edges while
keeping OPT from increasing

by more than 1+ε factor

Framework for approximation schemes for planar graphs
[Klein, 2005]

Ensure total cost of resulting graph is O(OPT)

2. Contract edges of total
cost at most 1/p times total

Ensure resulting graph has branchwidth O(p)
3. Find (near-)optimal solution in low-branchwidth graph

4. Lift solution to original graph,
increasing cost by 1/p × O(OPT)

1. Delete some edges while
keeping OPT from increasing

by more than 1+ε factor

Framework for approximation schemes for planar graphs
[Klein, 2005]

Ensure total cost of resulting graph is O(OPT)

2. Contract edges of total
cost at most 1/p times total

Ensure resulting graph has branchwidth O(p)
3. Find (near-)optimal solution in low-branchwidth graph

4. Lift solution to original graph,
increasing cost by 1/p × O(OPT)

1. Delete some edges while
keeping OPT from increasing

by more than 1+ε factor

Framework for approximation schemes for planar graphs
[Klein, 2005]

Ensure total cost of resulting graph is O(OPT)

2. Contract edges of total
cost at most 1/p times total

Ensure resulting graph has branchwidth O(p)
3. Find (near-)optimal solution in low-branchwidth graph

4. Lift solution to original graph,
increasing cost by 1/p × O(OPT)

1. Delete some edges while
keeping OPT from increasing

by more than 1+ε factor

Framework for approximation schemes for planar graphs
[Klein, 2005]

Ensure total cost of resulting graph is O(OPT)

2. Contract edges of total
cost at most 1/p times total

Ensure resulting graph has branchwidth O(p)
3. Find (near-)optimal solution in low-branchwidth graph

4. Lift solution to original graph,
increasing cost by 1/p × O(OPT)

1. Delete some edges while
keeping OPT from increasing

by more than 1+ε factor

Framework for approximation schemes for planar graphs
[Klein, 2005]

Ensure total cost of resulting graph is O(OPT)

2. Contract edges of total
cost at most 1/p times total

Ensure resulting graph has branchwidth O(p)
3. Find (near-)optimal solution in low-branchwidth graph

4. Lift solution to original graph,
increasing cost by 1/p × O(OPT)

1. Delete some edges while
keeping OPT from increasing

by more than 1+ε factor

Framework for approximation schemes for planar graphs
[Klein, 2005]

1. Contract some edges while
keeping OPT from increasing

by more than 1+ε factor
Ensure total cost of resulting graph is O(OPT)

2. Contract edges of total
cost at most 1/p times total

2. Delete edges of total cost
at most 1/p times total

Ensure resulting graph has branchwidth O(p)
3. Find (near-)optimal solution in low-branchwidth graph

4. Lift solution to original graph,
increasing cost by 1/p × O(OPT)

1. Delete some edges while
keeping OPT from increasing

by more than 1+ε factor

Framework for approximation schemes for planar graphs
[Klein, 2005]

1. Contract some edges while
keeping OPT from increasing

by more than 1+ε factor
Ensure total cost of resulting graph is O(OPT)

2. Contract edges of total
cost at most 1/p times total

2. Delete edges of total cost
at most 1/p times total

Ensure resulting graph has branchwidth O(p)
3. Find (near-)optimal solution in low-branchwidth graph

4. Lift solution to original graph,
increasing cost by 1/p × O(OPT)

Choose p big enough so increase is ≤ ε OPT

2. Contract edges of total
cost at most 1/p times total

1. Delete some edges while
keeping OPT from increasing

by more than 1+ε factor

Framework for approximation schemes for planar graphs
[Klein, 2005]

Ensure total cost of resulting graph is O(OPT)

2. Delete edges of total cost
at most 1/p times total

Ensure resulting graph has branchwidth O(p)
3. Find (near-)optimal solution in low-branchwidth graph

1. Contract some edges while
keeping OPT from increasing

by more than 1+ε factor

2. Contract edges of total
cost at most 1/p times total

1. Delete some edges while
keeping OPT from increasing

by more than 1+ε factor

Framework for approximation schemes for planar graphs
[Klein, 2005]

Ensure total cost of resulting graph is O(OPT)

2. Delete edges of total cost
at most 1/p times total

Ensure resulting graph has branchwidth O(p)
3. Find (near-)optimal solution in low-branchwidth graph

1. Contract some edges while
keeping OPT from increasing

by more than 1+ε factor

This was known before,
implicit in Baker’s work.

For planar graphs, do
breadth-first search, p-

color the levels, and delete
the cheapest level.

2. Contract edges of total
cost at most 1/p times total

1. Delete some edges while
keeping OPT from increasing

by more than 1+ε factor

Framework for approximation schemes for planar graphs
[Klein, 2005]

Ensure total cost of resulting graph is O(OPT)

2. Delete edges of total cost
at most 1/p times total

Ensure resulting graph has branchwidth O(p)
3. Find (near-)optimal solution in low-branchwidth graph

1. Contract some edges while
keeping OPT from increasing

by more than 1+ε factor

This was known before,
implicit in Baker’s work.

For planar graphs, do
breadth-first search, p-

color the levels, and delete
the cheapest level.

2. Contract edges of total
cost at most 1/p times total

1. Delete some edges while
keeping OPT from increasing

by more than 1+ε factor

Framework for approximation schemes for planar graphs
[Klein, 2005]

Ensure total cost of resulting graph is O(OPT)

2. Delete edges of total cost
at most 1/p times total

Ensure resulting graph has branchwidth O(p)
3. Find (near-)optimal solution in low-branchwidth graph

1. Contract some edges while
keeping OPT from increasing

by more than 1+ε factor

This was known before,
implicit in Baker’s work.

For planar graphs, do
breadth-first search, p-

color the levels, and delete
the cheapest level.

2. Contract edges of total
cost at most 1/p times total

1. Delete some edges while
keeping OPT from increasing

by more than 1+ε factor

Framework for approximation schemes for planar graphs
[Klein, 2005]

Ensure total cost of resulting graph is O(OPT)

2. Delete edges of total cost
at most 1/p times total

Ensure resulting graph has branchwidth O(p)
3. Find (near-)optimal solution in low-branchwidth graph

1. Contract some edges while
keeping OPT from increasing

by more than 1+ε factor

This was known before,
implicit in Baker’s work.

For planar graphs, do
breadth-first search, p-

color the levels, and delete
the cheapest level.

2. Contract edges of total
cost at most 1/p times total

1. Delete some edges while
keeping OPT from increasing

by more than 1+ε factor

Framework for approximation schemes for planar graphs
[Klein, 2005]

Ensure total cost of resulting graph is O(OPT)

2. Delete edges of total cost
at most 1/p times total

Ensure resulting graph has branchwidth O(p)
3. Find (near-)optimal solution in low-branchwidth graph

1. Contract some edges while
keeping OPT from increasing

by more than 1+ε factor

This was known before,
implicit in Baker’s work.

For planar graphs, do
breadth-first search, p-

color the levels, and delete
the cheapest level.

2. Contract edges of total
cost at most 1/p times total

1. Delete some edges while
keeping OPT from increasing

by more than 1+ε factor

Framework for approximation schemes for planar graphs
[Klein, 2005]

Ensure total cost of resulting graph is O(OPT)

2. Delete edges of total cost
at most 1/p times total

Ensure resulting graph has branchwidth O(p)
3. Find (near-)optimal solution in low-branchwidth graph

1. Contract some edges while
keeping OPT from increasing

by more than 1+ε factor

This was known before,
implicit in Baker’s work.

For planar graphs, do
breadth-first search, p-

color the levels, and delete
the cheapest level.

2. Contract edges of total
cost at most 1/p times total

1. Delete some edges while
keeping OPT from increasing

by more than 1+ε factor

Framework for approximation schemes for planar graphs
[Klein, 2005]

Ensure total cost of resulting graph is O(OPT)

2. Contract edges of total
cost at most 1/p times total

2. Delete edges of total cost
at most 1/p times total

Ensure resulting graph has branchwidth O(p)
3. Find (near-)optimal solution in low-branchwidth graph

1. Contract some edges while
keeping OPT from increasing

by more than 1+ε factor

This was known before,
implicit in Baker’s work.

For planar graphs, do
breadth-first search, p-

color the levels, and delete
the cheapest level.

2. Contract edges of total
cost at most 1/p times total

1. Delete some edges while
keeping OPT from increasing

by more than 1+ε factor

Framework for approximation schemes for planar graphs
[Klein, 2005]

Ensure total cost of resulting graph is O(OPT)

2. Contract edges of total
cost at most 1/p times total

2. Delete edges of total cost
at most 1/p times total

Ensure resulting graph has branchwidth O(p)
3. Find (near-)optimal solution in low-branchwidth graph

1. Contract some edges while
keeping OPT from increasing

by more than 1+ε factor

This was known before,
implicit in Baker’s work.

For planar graphs, do
breadth-first search, p-

color the levels, and delete
the cheapest level.

This is just deleting in the
planar dual. (In next talk,
same idea in larger graph

classes.)

Key step for most problems: “spanner” construction
1. Delete some edges while

keeping OPT from increasing
by more than 1+ε factor

Ensure total cost of resulting graph is O(OPT)

1. Contract some edges while
keeping OPT from increasing

by more than 1+ε factor

Key step for most problems: “spanner” construction
1. Delete some edges while

keeping OPT from increasing
by more than 1+ε factor

Ensure total cost of resulting graph is O(OPT)

1. Contract some edges while
keeping OPT from increasing

by more than 1+ε factor

Traveling salesman problem:
How to ensure that the resulting graph approximately preserves OPT?

Key step for most problems: “spanner” construction
1. Delete some edges while

keeping OPT from increasing
by more than 1+ε factor

Ensure total cost of resulting graph is O(OPT)

1. Contract some edges while
keeping OPT from increasing

by more than 1+ε factor

Traveling salesman problem:
How to ensure that the resulting graph approximately preserves OPT?

Key step for most problems: “spanner” construction
1. Delete some edges while

keeping OPT from increasing
by more than 1+ε factor

Ensure total cost of resulting graph is O(OPT)

1. Contract some edges while
keeping OPT from increasing

by more than 1+ε factor

Traveling salesman problem:
How to ensure that the resulting graph approximately preserves OPT?

Key step for most problems: “spanner” construction
1. Delete some edges while

keeping OPT from increasing
by more than 1+ε factor

Ensure total cost of resulting graph is O(OPT)

1. Contract some edges while
keeping OPT from increasing

by more than 1+ε factor

Traveling salesman problem:
How to ensure that the resulting graph approximately preserves OPT?

Consider optimal tour. Replace each edge by a 1+ε-approximate
shortest path. Resulting tour is 1+ε-approximate.

Key step for most problems: “spanner” construction
1. Delete some edges while

keeping OPT from increasing
by more than 1+ε factor

Ensure total cost of resulting graph is O(OPT)

1. Contract some edges while
keeping OPT from increasing

by more than 1+ε factor

Traveling salesman problem:
How to ensure that the resulting graph approximately preserves OPT?

Consider optimal tour. Replace each edge by a 1+ε-approximate
shortest path. Resulting tour is 1+ε-approximate.

Therefore: it suffices to select a subset of edges that
approximately preserves vertex-to-vertex distances.

Selecting a low-weight subset of edges that approximately
preserves vertex-to-vertex distances

O(n2) time [Althoffer, Das, Dobkin, Joseph, Soares, 1993], linear time [Klein, 2005]

Step 1: Let T be the minimum-weight spanning tree.
Include it in the spanner.

Just achieving finite distances requires a spanning tree.
To keep weight low, start with minimum-weight spanning tree (MST).
Will choose additional edges of total weight ≤ (2/ε) weight(MST).

Step 2: Cut along T, duplicating edges and vertices.

Step 3: Consider resulting face as infinite face.

Selecting a low-weight subset of edges that approximately
preserves vertex-to-vertex distances

O(n2) time [Althoffer, Das, Dobkin, Joseph, Soares, 1993], linear time [Klein, 2005]

Step 1: Let T be the minimum-weight spanning tree.
Include it in the spanner.

Just achieving finite distances requires a spanning tree.
To keep weight low, start with minimum-weight spanning tree (MST).
Will choose additional edges of total weight ≤ (2/ε) weight(MST).

Step 2: Cut along T, duplicating edges and vertices.

Step 3: Consider resulting face as infinite face.

Selecting a low-weight subset of edges that approximately
preserves vertex-to-vertex distances

O(n2) time [Althoffer, Das, Dobkin, Joseph, Soares, 1993], linear time [Klein, 2005]

Step 1: Let T be the minimum-weight spanning tree.
Include it in the spanner.

Just achieving finite distances requires a spanning tree.
To keep weight low, start with minimum-weight spanning tree (MST).
Will choose additional edges of total weight ≤ (2/ε) weight(MST).

Step 2: Cut along T, duplicating edges and vertices.

Step 3: Consider resulting face as infinite face.

Selecting a low-weight subset of edges that approximately
preserves vertex-to-vertex distances

O(n2) time [Althoffer, Das, Dobkin, Joseph, Soares, 1993], linear time [Klein, 2005]

Step 1: Let T be the minimum-weight spanning tree.
Include it in the spanner.

Just achieving finite distances requires a spanning tree.
To keep weight low, start with minimum-weight spanning tree (MST).
Will choose additional edges of total weight ≤ (2/ε) weight(MST).

Step 2: Cut along T, duplicating edges and vertices.

Step 3: Consider resulting face as infinite face.

Selecting a low-weight subset of edges that approximately
preserves vertex-to-vertex distances

O(n2) time [Althoffer, Das, Dobkin, Joseph, Soares, 1993], linear time [Klein, 2005]

Step 1: Let T be the minimum-weight spanning tree.
Include it in the spanner.

Just achieving finite distances requires a spanning tree.
To keep weight low, start with minimum-weight spanning tree (MST).
Will choose additional edges of total weight ≤ (2/ε) weight(MST).

Step 2: Cut along T, duplicating edges and vertices.

Step 3: Consider resulting face as infinite face.

Step 4: Consider nontree edges in order.
For each such edge uv, if

(1+ε) weight(uv) ≤ weight of corresponding boundary subpath
then add uv to spanner and chop along uv

For each edge uv added to spanner, boundary weight goes down by at least
ε weight(uv)

Therefore, total weight added to spanner is at most
 ε-1 ⋅ decrease in boundary weight

Initial boundary weight is 2 weight(MST), so total weight added to spanner is
 2 ε-1 weight(MST)

Step 4: Consider nontree edges in order.
For each such edge uv, if

(1+ε) weight(uv) ≤ weight of corresponding boundary subpath
then add uv to spanner and chop along uv

For each edge uv added to spanner, boundary weight goes down by at least
ε weight(uv)

Therefore, total weight added to spanner is at most
 ε-1 ⋅ decrease in boundary weight

Initial boundary weight is 2 weight(MST), so total weight added to spanner is
 2 ε-1 weight(MST)

Step 4: Consider nontree edges in order.
For each such edge uv, if

(1+ε) weight(uv) ≤ weight of corresponding boundary subpath
then add uv to spanner and chop along uv

For each edge uv added to spanner, boundary weight goes down by at least
ε weight(uv)

Therefore, total weight added to spanner is at most
 ε-1 ⋅ decrease in boundary weight

Initial boundary weight is 2 weight(MST), so total weight added to spanner is
 2 ε-1 weight(MST)

Step 4: Consider nontree edges in order.
For each such edge uv, if

(1+ε) weight(uv) ≤ weight of corresponding boundary subpath
then add uv to spanner and chop along uv

For each edge uv added to spanner, boundary weight goes down by at least
ε weight(uv)

Therefore, total weight added to spanner is at most
 ε-1 ⋅ decrease in boundary weight

Initial boundary weight is 2 weight(MST), so total weight added to spanner is
 2 ε-1 weight(MST)

Step 4: Consider nontree edges in order.
For each such edge uv, if

(1+ε) weight(uv) ≤ weight of corresponding boundary subpath
then add uv to spanner and chop along uv

For each edge uv added to spanner, boundary weight goes down by at least
ε weight(uv)

Therefore, total weight added to spanner is at most
 ε-1 ⋅ decrease in boundary weight

Initial boundary weight is 2 weight(MST), so total weight added to spanner is
 2 ε-1 weight(MST)

Step 4: Consider nontree edges in order.
For each such edge uv, if

(1+ε) weight(uv) ≤ weight of corresponding boundary subpath
then add uv to spanner and chop along uv

For each edge uv added to spanner, boundary weight goes down by at least
ε weight(uv)

Therefore, total weight added to spanner is at most
 ε-1 ⋅ decrease in boundary weight

Initial boundary weight is 2 weight(MST), so total weight added to spanner is
 2 ε-1 weight(MST)

Step 4: Consider nontree edges in order.
For each such edge uv, if

(1+ε) weight(uv) ≤ weight of corresponding boundary subpath
then add uv to spanner and chop along uv

For each edge uv added to spanner, boundary weight goes down by at least
ε weight(uv)

Therefore, total weight added to spanner is at most
 ε-1 ⋅ decrease in boundary weight

Initial boundary weight is 2 weight(MST), so total weight added to spanner is
 2 ε-1 weight(MST)

Step 4: Consider nontree edges in order.
For each such edge uv, if

(1+ε) weight(uv) ≤ weight of corresponding boundary subpath
then add uv to spanner and chop along uv

For each edge uv added to spanner, boundary weight goes down by at least
ε weight(uv)

Therefore, total weight added to spanner is at most
 ε-1 ⋅ decrease in boundary weight

Initial boundary weight is 2 weight(MST), so total weight added to spanner is
 2 ε-1 weight(MST)

Step 4: Consider nontree edges in order.
For each such edge uv, if

(1+ε) weight(uv) ≤ weight of corresponding boundary subpath
then add uv to spanner and chop along uv

For each edge uv added to spanner, boundary weight goes down by at least
ε weight(uv)

Therefore, total weight added to spanner is at most
 ε-1 ⋅ decrease in boundary weight

Initial boundary weight is 2 weight(MST), so total weight added to spanner is
 2 ε-1 weight(MST)

Step 4: Consider nontree edges in order.
For each such edge uv, if

(1+ε) weight(uv) ≤ weight of corresponding boundary subpath
then add uv to spanner and chop along uv

For each edge uv added to spanner, boundary weight goes down by at least
ε weight(uv)

Therefore, total weight added to spanner is at most
 ε-1 ⋅ decrease in boundary weight

Initial boundary weight is 2 weight(MST), so total weight added to spanner is
 2 ε-1 weight(MST)

Step 4: Consider nontree edges in order.
For each such edge uv, if

(1+ε) weight(uv) ≤ weight of corresponding boundary subpath
then add uv to spanner and chop along uv

For each edge uv added to spanner, boundary weight goes down by at least
ε weight(uv)

Therefore, total weight added to spanner is at most
 ε-1 ⋅ decrease in boundary weight

Initial boundary weight is 2 weight(MST), so total weight added to spanner is
 2 ε-1 weight(MST)

Step 4: Consider nontree edges in order.
For each such edge uv, if

(1+ε) weight(uv) ≤ weight of corresponding boundary subpath
then add uv to spanner and chop along uv

For each edge uv added to spanner, boundary weight goes down by at least
ε weight(uv)

Therefore, total weight added to spanner is at most
 ε-1 ⋅ decrease in boundary weight

Initial boundary weight is 2 weight(MST), so total weight added to spanner is
 2 ε-1 weight(MST)

Step 4: Consider nontree edges in order.
For each such edge uv, if

(1+ε) weight(uv) ≤ weight of corresponding boundary subpath
then add uv to spanner and chop along uv

For each edge uv added to spanner, boundary weight goes down by at least
ε weight(uv)

Therefore, total weight added to spanner is at most
 ε-1 ⋅ decrease in boundary weight

Initial boundary weight is 2 weight(MST), so total weight added to spanner is
 2 ε-1 weight(MST)

Step 4: Consider nontree edges in order.
For each such edge uv, if

(1+ε) weight(uv) ≤ weight of corresponding boundary subpath
then add uv to spanner and chop along uv

For each edge uv added to spanner, boundary weight goes down by at least
ε weight(uv)

Therefore, total weight added to spanner is at most
 ε-1 ⋅ decrease in boundary weight

Initial boundary weight is 2 weight(MST), so total weight added to spanner is
 2 ε-1 weight(MST)

Theorem: for any undirected planar graph G with edge-weights,
 ∃ subgraph of cost ≤ 2(ε-1+1) × min spanning tree cost

 such that, ∀u,v∊V,
 u-to-v distance in subgraph ≤ (1 + ε) u-to-v distance in G

Corollary: There is a linear-time approximation scheme for
traveling salesman in planar graphs.

In framework for approximation scheme, choose p = ε / 2(ε-1+1) so
increase in cost is at most ε OPT

Theorem: for any undirected planar graph G with edge-weights,
 ∃ subgraph of cost ≤ 2(ε-1+1) × min spanning tree cost

 such that, ∀u,v∊V,
 u-to-v distance in subgraph ≤ (1 + ε) u-to-v distance in G

Corollary: There is a linear-time approximation scheme for
traveling salesman in planar graphs.

In framework for approximation scheme, choose p = ε / 2(ε-1+1) so
increase in cost is at most ε OPT

Theorem: for any undirected planar graph G with edge-weights,
 ∃ subgraph of cost ≤ 2(ε-1+1) × min spanning tree cost

 such that, ∀u,v∊V,
 u-to-v distance in subgraph ≤ (1 + ε) u-to-v distance in G

Corollary: There is a linear-time approximation scheme for
traveling salesman in planar graphs.

In framework for approximation scheme, choose p = ε / 2(ε-1+1) so
increase in cost is at most ε OPT

Theorem: for any undirected planar graph G with edge-weights,
 ∃ subgraph of cost ≤ 2(ε-1+1) × min spanning tree cost

 such that, ∀u,v∊V,
 u-to-v distance in subgraph ≤ (1 + ε) u-to-v distance in G

Corollary: There is a linear-time approximation scheme for
traveling salesman in planar graphs.

In framework for approximation scheme, choose p = ε / 2(ε-1+1) so
increase in cost is at most ε OPT

Theorem: for any undirected planar graph G with edge-weights,
 ∃ subgraph of cost ≤ 2(ε-1+1) × min spanning tree cost

 such that, ∀u,v∊V,
 u-to-v distance in subgraph ≤ (1 + ε) u-to-v distance in G

Corollary: There is a linear-time approximation scheme for
traveling salesman in planar graphs.

In framework for approximation scheme, choose p = ε / 2(ε-1+1) so
increase in cost is at most ε OPT

But we want to address...
Traveling salesman on

a subset of vertices

Theorem: for any undirected planar graph G with edge-weights,
 ∃ subgraph of cost ≤ 2(ε-1+1) × min spanning tree cost

 such that, ∀u,v∊V,
 u-to-v distance in subgraph ≤ (1 + ε) u-to-v distance in G

Corollary: There is a linear-time approximation scheme for
traveling salesman in planar graphs.

In framework for approximation scheme, choose p = ε / 2(ε-1+1) so
increase in cost is at most ε OPT

But we want to address...

Need a more
general spanner

result

Traveling salesman on
a subset of vertices

Theorem: for any undirected planar graph G with edge-weights,
and any given subset S of vertices,

∃ subgraph of weight ≤ f(ε)× min Steiner tree weight such that,
∀u,v∊S,

 u-to-v distance in subgraph ≤ (1+ε) u-to-v distance in G

We need a subgraph that
approximately preserves
distances between vertices of
the subset.

Minimum weight to just preserve connectivity?
weight of minimum Steiner tree spanning the subset.

Traveling salesman on a
subset of vertices

Theorem: for any undirected planar graph G with edge-weights,
and any given subset S of vertices,

∃ subgraph of weight ≤ f(ε)× min Steiner tree weight such that,
∀u,v∊S,

 u-to-v distance in subgraph ≤ (1+ε) u-to-v distance in G

We need a subgraph that
approximately preserves
distances between vertices of
the subset.

Minimum weight to just preserve connectivity?
weight of minimum Steiner tree spanning the subset.

Traveling salesman on a
subset of vertices

Theorem: for any undirected planar graph G with edge-weights,
and any given subset S of vertices,

∃ subgraph of weight ≤ f(ε)× min Steiner tree weight such that,
∀u,v∊S,

 u-to-v distance in subgraph ≤ (1+ε) u-to-v distance in G

We need a subgraph that
approximately preserves
distances between vertices of
the subset.

Minimum weight to just preserve connectivity?
weight of minimum Steiner tree spanning the subset.

Traveling salesman on a
subset of vertices

Theorem: for any undirected planar graph G with edge-weights,
and any given subset S of vertices,

∃ subgraph of weight ≤ f(ε)× min Steiner tree weight such that,
∀u,v∊S,

 u-to-v distance in subgraph ≤ (1+ε) u-to-v distance in G

We need a subgraph that
approximately preserves
distances between vertices of
the subset.

Minimum weight to just preserve connectivity?
weight of minimum Steiner tree spanning the subset.

Traveling salesman on a
subset of vertices

Given subset S of vertices, we
need a subgraph that
approximately preserves
Steiner tree weight.

Given subset S of vertices, we
need a subgraph that
approximately preserves
Steiner tree weight.

Steiner tree

Theorem: for any undirected planar graph G with edge-weights,
and any given subset S of vertices,

 ∃ subgraph of cost ≤ f(ε)× min Steiner tree cost such that
min Steiner tree cost in subgraph ≤ (1+ε) min Steiner tree cost in G

Tool for Step 1: Brick Decomposition

T:= 2-approx.
Steiner tree

M := subgraph
containing T

Bricks := faces
of M

Connect each brick to copy of M using c(ε) portal edges
TSP Structure Theorem: There is a 1+ ε-approx. tour that uses

portal edges to go between bricks.

Tool for Step 1: Brick Decomposition

T:= 2-approx.
Steiner tree

M := subgraph
containing T

Bricks := faces
of M

Connect each brick to copy of M using c(ε) portal edges
TSP Structure Theorem: There is a 1+ ε-approx. tour that uses

portal edges to go between bricks.

Tool for Step 1: Brick Decomposition

T:= 2-approx.
Steiner tree

M := subgraph
containing T

Bricks := faces
of M

Connect each brick to copy of M using c(ε) portal edges
TSP Structure Theorem: There is a 1+ ε-approx. tour that uses

portal edges to go between bricks.

Tool for Step 1: Brick Decomposition

T:= 2-approx.
Steiner tree

M := subgraph
containing T

Bricks := faces
of M

Connect each brick to copy of M using c(ε) portal edges
TSP Structure Theorem: There is a 1+ ε-approx. tour that uses

portal edges to go between bricks.

Tool for Step 1: Brick Decomposition

T:= 2-approx.
Steiner tree

M := subgraph
containing T

Bricks := faces
of M

Connect each brick to copy of M using c(ε) portal edges
TSP Structure Theorem: There is a 1+ ε-approx. tour that uses

portal edges to go between bricks.

Tool for Step 1: Brick Decomposition

T:= 2-approx.
Steiner tree

M := subgraph
containing T

Bricks := faces
of M

Connect each brick to copy of M using c(ε) portal edges
TSP Structure Theorem: There is a 1+ ε-approx. tour that uses

portal edges to go between bricks.

Tool for Step 1: Brick Decomposition

T:= 2-approx.
Steiner tree

M := subgraph
containing T

Bricks := faces
of M

Connect each brick to copy of M using c(ε) portal edges
TSP Structure Theorem: There is a 1+ ε-approx. tour that uses

portal edges to go between bricks.

Tool for Step 1: Brick Decomposition

T:= 2-approx.
Steiner tree

M := subgraph
containing T

Bricks := faces
of M

Connect each brick to copy of M using c(ε) portal edges
TSP Structure Theorem: There is a 1+ ε-approx. tour that uses

portal edges to go between bricks.

TSP Structure Theorem: There is a 1+ ε-approx. tour that uses
portal edges to go between bricks.

TSP Spanner construction:
Include M and, for each brick
B, all portal-to-portal shortest-

paths within B.

Steiner Structure Theorem: There is a 1+ ε-approx. Steiner
tree that uses portal edges to go between bricks.

Steiner Spanner construction: Include M and, for each brick B,
for each subset of portal ends, the min Steiner tree within B.

TSP Structure Theorem: There is a 1+ ε-approx. tour that uses
portal edges to go between bricks.

TSP Spanner construction:
Include M and, for each brick
B, all portal-to-portal shortest-

paths within B.

Steiner Structure Theorem: There is a 1+ ε-approx. Steiner
tree that uses portal edges to go between bricks.

Steiner Spanner construction: Include M and, for each brick B,
for each subset of portal ends, the min Steiner tree within B.

TSP Structure Theorem: There is a 1+ ε-approx. tour that uses
portal edges to go between bricks.

TSP Spanner construction:
Include M and, for each brick
B, all portal-to-portal shortest-

paths within B.

Steiner Structure Theorem: There is a 1+ ε-approx. Steiner
tree that uses portal edges to go between bricks.

Steiner Spanner construction: Include M and, for each brick B,
for each subset of portal ends, the min Steiner tree within B.

Remarks about spanner methodology
• Brick-decomposition construction takes O(n log n) time.

• There’s a way to use brick decompositions that avoid some of
the overhead of the spanner methodology, leads to better
dependence on ε.

• Brick decomposition can start with any connected subgraph,
not just tree.

• To cope with disconnected subgraphs, prize-collecting
clustering (MohammadTaghi’s talk) has become an essential
technique.

Steiner-tree approximation scheme has been implemented!
(Constants tweaked to get a fast algorithm that gets very

good solutions.)
 [Tazari, Müller-Hannemann, 2009]

https://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/M=uuml=ller=Hannemann:Matthias.html
https://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/M=uuml=ller=Hannemann:Matthias.html

Open problems
Lots! We’re just gaining steam.

Will need new techniques for these problems....
• Facility location problems
• Vehicle routing problems
• k-tree
• vertex-weighted Steiner tree
• directed Steiner tree
• two-edge connected Steiner
• two-vertex-connected Steiner

Open problems
Lots! We’re just gaining steam.

Will need new techniques for these problems....
• Facility location problems
• Vehicle routing problems
• k-tree
• vertex-weighted Steiner tree
• directed Steiner tree
• two-edge connected Steiner
• two-vertex-connected Steiner

Advertisements:
I’m writing a book about (some) optimization algorithms
for planar graphs. Email me if you want to receive a draft.

Also, we are working to develop a library of reference
implementations of planar-graph algorithms.

