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The ”geometric” definitions of LDC’s and LCC’s, that is, the definitions that use matchings,
extend to any field.

Definition 9.1. An r-LDC over Rk is a list of vectors v1, . . . ,vn ∈ Rk such that ∀i ∈ [k],
there is a matching M i = {T i1, . . . , T imi}, where ∀j ∈ [mi], T

i
j ⊆ [n], |T ij | = r and mi ≥ δn

r
,

such that ∀T ij ∈M i, ei ∈ span{vg|g ∈ T ij}.

Definition 9.2. An r-LCC over Rk is a list of vectors v1, . . . ,vn ∈ Rk such that ∀i ∈ [n],
there is a matching M i = {T i1, . . . , T imi}, where ∀j ∈ [mi], T

i
j ⊆ [n], |T ij | = r and mi ≥ δn

r
,

such that ∀T ij ∈M i,vi ∈ span{vg|g ∈ T ij}.

The main questions we will be interested in this lecture are what constructions and lower
bounds generalize to infinite fields, and whether it is easier or harder to construct codes
over R and C than over finite fields.

Here we discuss the known constructions. Firstly, notice that 2-query Hadamard Locally
Decodable Code works over any field, because we can take {v1, . . . ,vn}, where ∀i ∈ [n],vi ∈
{0, 1}k ⊆ Rk, and decoding works exactly the same way as before. Matching Vector codes
work as LDC’s over any field, finite or not, that has an element ωm of order m, where the
Matching Vector family used is over Zm. For instance, we can take C with ωm = e

2πi
m .

Note that this can also work in R using twice as many queries by taking ωm = e
−2π
2m which

has order 2m since e−2π = 1i = 1.

When it comes to LCC’s, Hadamard and Reed-Muller do not work, and actually no non-
trivial LCC over R or C with o(n) queries is known.

Conjecture 9.1. There are no constant query Locally Correctable Codes over R or C.

This conjecture is known to be true for 2–query Locally Correctable Codes.

Theorem 9.1. [BDWY11] Suppose v1, . . . ,vn ∈ Ck are a 2-query Locally Correctable
Code with error δ. Then k = dim(span{v1, . . . ,vn}) ≤ poly(1

δ
).

This implies that for any constant δ > 0, there does not exist an infinite family of Locally
Correctable Codes with error δ over the complex numbers. We will prove this theorem for
the special case when there are no repetitions in the code, that is, no vi is a multiple of
some vj with i 6= j.
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Figure 1: Proof of the Sylvester-Gallai Theorem

Proof. The proof goes through an equivalent way of looking at 2-query LCC’s related to
the Sylvester-Gallai theorem from discrete geometry.

Sylvester-Gallai configurations

Theorem 9.2. (Sylvester-Gallai) Let v1, . . . ,vn ∈ Rk be n distinct points. Suppose that
∀i, j ∈ [n], i 6= j, the line through vi and vj contains at least one other point from the set.
Then all points must lie on a single line.

Proof. Suppose not all points are on a single line. For any i, j ∈ [n], i 6= j, denote by Li,j
the line that passes through vi and vj. Define α = mini,j,k,i 6=j{dist(Li,j,vk)|vk /∈ Li,j}.
Since we assume not all points are on the same line, we know that α is well defined and
α > 0. Let i, j, k be the indices that minimize α as above. Let vu ∈ Li,j and u 6= i, u 6= j.
We know such a point exists by assumption. At least two of the points vi,vj,vu lie on
the same side of the perpendicular projection of vk on Li,j (denote this projection by v′k).
Without loss of generality, suppose that vu and vj lie on the same side of v′k and vu is
closer to v′k than vj is (it is possible that vu coincides with v′k). But then vu is closer
to Lj,k than vk is to Li,j, which contradicts the minimality of α. This is because if v′u is
the perpendicular projection of vu on Lj,k, then vjvuv

′
u and vjvkv

′
k are similar triangles,
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contained in one another.

Suppose that v1, . . . ,vn ∈ Rk support some family F of linearly dependent triples. We
can find u1, . . . ,un ∈ Rk whose dimension is at least dim(span{v1, . . . ,vn})− 1 so that all
triples in F are collinear. We do this in the following way. Let H ⊆ Rk be a hyperplane
that does not pass through the origin but passes through the lines Ov1, . . . , Ovn, where
O is the origin. Then for each i ∈ [n], take ui = cvi for some c ∈ R such that ui ∈ H.
Then any previously linearly dependent triple now becomes collinear, because the three
points in question previously defined a plane that the origin lied on, and now this plane
is projected on H as a line. This means that if v1, . . . ,vn ∈ Rk are a 2-query LCC with
error δ, then there are vectors u1, . . . ,un ∈ Rk with the same matchings M1, . . . ,Mn as in
the 2-LCC such that in matching M i all pairs {uj,uk} are collinear with ui. Thus, from
now on we can work with u1, . . . ,un instead of v1, . . . ,vn.

This leads to the following generalization of the Sylvester-Gallai Theorem.

Definition 9.3. A δ-Sylvester-Gallai configuration is a set of n distinct points v1, . . . ,vn ∈
Rk such that ∀i ∈ [n], there exists a set Ji ⊆ [n]\{i} with |Ji| ≥ δ(n−1) such that ∀j ∈ Ji,
Li,j contains a third point from the set.

Theorem 9.3. [DSW14]

If v1, . . . ,vn ∈ Rk is a δ-Sylvester-Gallai configuration, then we have that dim(span{v1, . . . ,vn}) =
O(1

δ
).

Theorem 9.3 also holds over the complex number and in its form over Ck it immediately
implies Theorem 9.4 without repetitions. This is because if v1, . . . ,vn ∈ Ck define a 2-query
LCC with error δ, then there are vectors u1, . . . ,un ∈ Ck with dim(span{u1, . . . ,un}) ≥
dim(span{v1, . . . ,vn})−1 and such that ∀i ∈ [n],∃M i with |M i| ≥ δn

2
and ∀T ij = {uk,ul} ∈

M i, ui,uk, and ul are collinear. Then u1, . . . ,un form a δ-Sylvester-Gallai configuration,
so by Theorem 9.3 dim(span{u1, . . . ,un}) = O(1

δ
), which implies Theorem 9.4.

We will devote the rest of these notes to proving Theorem 9.3 over the real numbers.

Proof of Theorem 9.3. Given V = {v1, . . . ,vn} ⊆ Rk as in Theorem 9.3, we denote by
A the n × k matrix with rows v1, . . . ,vn. If vi,vj,vk are collinear, there are non-zero
coefficients a, b, c ∈ R such that avi + bvj + cvk = 0. Consider the row vector ω such
that ωi = a, ωj = b, ωk = c and ∀g ∈ [n] with g 6= i, g 6= j, g 6= k, ωg = 0. We have
that ωA = 0 (that is, ωA is a row vector of length k), because avi + bvj + cvk = 0. For
any collinear triple T = {i, j, k}, let ωT be the row vector of length n that corresponds
to avi + bvj + cvk = 0 as described above. Given a family T of collinear triples with
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|T | ≤
(bnc

3

)
, we define the dependency matrix of V with respect to T as the matrix MT

with |T | rows such that row T of MT , where T ∈ T , is ωT . Since as discussed above,
∀T ∈ T , ωTA = 0, then MTA = 0, that is, MTA is a |T | × k matrix in which all entries
are 0. This means that columns of A are in the kernel of MT . Hence, if rank(MT ) ≥ n−d,
then by the Rank-nullity theorem, dim(span{v1, . . . ,vn}) = rank(A) ≤ d.

The idea of the proof is as follows. We will pick a family T of collinear triples such that
M has high rank. We will require the following properties from T :

1. Each vi is in many (≥ δn) triples from T .

2. Every pair vi,vj is together in at most O(1) triples of T .

These properties imply that A is a design matrix.

Definition 9.4. An m× n matrix M is a (q, s, t)-design matrix if

1. Each row of A has at most q non-zero entries.

2. Each column of A has at least s non-zero entries.

3. The supports of any two columns intersect in at most t positions. That is, ∀j, j′ ∈
[n], j 6= j′, there are at most t values of i ∈ [m] such that Ai,jAi,j′ 6= 0.

Notice that if T satisfies the properties above, then MT is a (3, δn,O(1))-design matrix.
This is because by construction of MT , each row has exactly 3 non-zero entries; each
vi being in at least δn triples implies that each column of MT has at least δn non-zero
entries; every pair vi,vj being together in at most O(1) triples of T implies that for each
i, j ∈ [n], i 6= j, the number of indices k ∈ |T | such that Ak,i 6= 0 and Ak,j 6= 0 is O(1).

To finish the proof of Theorem 9.3, we use the following Theorem.

Theorem 9.4. [BDWY11] If M is an m× n (q, s, t)-design matrix over R or over C, then

rank(M) ≥ n−
(
qtn
2s

)2
.

This result was improved in [DSW14] to rank(M) ≥ n− q(q−1)tn
s

.

Since we have that MT is a (3, δn,O(1))-design matrix, we get from Theorem 9.4 that

rank(MT ) ≥ n−
(
3O(1)n
2δn

)2
= n−O( 1

δ2
). This implies that dim(span{v1, . . . ,vn}) ≤ O( 1

δ2
)

by the Rank-nullity theorem. Using the improved result from [DSW14], we get the tighter
bound dim(span{v1, . . . ,vn}) ≤ O(1

δ
) claimed in Theorem 9.3.

We still have to prove that a family T of collinear triples with the properties listed above
exists, and we will also prove Theorem 9.4.
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Proof of Theorem 9.4. We first consider a special case, which is easier to handle. Suppose
all non-zero entries of M are bounded as follows: ∀i, j such that Mi,j 6= 0, we have
1

100
≤ |Mi,j| ≤ 1. Geometrically, this corresponds to not having unbalanced collinear

triples vx,vy,vz in which, say, vx and vy are much closer to each other than each of them
is to vz. This is because the non-zero entries correspond to the coefficients in the linear
combinations between the collinear triples. Consider the n×n matrix B = MTM in which
Bi,j = 〈Ci, Cj〉, where Cj is the jth column of M . Notice that:

• ∀j ∈ [n], Bj,j = 〈Cj, Cj〉 ≥ Ω(s) because Cj has at least s non-zero entries and each
one has absolute value at least 1

100
.

• ∀i 6= j, |Bi,j| ≤ t because Ci and Cj intersect in at most t positions and each entry is
at most 1 in absolute value.

This means that B has large diagonal entries and small off-diagonal entries. We can think
of B as a scaled permutation of the identity matrix. Such matrices have high rank, as can
be seen from the following lemma.

Lemma 9.1. Let B be an n × n symmetric matrix such that ∀j ∈ [n], Bj,j ≥ L and

∀i, j ∈ [n], i 6= j, Bi,j ≤ c. Then rank(B) ≥ n− n2c
L2 .

Proof. Without loss of generality, we can assume that ∀j ∈ [n], Bj,j = L (otherwise we
can scale down the columns in which this is not true). B has n eigenvalues (with possi-
ble multiplicities) λ1, . . . , λn. Let r = rank(B) and suppose λ1, . . . , λr are non-zero and
λr+1, . . . , λn are all zeros. So B1,1 + · · ·+Bn,n = tr(B) = λ1 + · · ·+ λr. Now

(nL)2 ≤ tr(R)2 = (
r∑
i=1

λi)
2 ≤ r

r∑
i=1

λ2i

= r · tr(B2) = r · tr(BTB) = r
∑
i,j

B2
i,j ≤ r(nL2 + n2c),

where we used the Cauchy-Schwarz inequality to show (
∑r

i=1 λi)
2 ≤ r

∑r
i=1. Thus we have

that r ≥ n2L2

nL2+n2c
= n

1+ nc
L2
≥ n(1− nc

L2 ) = n− n2c
L2 .

Applying Lemma 9.1 to B = MTM , for which we know Bj,j ≥ Ω(s) and Bi,j ≤ t, we get

that rank(B) = rank(M) ≥ n−O(n
2t
s2

).

We now have to reduce the general case, in which we know nothing about the matrix M ,
to the special case in which the entries are bounded as above. We use the technique of
matrix-scaling, as follows. We multiply each row/column of M by the same non-zero real
number. When we do this, rank(M) does not change and M is still a (q, s, t)-design matrix.
In this way we can try to balance the entries to get them to be as in the special case we
considered.
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Definition 9.5. An m×n matrix M ′ is a scaling of M if ∃α1, . . . , αm, β1, . . . , βn ∈ R with
∀i ∈ [m], αi 6= 0,∀i ∈ [n], βi 6= 0 such that ∀i ∈ [m], j ∈ [n],M ′

i,j = αiβjMi,j.

Definition 9.6. An m×n matrix M is called l2-doubly stochastic, which we will abbreviate
as DS, if ∀i ∈ [m],

∑n
j=1 |Mi,j|2 = 1 and ∀j ∈ [n],

∑m
i=1 |Mi,j|2 = m

n
.

Definition 9.7. An m× n matrix M is scalable if ∀ε > 0, there exists a scaling M ′ of M
that is ε-close to being l2-doubly stochastic. That is, there exists an l2-doubly stochastic
matrix R such that

∥∥M ′ −R
∥∥
2
≤ ε.

Example 9.1. Consider the following matrix.

M =

[
1 1
0 1

]
M is scalable because ∀ε > 0, we can take α1 = ε, α2 = 1, β1 = 1

ε
, β2 = 1, which gives us

the scaling

M ′ =

[
1 ε
0 1

]
which is ε-close to the l2-doubly stochastic matrix

R =

[
1 0
0 1

]

We use the following theorem due to Sinkhorn.

Theorem 9.5. M is scalable if and only if ∀a × b sub-matrix N of M with ∀i ∈ [a], j ∈
[b], Ni,j = 0, we have a

m
+ b

n
≤ 1.

Example 9.2. If m = n, then we get that M is scalable if and only if for any zero
a × b submatrix of M , we have a + b ≤ n. This condition is equivalent to the one in
Hall’s Theorem, which says that there exists a perfect matching in a bipartite graph with
bipartite sets X and Y if and only if ∀W ⊆ X, |W | ≤ |NG(W )|, where NG(W ) is the set
of all neighbour of vertices in W . In our case, the matrix would be the adjacency matrix
of the graph, and a zero a × b submatrix of it would mean that there is W ⊆ X with
|W | > |NG(W )| as the vertices that correspond to the a rows which participate in the
submatrix can only have as neighbours the columns outside that submatrix, and there are
n− b < a of those.

Example 9.3. We will use the special case in which the m× n matrix R has n ”blocks”
R1, . . . , Rn, each of size s× n, where m = ns, and the j-th column in Rj has all non-zero
entries. Notice that the condition from above is satisfied, so R is scalable. The reason why
the condition is satisfied is the following. Suppose we have a zero a × b submatrix. If it
uses rows from i different blocks of R, then it has at most n− i columns, because for each
used block, it cannot use the column with the same number. Thus we get b ≤ n − i and
a ≤ ni, so a

ns
+ b

n
≤ is

ns
+ n−i

n
= 1.
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We now go back to reducing the general case of an m×n (q, s, t)-design matrix to an m×n
(q, s, t)-design matrix such that ∀i, j such that Mi,j 6= 0, we have 1

100
≤ |Mi,j| ≤ 1. Let

M be an m× n (q, s, t)-design matrix. Construct a scalable matrix R with ns rows and n
columns such that R1 corresponds to the submatrix consisting of the first s rows of R, R2

to rows s+ 1 through 2s, and Ri to rows (i− 1)s+ 1 through is. To construct R, we use
rows from M greedily. That is, to build Rj, we use the s rows of M that have non-zeros
in position j.

Claim 9.1. R is a (q, s, tq)-design matrix and rank(R) ≤ rank(M).

Proof of Claim 9.1. The rows of R are also rows of M , so it holds that each row of R has
at most q non-zero entries. Furthermore, each column i of R has s non-zeros – the ones in
Ri. Finally, consider some columns j and j′ with j 6= j′. There are at most t values i ∈ [m]
such that Mi,jMi,j′ 6= 0, and for each such row i, there are at most q non-zero entries the
i-th row of M , which means that this row can participate at most q times in R, so there
are at most qt values i′ ∈ [ns] such that Ri′,jRi′,j′ 6= 0. To see that rank(R) ≤ rank(M),
notice that nullity(R) ≥ nullity(M) because any vector in the kernel of M is also in the
kernel of R.

Let R′ be a scaling of R that is l2-doubly stochastic, where we ignore ε as we can let it
go to 0. Such a scaling exists because as shown above, R is scalable. Then B = R′TR′ is
an n × n matrix with the following properties. First of all, ∀i ∈ [n], Bi,i ≥ m

n
= ns

n
= s

because Bi,i =
∑m

j=1 R
′2
i,j = m

n
since R′ is l2-doubly stochastic. Furthermore, ∀i, j ∈ [n]

with i 6= j, Bi,j ≤ qt because Bi,j =
∑m

k=1R
′
k,iR

′
k,j, there are at most tq values of k

such that R′k,iR
′
k,j 6= 0 and as R′ is l2-doubly stochastic, no entry can have absolute

value bigger than 1. Then by Lemma 9.1, we have that rank(B) ≥ n − n2qt
s2

. Thus,

rank(M) ≥ rank(R′) = rank(B) ≥ n− n2qt
s2

.

The only thing left to prove is that there exists a family T of collinear triples with the
following properties:

1. Each vi is in many (≥ δn) triples from T .

2. Every pair vi,vj is together in at most O(1) triples of T .

To construct T , we use the following claim.

Claim 9.2. ∀l ≥ 3, there exists a family of triples (multiset) Tl ⊆
(
[l]
3

)
such that

1. ∀i, there are at least 3(l − 1) triples in Tl containing i.

2. ∀i 6= j, there are at most a constant number of triples in Tl containing both i and j.
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To build T , apply Claim 9.2 on each line l with at least three points and take the union of all
such families Tl. For each vi, suppose that it lies on k lines with at least three points on each
of them and suppose the number of points on each of these lines is respectively l1, . . . , lk.
Since we are considering a δ-Sylvester-Gallai configuration, we have that

∑k
j=1(lj − 1) ≥

δ(n − 1). On the other hand, for each line j ∈ [k] with at least three points on it that
vi lies on, we have that vi participates in at least 3(lj − 1) triples coming from this line.

Thus we have that vi participates in at least
∑k

j=1 3(lj − 1) ≥ 3δ(n − 1) triples. On the
other hand, any pair vi,vj can only participate together in triples coming from the line
that they form, and they participate in at most O(1) of those.

Exercise 9.1. Suppose there is a r-query LCC E : Qk → Qn. Show that there exists an
r-query LCC E : Fqp → Fnp for some prime p.

Exercise 9.2. Let M be an m × n (r, s, t)-design matrix over some field F with s = δn
and t = O(1). Show that V = ker(M) ⊆ Fn is an r-query LCC with error Ω(δ).

Exercise 9.3. Show that one cannot improve the 1
δ

dimension bound of δ-SG configura-
tions. Show that there exists a δ-SG configuration such that no line contains more than
o(n) points.
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