Approximation Schemes
for Optimization Problems
in Planar Graphs

Philip Klein
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[Harris and Ross, The RAND Corporation, 1955, declassified 1999]
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Research Goal:
Exploiting planarity to achieve
e faster algorithms "
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Research Goal:
Exploiting planarity to achieve
e faster algorithms
® more accurate approximations

Faster algorithms More accurate approximations
e Shortest paths * Traveling salesman
e Maximum flow e Steiner tree

e Multiterminal cut

Combining the two thrusts, get fast and
accurate approximation algorithms.



Example of faster algorithm:
Multiple-source shortest paths (MSSP)

Computes shortest-path tree rooted at each boundary node in turn.
Total time required: O(n log n)
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Example of faster algorithm:
Multiple-source shortest paths (MSSP)

Computes shortest-path tree rooted at each boundary node in turn.
Total time required: O(n log n)

This algorithm has turned out to have many uses----including the
approximation algorithms we will discuss.



Approximation schemes for NP-hard optimization

Greatest hits of the 70's, 80, and 90

problems 1n planar graphs:

1977 | Lipton, Tarjan maximum independent set O(n log n)
max independent set, partition into triangles,
Ldsls Daker min vertex-cover, min dominating set.... O(n)
Grigni,

1995 | Koutsoupias, Traveling salesman in unweighted graphs nO/e)
Papadimitriou
Arora, Grigni,

1998 | Karger, Klein, Traveling salesman in graphs with weights nO/e’)

Woloszyn
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Approximation schemes for NP-hard optimization

Greatest hits of the 70's, 80, and 90

problems 1n planar graphs:

1977 | Lipton, Tarjan maximum independent set O(n log n)
max independent set, partition into triangles,
adic S min vertex-cover, min dominating set.... O(n)
Grigni,

1995 | Koutsoupias, Traveling salesman in unweighted graphs Q1)
Papadimitriou
Arora, Grigni,

1998 | Karger, Klein, Traveling salesman in graphs with weights nOe’)

Woloszyn

Definition: An approximation scheme 1s efficient 1f running time
1s a polynomial whose degree 1s fixed independent of &

For the 00’s: give efficient approximation scheme for TSP,
address greater variety of traditional optimization problems.




Question: Is there an efficient approximation scheme for
traveling salesman?

Theorem [Klein, 2005]: There 1s a linear-time approximation scheme
for the traveling-salesman problem in planar graphs with weights

The framework 1ntroduced by this paper has since been used to
address many other problems....




Use of new framework for approximation schemes for

| planar graphs
e Traveling salesman [Klein, 2005]

e Traveling salesman on subset of vertices [Klein, 2006]
e 2-edge-connected spanning subgraph
[Berger, Grigni, 2007]
e Steiner tree [Borradaile, Klein, Mathieu, 2008]
e 2-edge-connected Steiner multisubgraph
[Borradaile, Klein, 2008]
e Steiner forest [Bateni, Hajiaghayi, Marx, 2010]

speed-up [Eisenstat et al., new]
 Prize-collecting Steiner tree, TSP, stroll
[Bateni, Chekuri, Ene, Hajiaghayi, Korula, Marx, 2011]
e Multiterminal cut [Bateni, Hajiaghayi, K., Mathieu, unpublished]
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Planar duality

-
Ly sy =y |

For each connected planar embedded graph, the dual 1s another
connected planar embedded graph:

*Dual has a vertex for each face of the primal (the original graph)
*Dual has an edge for each edge of the primal.



One key 1dea for framework

Deletion and contraction™® are dual to each other
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Deletion of a (non-self-loop) edge in the primal
corresponds to contraction in the dual
and vice versa
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Framework for approximation schemes for planar graphs
|Klein, 2005]

1. Delete some edges while
keeping OPT from increasing
by more than 1+¢€ factor

Ensure total cost of resulting graph 1s O(OPT)

2. Contract edges of total
cost at most 1/p times total

Ensure resulting graph has branchwidth O(p)

3. Find (near-)optimal solution in low-branchwidth graph

4. Laft solution to original graph,
increasing cost by 1/p x O(OPT)
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Framework for approximation schemes for planar graphs
|Klein, 2005]

1. Delete some edges while
keeping OPT from increasing
by more than 1+¢€ factor

1. Contract some edges while
keeping OPT from increasing
by more than 1+¢€ factor

Ensure total cost of resulting graph 1s O(OPT)

2. Contract edges of total
cost at most 1/p times total

2. Delete edges of total cost
at most 1/p times total

Ensure resulting graph has branchwidth O(p)

3. Find (near-)optimal solution in low-branchwidth graph

4. Laft solution to original graph,
increasing cost by 1/p x O(OPT)

Choose p big enough so increase 1s < € OPT
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2. Contract edges of total 2. Delete edges of total cost
cost at most 1/p times total at most 1/p times total

This was known before,
implicit in Baker’s work.
For planar graphs, do
breadth-first search, p-
color the levels, and delete

the cheapest level.

This 1s just deleting 1n the
planar dual. (In next talk,
same 1dea 1n larger graph

classes.) J
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Key step for most problems: “spanner’” construction

1. Delete some edges while
keeping OPT from increasing

by more than 1+¢ factor
Ensure total cost of resulting graph 1s O(OPT)

Traveling salesman problem:

How to ensure that the resulting graph approximately preserves OPT?

£y A AR - > A g

Consider optimal tour. Replace each edge by a 1+g-approximate

shortest path. Resulting tour 1s 1+&-approximate.

Therefore: it suffices to select a subset of edges that
approximately preserves vertex-to-vertex distances.



Selecting a low-weight subset of edges that approximately

preserves vertex-to-vertex distances

O(n?) time [Althoffer, Das, Dobkin, Joseph, Soares, 1993], linear time [Klein, 2005]

Just ac!
kee;

1 choose additional edges of total weight < (2/¢) weight(MST).

Step 1: Let 7 be the minimum-weight spanning tree.
Include 1t 1n the spanner.

To |

Wil

nieving finite distances requires a spanning tree.

0 weight low, start with minimum-weight spanning tree (MST).

Step 2: Cut along T, duplicating edges and vertices.

Step 3: Consider resulting face as infinite face.




Selecting a low-weight subset of edges that approximately

preserves vertex-to-vertex distances

O(n?) time [Althoffer, Das, Dobkin, Joseph, Soares, 1993], linear time [Klein, 2005]
Just achieving finite distances requires a spanning tree.
To keep weight low, start with minimum-weight spanning tree (MST).

Will choose additional edges of total weight < (2/¢) weight(MST).
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Step 4: Consider nontree edges in order.
For each such edge uv, if

(1+¢e) weight(uv) < weight of corresponding boundary subpath
then add uv to spanner and chop along uv

For each edge uv added to spanner, boundary weight goes down by at least
e weight(uv)
Therefore, total weight added to spanner 1s at most
¢! - decrease in boundary weight

Initial boundary weight 1s 2 weight(MST), so total weight added to spanner 1s
2 &t weight(MST)
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Step 4: Consider nontree edges in order.
For each such edge uv, if

(1+¢e) weight(uv) < weight of corresponding boundary subpath
then add uv to spanner and chop along uv

For each edge uv added to spanner, boundary weight goes down by at least
e weight(uv)
Therefore, total weight added to spanner 1s at most
¢! - decrease in boundary weight

Initial boundary weight 1s 2 weight(MST), so total weight added to spanner 1s
2 &t weight(MST)



Theorem: for any undirected planar graph G with edge-weights,

J subgraph of cost <2(e 1+ 1) x min spanning tree cost
such that, Vu,vel,

u-to-v distance in subgraph < (1 + &) u-to-v distance in G

In framework for approximation scheme, choose p =€ /2(e"1+1) so
increase in cost is at most € OPT

Corollary: There 1s a linear-time approximation scheme for
traveling salesman in planar graphs.
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traveling salesman in planar graphs.

Corollary: There 1s a linear-time approximation scheme for
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Minimum weight to just preserve connectivity?
welght of minimum Steiner tree spanning the subset.

Theorem: for any undirected planar graph G with edge-weights,
and any given subset S of vertices,
1 subgraph of weight < f(€)x min Steiner tree weight such that,
Yu,ves,
u-to-v distance in subgraph < (1+¢€) u-to-v distance in G
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Traveling salesman on a
subset of vertices

e need a subgraph that
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Minimum weight to just preserve connectivity?
welght of minimum Steiner tree spanning the subset.

Theorem: for any undirected planar graph G with edge-weights,
and any given subset S of vertices,
1 subgraph of weight < f(€)x min Steiner tree weight such that,
Yu,ves,
u-to-v distance in subgraph < (1+¢€) u-to-v distance in G
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Steiner tree

G1ven subset S of vertices, we
need a subgraph that
approximately preserves
Steiner tree weight.

Theorem: for any undirected planar graph G with edge-weights,
and any given subset § of vertices,
1 subgraph of cost < f(€)x min Steiner tree cost such that
min Steiner tree cost in subgraph < (1+€) min Steiner tree cost in G




Tool for Step 1: Brick Decomposition
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Bricks := faces %%Q %&% %7 Z@iﬁ %IW

of M '% '.% é&% ﬁ&%

Connect each brick to copy of M using c(¢) portal edges

TSP Structure Theorem: There 1s a 1+ g-approx. tour that uses
portal edges to go between bricks.
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portal edges to go between bricks.
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TSP Spanner construction: % . LM %%Z %%@

Include M and, for each brick =X ,&}é m— —
B, all portal-to-portal shortest- 2 | LD é& ﬁ@%@

paths within B. @2@ %@Q% %7 Z@? @N
i 0

Steiner Structure Theorem: There 1s a 1+ g-approx. Steiner
tree that uses portal edges to go between bricks.

Steiner Spanner construction: Include M and, for each brick B,
for each subset of portal ends, the min Steiner tree within B.

A



TSP Structure Theorem: There 1s a 1+ g-approx. tour that uses

portal edges to go between bricks.

1 — ] I 1
TSP Spanner construction: % . LM %@Z %@

Include M and, for each brick =X f&ﬁé m— —
B, all portal-to-portal shortest- 2 | LD é& ﬁ@%@

paths within B. %%Q @%@% %7

=
g e




TSP Structure Theorem: There 1s a 1+ g-approx. tour that uses

portal edges to go between bricks.

A
TSP Spanner construction: % . LM %%Z %%@

Include M and, for each brick =X ,&}é m— —
B, all portal-to-portal shortest- 2 | LD é& ﬁ@%@

paths within B. @2@ %@Q% %7 Z@? @N
i 0

Steiner Structure Theorem: There 1s a 1+ g-approx. Steiner
tree that uses portal edges to go between bricks.

Steiner Spanner construction: Include M and, for each brick B,
for each subset of portal ends, the min Steiner tree within B.

A



Remarks about spanner methodology

e Brick-decomposition construction takes O(n log n) time.

e There’s a way to use brick decompositions that avoid some of
the overhead of the spanner methodology, leads to better
dependence on ¢.

Steiner-tree approximation scheme has been implemented!
(Constants tweaked to get a fast algorithm that gets very
good solutions.)

| Tazar1, Miuller-Hannemann, 2009]

e Brick decomposition can start with any connected subgraph,
not just tree.

e To cope with disconnected subgraphs, prize-collecting
clustering (MohammadTaghi1’s talk) has become an essential

technique.


https://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/M=uuml=ller=Hannemann:Matthias.html
https://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/M=uuml=ller=Hannemann:Matthias.html

Open problems

Lots! We’re just gaining steam.
Will need new techniques for these problems....

e Facility location problems

e Vehicle routing problems

* f-tree

e vertex-weighted Steiner tree
e directed Steiner tree

e two-edge connected Steiner

e two-vertex-connected Steiner
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Advertisements:

[’m writing a book about (some) optimization algorithms
for planar graphs. Email me if you want to receive a draft.

Also, we are working to develop a library of reference
implementations of planar-graph algorithms.




